| // Copyright (c) 2012 The Chromium OS Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "installer/cgpt_manager.h" |
| |
| #include <err.h> |
| #include <linux/major.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include "installer/inst_util.h" |
| |
| extern "C" { |
| #include <vboot/vboot_host.h> |
| } |
| |
| using std::string; |
| |
| namespace { |
| |
| // Create a temp file, read GPT structs from NOR flash to that file, and return |
| // true on success. On success, |file_name| contains the path to the temp file. |
| bool ReadGptFromNor(string* file_name) { |
| char tmp_name[] = "/tmp/cgptmanagerXXXXXX"; |
| int fd = mkstemp(tmp_name); |
| if (fd < 0) { |
| warn("Cannot create temp file to store GPT structs read from NOR"); |
| return false; |
| } |
| // Extra parens to work around the compiler parser. |
| ScopedPathRemover remover((string(tmp_name))); |
| // Close fd so that flashrom can write to the file right after. |
| close(fd); |
| string cmd = StringPrintf("flashrom -i \"RW_GPT:%s\" -r", tmp_name); |
| if (RunCommand(cmd) != 0) { |
| return false; |
| } |
| // Keep the temp file. |
| remover.release(); |
| *file_name = tmp_name; |
| return true; |
| } |
| |
| // Write |data| to NOR flash at FMAP |region|. Return true on success. |
| bool WriteToNor(const string& data, const string& region) { |
| char tmp_name[] = "/tmp/cgptmanagerXXXXXX"; |
| ScopedFileDescriptor fd(mkstemp(tmp_name)); |
| if (fd < 0) { |
| warn("Cannot create temp file to write to NOR flash"); |
| return false; |
| } |
| |
| // Extra parens to work around the compiler parser. |
| ScopedPathRemover remover((string(tmp_name))); |
| if (!WriteFullyToFileDescriptor(data, fd)) { |
| warnx("Cannot write data to temp file %s.\n", tmp_name); |
| return false; |
| } |
| |
| // Close fd so that flashrom can open it right after. |
| if (fd.close() != 0) { |
| warn("Cannot close file %s", tmp_name); |
| return false; |
| } |
| |
| string cmd = StringPrintf("flashrom -i \"%s:%s\" -w --fast-verify", |
| region.c_str(), tmp_name); |
| if (RunCommand(cmd) != 0) { |
| warnx("Cannot write %s to %s section.\n", tmp_name, region.c_str()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Write GPT data in |file_name| file to NOR flash. This function writes the |
| // content in two halves, one to RW_GPT_PRIMARY, and another to RW_GPT_SECONDARY |
| // sections. Return negative on failure, 0 on success, a positive integer means |
| // that many parts failed. Due to the way GPT works, we usually could recover |
| // from one failure. |
| int WriteGptToNor(const string& file_name) { |
| string gpt_data; |
| if (!ReadFileToString(file_name, &gpt_data)) { |
| warnx("Cannot read from %s.\n", file_name.c_str()); |
| return -1; |
| } |
| |
| int ret = 0; |
| if (!WriteToNor(gpt_data.substr(0, gpt_data.length() / 2), |
| "RW_GPT_PRIMARY")) { |
| ret++; |
| } |
| if (!WriteToNor(gpt_data.substr(gpt_data.length() / 2), |
| "RW_GPT_SECONDARY")) { |
| ret++; |
| } |
| |
| switch (ret) { |
| case 0: { |
| break; |
| } |
| case 1: { |
| warnx("Failed to write some part. It might still be okay.\n"); |
| break; |
| } |
| case 2: { |
| warnx("Cannot write either part to flashrom.\n"); |
| break; |
| } |
| default: { |
| errx(-1, "Unexpected number of write failures (%d)", ret); |
| } |
| } |
| return ret; |
| } |
| |
| // Set or clear |is_mtd| depending on if |block_dev| points to an MTD device. |
| bool IsMtd(const string& block_dev, bool* is_mtd) { |
| struct stat stat_buf; |
| if (stat(block_dev.c_str(), &stat_buf) != 0) { |
| warn("Failed to stat %s", block_dev.c_str()); |
| return false; |
| } |
| *is_mtd = (major(stat_buf.st_rdev) == MTD_CHAR_MAJOR); |
| return true; |
| } |
| |
| // Return the size of MTD device |block_dev| in |ret|. |
| bool GetMtdSize(const string& block_dev, uint64_t* ret) { |
| string size_file = StringPrintf("/sys/class/mtd/%s/size", |
| basename(block_dev.c_str())); |
| string size_string; |
| if (!ReadFileToString(size_file, &size_string)) { |
| warnx("Cannot read MTD size from %s.\n", size_file.c_str()); |
| return false; |
| } |
| |
| uint64_t size; |
| char* end; |
| size = strtoull(size_string.c_str(), &end, 10); |
| if (*end != '\x0A') { |
| warn("Cannot convert %s into decimal", size_string.c_str()); |
| return false; |
| } |
| |
| *ret = size; |
| return true; |
| } |
| |
| } // namespace |
| |
| // This file implements the C++ wrapper methods over the C cgpt methods. |
| |
| CgptManager::CgptManager(): |
| device_size_(0), |
| is_initialized_(false) { |
| } |
| |
| CgptManager::~CgptManager() { |
| Finalize(); |
| } |
| |
| CgptErrorCode CgptManager::Initialize(const string& device_name) { |
| device_name_ = device_name; |
| bool is_mtd; |
| if (!IsMtd(device_name, &is_mtd)) { |
| warnx("Cannot determine if %s is an MTD device.\n", device_name.c_str()); |
| return kCgptNotInitialized; |
| } |
| if (is_mtd) { |
| warnx("%s is an MTD device.\n", device_name.c_str()); |
| if (!GetMtdSize(device_name, &device_size_)) { |
| warnx("But we do not know its size.\n"); |
| return kCgptNotInitialized; |
| } |
| if (!ReadGptFromNor(&device_name_)) { |
| warnx("Failed to read GPT structs from NOR flash.\n"); |
| return kCgptNotInitialized; |
| } |
| } |
| is_initialized_ = true; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::Finalize() { |
| if (!is_initialized_) { |
| return kCgptNotInitialized; |
| } |
| |
| if (device_size_) { |
| if (WriteGptToNor(device_name_) != 0) { |
| return kCgptUnknownError; |
| } |
| if (unlink(device_name_.c_str()) != 0) { |
| warn("Cannot remove temp file %s", device_name_.c_str()); |
| } |
| } |
| |
| device_size_ = 0; |
| is_initialized_ = false; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::ClearAll() { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| CgptCreateParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.zap = 0; |
| |
| int retval = CgptCreate(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::AddPartition(const string& label, |
| const Guid& partition_type_guid, |
| const Guid& unique_id, |
| uint64_t beginning_offset, |
| uint64_t num_sectors) { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.label = const_cast<char *>(label.c_str()); |
| |
| params.type_guid = partition_type_guid; |
| params.set_type = 1; |
| |
| params.begin = beginning_offset; |
| params.set_begin = 1; |
| |
| params.size = num_sectors; |
| params.set_size = 1; |
| |
| if (!GuidIsZero(&unique_id)) { |
| params.unique_guid = unique_id; |
| params.set_unique = 1; |
| } |
| |
| int retval = CgptAdd(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetNumNonEmptyPartitions( |
| uint8_t* num_partitions) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!num_partitions) |
| return kCgptInvalidArgument; |
| |
| CgptShowParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| int retval = CgptGetNumNonEmptyPartitions(¶ms); |
| |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *num_partitions = params.num_partitions; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::SetPmbr(uint32_t boot_partition_number, |
| const string& boot_file_name, |
| bool should_create_legacy_partition) { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| CgptBootParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| if (!boot_file_name.empty()) |
| params.bootfile = const_cast<char *>(boot_file_name.c_str()); |
| |
| params.partition = boot_partition_number; |
| params.create_pmbr = should_create_legacy_partition; |
| |
| int retval = CgptBoot(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetPmbrBootPartitionNumber( |
| uint32_t* boot_partition) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!boot_partition) |
| return kCgptInvalidArgument; |
| |
| CgptBootParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| |
| int retval = CgptGetBootPartitionNumber(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *boot_partition = params.partition; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::SetSuccessful( |
| uint32_t partition_number, |
| bool is_successful) { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| params.successful = is_successful; |
| params.set_successful = true; |
| |
| int retval = CgptSetAttributes(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetSuccessful(uint32_t partition_number, |
| bool* is_successful) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!is_successful) |
| return kCgptInvalidArgument; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| int retval = CgptGetPartitionDetails(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *is_successful = params.successful; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::SetNumTriesLeft(uint32_t partition_number, |
| int numTries) { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| params.tries = numTries; |
| params.set_tries = true; |
| |
| int retval = CgptSetAttributes(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetNumTriesLeft(uint32_t partition_number, |
| int* numTries) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!numTries) |
| return kCgptInvalidArgument; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| int retval = CgptGetPartitionDetails(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *numTries = params.tries; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::SetPriority(uint32_t partition_number, |
| uint8_t priority) { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| params.priority = priority; |
| params.set_priority = true; |
| |
| int retval = CgptSetAttributes(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetPriority(uint32_t partition_number, |
| uint8_t* priority) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!priority) |
| return kCgptInvalidArgument; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| int retval = CgptGetPartitionDetails(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *priority = params.priority; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetBeginningOffset(uint32_t partition_number, |
| uint64_t* offset) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!offset) |
| return kCgptInvalidArgument; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| int retval = CgptGetPartitionDetails(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *offset = params.begin; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetNumSectors(uint32_t partition_number, |
| uint64_t* num_sectors) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!num_sectors) |
| return kCgptInvalidArgument; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| int retval = CgptGetPartitionDetails(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *num_sectors = params.size; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetPartitionTypeId(uint32_t partition_number, |
| Guid* type_id) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!type_id) |
| return kCgptInvalidArgument; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| int retval = CgptGetPartitionDetails(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *type_id = params.type_guid; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetPartitionUniqueId(uint32_t partition_number, |
| Guid* unique_id) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!unique_id) |
| return kCgptInvalidArgument; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.partition = partition_number; |
| |
| int retval = CgptGetPartitionDetails(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *unique_id = params.unique_guid; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::GetPartitionNumberByUniqueId( |
| const Guid& unique_id, |
| uint32_t* partition_number) const { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| if (!partition_number) |
| return kCgptInvalidArgument; |
| |
| CgptAddParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.unique_guid = unique_id; |
| params.set_unique = 1; |
| |
| int retval = CgptGetPartitionDetails(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| *partition_number = params.partition; |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::SetHighestPriority(uint32_t partition_number, |
| uint8_t highest_priority) { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| CgptPrioritizeParams params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| params.drive_name = const_cast<char *>(device_name_.c_str()); |
| params.drive_size = device_size_; |
| params.set_partition = partition_number; |
| params.max_priority = highest_priority; |
| |
| int retval = CgptPrioritize(¶ms); |
| if (retval != CGPT_OK) |
| return kCgptUnknownError; |
| |
| return kCgptSuccess; |
| } |
| |
| CgptErrorCode CgptManager::SetHighestPriority(uint32_t partition_number) { |
| // The internal implementation in CgptPrioritize automatically computes the |
| // right priority number if we supply 0 for the highest_priority argument. |
| return SetHighestPriority(partition_number, 0); |
| } |
| |
| CgptErrorCode CgptManager::Validate() { |
| if (!is_initialized_) |
| return kCgptNotInitialized; |
| |
| uint8_t num_partitions; |
| |
| // GetNumNonEmptyPartitions does the check for GptSanityCheck. |
| // so call it (ignore the num_partitions result) and just return |
| // its success/failure result. |
| return GetNumNonEmptyPartitions(&num_partitions); |
| } |