blob: fda9782048c9017673afb3ededbfee44d9baa772 [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/rsa_private_key.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include "base/logging.h"
#include "base/notreached.h"
#include "base/strings/string_util.h"
// This file manually encodes and decodes RSA private keys using PrivateKeyInfo
// from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are:
//
// PrivateKeyInfo ::= SEQUENCE {
// version Version,
// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
// privateKey PrivateKey,
// attributes [0] IMPLICIT Attributes OPTIONAL
// }
//
// RSAPrivateKey ::= SEQUENCE {
// version Version,
// modulus INTEGER,
// publicExponent INTEGER,
// privateExponent INTEGER,
// prime1 INTEGER,
// prime2 INTEGER,
// exponent1 INTEGER,
// exponent2 INTEGER,
// coefficient INTEGER
// }
namespace {
// Helper for error handling during key import.
#define READ_ASSERT(truth) \
if (!(truth)) { \
NOTREACHED(); \
return false; \
}
} // namespace
namespace crypto {
const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = {
0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86,
0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00};
PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian)
: big_endian_(big_endian) {}
PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {}
bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) {
std::list<uint8_t> content;
// Version (always zero)
uint8_t version = 0;
PrependInteger(coefficient_, &content);
PrependInteger(exponent2_, &content);
PrependInteger(exponent1_, &content);
PrependInteger(prime2_, &content);
PrependInteger(prime1_, &content);
PrependInteger(private_exponent_, &content);
PrependInteger(public_exponent_, &content);
PrependInteger(modulus_, &content);
PrependInteger(&version, 1, &content);
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
// RSA algorithm OID
for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
content.push_front(kRsaAlgorithmIdentifier[i - 1]);
PrependInteger(&version, 1, &content);
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
// Copy everying into the output.
output->reserve(content.size());
output->assign(content.begin(), content.end());
return true;
}
bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) {
// Create a sequence with the modulus (n) and public exponent (e).
std::vector<uint8_t> bit_string;
if (!ExportPublicKey(&bit_string))
return false;
// Add the sequence as the contents of a bit string.
std::list<uint8_t> content;
PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()),
&content);
// Add the RSA algorithm OID.
for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
content.push_front(kRsaAlgorithmIdentifier[i - 1]);
// Finally, wrap everything in a sequence.
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
// Copy everything into the output.
output->reserve(content.size());
output->assign(content.begin(), content.end());
return true;
}
bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) {
// Create a sequence with the modulus (n) and public exponent (e).
std::list<uint8_t> content;
PrependInteger(&public_exponent_[0],
static_cast<int>(public_exponent_.size()),
&content);
PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content);
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
// Copy everything into the output.
output->reserve(content.size());
output->assign(content.begin(), content.end());
return true;
}
bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) {
if (input.empty()) {
return false;
}
// Parse the private key info up to the public key values, ignoring
// the subsequent private key values.
uint8_t* src = const_cast<uint8_t*>(&input.front());
uint8_t* end = src + input.size();
if (!ReadSequence(&src, end) ||
!ReadVersion(&src, end) ||
!ReadAlgorithmIdentifier(&src, end) ||
!ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
!ReadSequence(&src, end) ||
!ReadVersion(&src, end) ||
!ReadInteger(&src, end, &modulus_))
return false;
int mod_size = modulus_.size();
READ_ASSERT(mod_size % 2 == 0);
int primes_size = mod_size / 2;
if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) ||
!ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) ||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) ||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) ||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) ||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) ||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_))
return false;
READ_ASSERT(src == end);
return true;
}
void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in,
std::list<uint8_t>* out) {
uint8_t* ptr = const_cast<uint8_t*>(&in.front());
PrependIntegerImpl(ptr, in.size(), out, big_endian_);
}
// Helper to prepend an ASN.1 integer.
void PrivateKeyInfoCodec::PrependInteger(uint8_t* val,
int num_bytes,
std::list<uint8_t>* data) {
PrependIntegerImpl(val, num_bytes, data, big_endian_);
}
void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val,
int num_bytes,
std::list<uint8_t>* data,
bool big_endian) {
// Reverse input if little-endian.
std::vector<uint8_t> tmp;
if (!big_endian) {
tmp.assign(val, val + num_bytes);
std::reverse(tmp.begin(), tmp.end());
val = &tmp.front();
}
// ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
// from the most-significant end of the integer.
int start = 0;
while (start < (num_bytes - 1) && val[start] == 0x00) {
start++;
num_bytes--;
}
PrependBytes(val, start, num_bytes, data);
// ASN.1 integers are signed. To encode a positive integer whose sign bit
// (the most significant bit) would otherwise be set and make the number
// negative, ASN.1 requires a leading null byte to force the integer to be
// positive.
uint8_t front = data->front();
if ((front & 0x80) != 0) {
data->push_front(0x00);
num_bytes++;
}
PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
}
bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos,
uint8_t* end,
std::vector<uint8_t>* out) {
return ReadIntegerImpl(pos, end, out, big_endian_);
}
bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(
uint8_t** pos,
uint8_t* end,
size_t expected_size,
std::vector<uint8_t>* out) {
std::vector<uint8_t> temp;
if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian
return false;
int pad = expected_size - temp.size();
if (out->size() == expected_size + 1) {
READ_ASSERT(out->front() == 0x00);
pad++;
} else {
READ_ASSERT(out->size() <= expected_size);
}
out->insert(out->end(), pad, 0x00);
out->insert(out->end(), temp.begin(), temp.end());
// Reverse output if little-endian.
if (!big_endian_)
std::reverse(out->begin(), out->end());
return true;
}
bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos,
uint8_t* end,
std::vector<uint8_t>* out,
bool big_endian) {
uint32_t length = 0;
if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length)
return false;
// The first byte can be zero to force positiveness. We can ignore this.
if (**pos == 0x00) {
++(*pos);
--length;
}
if (length)
out->insert(out->end(), *pos, (*pos) + length);
(*pos) += length;
// Reverse output if little-endian.
if (!big_endian)
std::reverse(out->begin(), out->end());
return true;
}
void PrivateKeyInfoCodec::PrependBytes(uint8_t* val,
int start,
int num_bytes,
std::list<uint8_t>* data) {
while (num_bytes > 0) {
--num_bytes;
data->push_front(val[start + num_bytes]);
}
}
void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) {
// The high bit is used to indicate whether additional octets are needed to
// represent the length.
if (size < 0x80) {
data->push_front(static_cast<uint8_t>(size));
} else {
uint8_t num_bytes = 0;
while (size > 0) {
data->push_front(static_cast<uint8_t>(size & 0xFF));
size >>= 8;
num_bytes++;
}
CHECK_LE(num_bytes, 4);
data->push_front(0x80 | num_bytes);
}
}
void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(
uint8_t type,
uint32_t length,
std::list<uint8_t>* output) {
PrependLength(length, output);
output->push_front(type);
}
void PrivateKeyInfoCodec::PrependBitString(uint8_t* val,
int num_bytes,
std::list<uint8_t>* output) {
// Start with the data.
PrependBytes(val, 0, num_bytes, output);
// Zero unused bits.
output->push_front(0);
// Add the length.
PrependLength(num_bytes + 1, output);
// Finally, add the bit string tag.
output->push_front((uint8_t)kBitStringTag);
}
bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos,
uint8_t* end,
uint32_t* result) {
READ_ASSERT(*pos < end);
int length = 0;
// If the MSB is not set, the length is just the byte itself.
if (!(**pos & 0x80)) {
length = **pos;
(*pos)++;
} else {
// Otherwise, the lower 7 indicate the length of the length.
int length_of_length = **pos & 0x7F;
READ_ASSERT(length_of_length <= 4);
(*pos)++;
READ_ASSERT(*pos + length_of_length < end);
length = 0;
for (int i = 0; i < length_of_length; ++i) {
length <<= 8;
length |= **pos;
(*pos)++;
}
}
READ_ASSERT(*pos + length <= end);
if (result) *result = length;
return true;
}
bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos,
uint8_t* end,
uint8_t expected_tag,
uint32_t* length) {
READ_ASSERT(*pos < end);
READ_ASSERT(**pos == expected_tag);
(*pos)++;
return ReadLength(pos, end, length);
}
bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) {
return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
}
bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) {
READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
sizeof(kRsaAlgorithmIdentifier)) == 0);
(*pos) += sizeof(kRsaAlgorithmIdentifier);
return true;
}
bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) {
uint32_t length = 0;
if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
return false;
// The version should be zero.
for (uint32_t i = 0; i < length; ++i) {
READ_ASSERT(**pos == 0x00);
(*pos)++;
}
return true;
}
} // namespace crypto