blob: 7cd47cd73c196a717e9c7709e7f2dda5e60da882 [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/symmetric_key.h"
#include <memory>
#include <string>
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "testing/gtest/include/gtest/gtest.h"
TEST(SymmetricKeyTest, GenerateRandomKey) {
std::unique_ptr<crypto::SymmetricKey> key(
crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, 256));
ASSERT_TRUE(NULL != key.get());
std::string raw_key;
EXPECT_TRUE(key->GetRawKey(&raw_key));
EXPECT_EQ(32U, raw_key.size());
// Do it again and check that the keys are different.
// (Note: this has a one-in-10^77 chance of failure!)
std::unique_ptr<crypto::SymmetricKey> key2(
crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, 256));
ASSERT_TRUE(NULL != key2.get());
std::string raw_key2;
EXPECT_TRUE(key2->GetRawKey(&raw_key2));
EXPECT_EQ(32U, raw_key2.size());
EXPECT_NE(raw_key, raw_key2);
}
TEST(SymmetricKeyTest, ImportGeneratedKey) {
std::unique_ptr<crypto::SymmetricKey> key1(
crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, 256));
ASSERT_TRUE(NULL != key1.get());
std::string raw_key1;
EXPECT_TRUE(key1->GetRawKey(&raw_key1));
std::unique_ptr<crypto::SymmetricKey> key2(
crypto::SymmetricKey::Import(crypto::SymmetricKey::AES, raw_key1));
ASSERT_TRUE(NULL != key2.get());
std::string raw_key2;
EXPECT_TRUE(key2->GetRawKey(&raw_key2));
EXPECT_EQ(raw_key1, raw_key2);
}
TEST(SymmetricKeyTest, ImportDerivedKey) {
std::unique_ptr<crypto::SymmetricKey> key1(
crypto::SymmetricKey::DeriveKeyFromPassword(
crypto::SymmetricKey::HMAC_SHA1, "password", "somesalt", 1024, 160));
ASSERT_TRUE(NULL != key1.get());
std::string raw_key1;
EXPECT_TRUE(key1->GetRawKey(&raw_key1));
std::unique_ptr<crypto::SymmetricKey> key2(
crypto::SymmetricKey::Import(crypto::SymmetricKey::HMAC_SHA1, raw_key1));
ASSERT_TRUE(NULL != key2.get());
std::string raw_key2;
EXPECT_TRUE(key2->GetRawKey(&raw_key2));
EXPECT_EQ(raw_key1, raw_key2);
}
struct PBKDF2TestVector {
crypto::SymmetricKey::Algorithm algorithm;
const char* password;
const char* salt;
unsigned int rounds;
unsigned int key_size_in_bits;
const char* expected; // ASCII encoded hex bytes
};
class SymmetricKeyDeriveKeyFromPasswordTest
: public testing::TestWithParam<PBKDF2TestVector> {
};
TEST_P(SymmetricKeyDeriveKeyFromPasswordTest, DeriveKeyFromPassword) {
PBKDF2TestVector test_data(GetParam());
#if defined(OS_MACOSX) && !defined(OS_IOS)
// The OS X crypto libraries have minimum salt and iteration requirements
// so some of the tests below will cause them to barf. Skip these.
if (strlen(test_data.salt) < 8 || test_data.rounds < 1000) {
VLOG(1) << "Skipped test vector for " << test_data.expected;
return;
}
#endif // OS_MACOSX
std::unique_ptr<crypto::SymmetricKey> key(
crypto::SymmetricKey::DeriveKeyFromPassword(
test_data.algorithm, test_data.password, test_data.salt,
test_data.rounds, test_data.key_size_in_bits));
ASSERT_TRUE(NULL != key.get());
std::string raw_key;
key->GetRawKey(&raw_key);
EXPECT_EQ(test_data.key_size_in_bits / 8, raw_key.size());
EXPECT_EQ(test_data.expected,
base::ToLowerASCII(base::HexEncode(raw_key.data(),
raw_key.size())));
}
static const PBKDF2TestVector kTestVectors[] = {
// These tests come from
// http://www.ietf.org/id/draft-josefsson-pbkdf2-test-vectors-00.txt
{
crypto::SymmetricKey::HMAC_SHA1,
"password",
"salt",
1,
160,
"0c60c80f961f0e71f3a9b524af6012062fe037a6",
},
{
crypto::SymmetricKey::HMAC_SHA1,
"password",
"salt",
2,
160,
"ea6c014dc72d6f8ccd1ed92ace1d41f0d8de8957",
},
{
crypto::SymmetricKey::HMAC_SHA1,
"password",
"salt",
4096,
160,
"4b007901b765489abead49d926f721d065a429c1",
},
// This test takes over 30s to run on the trybots.
#if 0
{
crypto::SymmetricKey::HMAC_SHA1,
"password",
"salt",
16777216,
160,
"eefe3d61cd4da4e4e9945b3d6ba2158c2634e984",
},
#endif
// These tests come from RFC 3962, via BSD source code at
// http://www.openbsd.org/cgi-bin/cvsweb/src/sbin/bioctl/pbkdf2.c?rev=HEAD&content-type=text/plain
{
crypto::SymmetricKey::HMAC_SHA1,
"password",
"ATHENA.MIT.EDUraeburn",
1,
160,
"cdedb5281bb2f801565a1122b25635150ad1f7a0",
},
{
crypto::SymmetricKey::HMAC_SHA1,
"password",
"ATHENA.MIT.EDUraeburn",
2,
160,
"01dbee7f4a9e243e988b62c73cda935da05378b9",
},
{
crypto::SymmetricKey::HMAC_SHA1,
"password",
"ATHENA.MIT.EDUraeburn",
1200,
160,
"5c08eb61fdf71e4e4ec3cf6ba1f5512ba7e52ddb",
},
{
crypto::SymmetricKey::HMAC_SHA1,
"password",
"\022" "4VxxV4\022", /* 0x1234567878563412 */
5,
160,
"d1daa78615f287e6a1c8b120d7062a493f98d203",
},
{
crypto::SymmetricKey::HMAC_SHA1,
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"pass phrase equals block size",
1200,
160,
"139c30c0966bc32ba55fdbf212530ac9c5ec59f1",
},
{
crypto::SymmetricKey::HMAC_SHA1,
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"pass phrase exceeds block size",
1200,
160,
"9ccad6d468770cd51b10e6a68721be611a8b4d28",
},
{
crypto::SymmetricKey::HMAC_SHA1,
"\360\235\204\236", /* g-clef (0xf09d849e) */
"EXAMPLE.COMpianist",
50,
160,
"6b9cf26d45455a43a5b8bb276a403b39e7fe37a0",
},
// Regression tests for AES keys, derived from the Linux NSS implementation.
{
crypto::SymmetricKey::AES,
"A test password",
"saltsalt",
1,
256,
"44899a7777f0e6e8b752f875f02044b8ac593de146de896f2e8a816e315a36de",
},
{
crypto::SymmetricKey::AES,
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"pass phrase exceeds block size",
20,
256,
"e0739745dc28b8721ba402e05214d2ac1eab54cf72bee1fba388297a09eb493c",
},
};
INSTANTIATE_TEST_CASE_P(, SymmetricKeyDeriveKeyFromPasswordTest,
testing::ValuesIn(kTestVectors));