blob: de02b46e8f2f65a31d0b1d3a100e004bdd7fe3f4 [file] [log] [blame]
/*
* Copyright (c) 2016-2020, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* Contains generic routines to fix up the device tree blob passed on to
* payloads like BL32 and BL33 (and further down the boot chain).
* This allows to easily add PSCI nodes, when the original DT does not have
* it or advertises another method.
* Also it supports to add reserved memory nodes to describe memory that
* is used by the secure world, so that non-secure software avoids using
* that.
*/
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <libfdt.h>
#include <arch.h>
#include <common/debug.h>
#include <common/fdt_fixup.h>
#include <common/fdt_wrappers.h>
#include <drivers/console.h>
#include <lib/psci/psci.h>
#include <plat/common/platform.h>
static int append_psci_compatible(void *fdt, int offs, const char *str)
{
return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
}
/*
* Those defines are for PSCI v0.1 legacy clients, which we expect to use
* the same execution state (AArch32/AArch64) as TF-A.
* Kernels running in AArch32 on an AArch64 TF-A should use PSCI v0.2.
*/
#ifdef __aarch64__
#define PSCI_CPU_SUSPEND_FNID PSCI_CPU_SUSPEND_AARCH64
#define PSCI_CPU_ON_FNID PSCI_CPU_ON_AARCH64
#else
#define PSCI_CPU_SUSPEND_FNID PSCI_CPU_SUSPEND_AARCH32
#define PSCI_CPU_ON_FNID PSCI_CPU_ON_AARCH32
#endif
/*******************************************************************************
* dt_add_psci_node() - Add a PSCI node into an existing device tree
* @fdt: pointer to the device tree blob in memory
*
* Add a device tree node describing PSCI into the root level of an existing
* device tree blob in memory.
* This will add v0.1, v0.2 and v1.0 compatible strings and the standard
* function IDs for v0.1 compatibility.
* An existing PSCI node will not be touched, the function will return success
* in this case. This function will not touch the /cpus enable methods, use
* dt_add_psci_cpu_enable_methods() for that.
*
* Return: 0 on success, -1 otherwise.
******************************************************************************/
int dt_add_psci_node(void *fdt)
{
int offs;
if (fdt_path_offset(fdt, "/psci") >= 0) {
WARN("PSCI Device Tree node already exists!\n");
return 0;
}
offs = fdt_path_offset(fdt, "/");
if (offs < 0)
return -1;
offs = fdt_add_subnode(fdt, offs, "psci");
if (offs < 0)
return -1;
if (append_psci_compatible(fdt, offs, "arm,psci-1.0"))
return -1;
if (append_psci_compatible(fdt, offs, "arm,psci-0.2"))
return -1;
if (append_psci_compatible(fdt, offs, "arm,psci"))
return -1;
if (fdt_setprop_string(fdt, offs, "method", "smc"))
return -1;
if (fdt_setprop_u32(fdt, offs, "cpu_suspend", PSCI_CPU_SUSPEND_FNID))
return -1;
if (fdt_setprop_u32(fdt, offs, "cpu_off", PSCI_CPU_OFF))
return -1;
if (fdt_setprop_u32(fdt, offs, "cpu_on", PSCI_CPU_ON_FNID))
return -1;
return 0;
}
/*
* Find the first subnode that has a "device_type" property with the value
* "cpu" and which's enable-method is not "psci" (yet).
* Returns 0 if no such subnode is found, so all have already been patched
* or none have to be patched in the first place.
* Returns 1 if *one* such subnode has been found and successfully changed
* to "psci".
* Returns negative values on error.
*
* Call in a loop until it returns 0. Recalculate the node offset after
* it has returned 1.
*/
static int dt_update_one_cpu_node(void *fdt, int offset)
{
int offs;
/* Iterate over all subnodes to find those with device_type = "cpu". */
for (offs = fdt_first_subnode(fdt, offset); offs >= 0;
offs = fdt_next_subnode(fdt, offs)) {
const char *prop;
int len;
int ret;
prop = fdt_getprop(fdt, offs, "device_type", &len);
if (prop == NULL)
continue;
if ((strcmp(prop, "cpu") != 0) || (len != 4))
continue;
/* Ignore any nodes which already use "psci". */
prop = fdt_getprop(fdt, offs, "enable-method", &len);
if ((prop != NULL) &&
(strcmp(prop, "psci") == 0) && (len == 5))
continue;
ret = fdt_setprop_string(fdt, offs, "enable-method", "psci");
if (ret < 0)
return ret;
/*
* Subnode found and patched.
* Restart to accommodate potentially changed offsets.
*/
return 1;
}
if (offs == -FDT_ERR_NOTFOUND)
return 0;
return offs;
}
/*******************************************************************************
* dt_add_psci_cpu_enable_methods() - switch CPU nodes in DT to use PSCI
* @fdt: pointer to the device tree blob in memory
*
* Iterate over all CPU device tree nodes (/cpus/cpu@x) in memory to change
* the enable-method to PSCI. This will add the enable-method properties, if
* required, or will change existing properties to read "psci".
*
* Return: 0 on success, or a negative error value otherwise.
******************************************************************************/
int dt_add_psci_cpu_enable_methods(void *fdt)
{
int offs, ret;
do {
offs = fdt_path_offset(fdt, "/cpus");
if (offs < 0)
return offs;
ret = dt_update_one_cpu_node(fdt, offs);
} while (ret > 0);
return ret;
}
#define HIGH_BITS(x) ((sizeof(x) > 4) ? ((x) >> 32) : (typeof(x))0)
/*******************************************************************************
* fdt_add_reserved_memory() - reserve (secure) memory regions in DT
* @dtb: pointer to the device tree blob in memory
* @node_name: name of the subnode to be used
* @base: physical base address of the reserved region
* @size: size of the reserved region
*
* Add a region of memory to the /reserved-memory node in a device tree in
* memory, creating that node if required. Each region goes into a subnode
* of that node and has a @node_name, a @base address and a @size.
* This will prevent any device tree consumer from using that memory. It
* can be used to announce secure memory regions, as it adds the "no-map"
* property to prevent mapping and speculative operations on that region.
*
* See reserved-memory/reserved-memory.txt in the (Linux kernel) DT binding
* documentation for details.
* According to this binding, the address-cells and size-cells must match
* those of the root node.
*
* Return: 0 on success, a negative error value otherwise.
******************************************************************************/
int fdt_add_reserved_memory(void *dtb, const char *node_name,
uintptr_t base, size_t size)
{
int offs = fdt_path_offset(dtb, "/reserved-memory");
uint32_t addresses[4];
int ac, sc;
unsigned int idx = 0;
ac = fdt_address_cells(dtb, 0);
sc = fdt_size_cells(dtb, 0);
if (offs < 0) { /* create if not existing yet */
offs = fdt_add_subnode(dtb, 0, "reserved-memory");
if (offs < 0) {
return offs;
}
fdt_setprop_u32(dtb, offs, "#address-cells", ac);
fdt_setprop_u32(dtb, offs, "#size-cells", sc);
fdt_setprop(dtb, offs, "ranges", NULL, 0);
}
if (ac > 1) {
addresses[idx] = cpu_to_fdt32(HIGH_BITS(base));
idx++;
}
addresses[idx] = cpu_to_fdt32(base & 0xffffffff);
idx++;
if (sc > 1) {
addresses[idx] = cpu_to_fdt32(HIGH_BITS(size));
idx++;
}
addresses[idx] = cpu_to_fdt32(size & 0xffffffff);
idx++;
offs = fdt_add_subnode(dtb, offs, node_name);
fdt_setprop(dtb, offs, "no-map", NULL, 0);
fdt_setprop(dtb, offs, "reg", addresses, idx * sizeof(uint32_t));
return 0;
}
/*******************************************************************************
* fdt_add_cpu() Add a new CPU node to the DT
* @dtb: Pointer to the device tree blob in memory
* @parent: Offset of the parent node
* @mpidr: MPIDR for the current CPU
*
* Create and add a new cpu node to a DTB.
*
* Return the offset of the new node or a negative value in case of error
******************************************************************************/
static int fdt_add_cpu(void *dtb, int parent, u_register_t mpidr)
{
int cpu_offs;
int err;
char snode_name[15];
uint64_t reg_prop;
reg_prop = mpidr & MPID_MASK & ~MPIDR_MT_MASK;
snprintf(snode_name, sizeof(snode_name), "cpu@%x",
(unsigned int)reg_prop);
cpu_offs = fdt_add_subnode(dtb, parent, snode_name);
if (cpu_offs < 0) {
ERROR ("FDT: add subnode \"%s\" failed: %i\n",
snode_name, cpu_offs);
return cpu_offs;
}
err = fdt_setprop_string(dtb, cpu_offs, "compatible", "arm,armv8");
if (err < 0) {
ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
"compatible", cpu_offs);
return err;
}
err = fdt_setprop_u64(dtb, cpu_offs, "reg", reg_prop);
if (err < 0) {
ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
"reg", cpu_offs);
return err;
}
err = fdt_setprop_string(dtb, cpu_offs, "device_type", "cpu");
if (err < 0) {
ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
"device_type", cpu_offs);
return err;
}
err = fdt_setprop_string(dtb, cpu_offs, "enable-method", "psci");
if (err < 0) {
ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
"enable-method", cpu_offs);
return err;
}
return cpu_offs;
}
/******************************************************************************
* fdt_add_cpus_node() - Add the cpus node to the DTB
* @dtb: pointer to the device tree blob in memory
* @afflv0: Maximum number of threads per core (affinity level 0).
* @afflv1: Maximum number of CPUs per cluster (affinity level 1).
* @afflv2: Maximum number of clusters (affinity level 2).
*
* Iterate over all the possible MPIDs given the maximum affinity levels and
* add a cpus node to the DTB with all the valid CPUs on the system.
* If there is already a /cpus node, exit gracefully
*
* A system with two CPUs would generate a node equivalent or similar to:
*
* cpus {
* #address-cells = <2>;
* #size-cells = <0>;
*
* cpu0: cpu@0 {
* compatible = "arm,armv8";
* reg = <0x0 0x0>;
* device_type = "cpu";
* enable-method = "psci";
* };
* cpu1: cpu@10000 {
* compatible = "arm,armv8";
* reg = <0x0 0x100>;
* device_type = "cpu";
* enable-method = "psci";
* };
* };
*
* Full documentation about the CPU bindings can be found at:
* https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/cpus.txt
*
* Return the offset of the node or a negative value on error.
******************************************************************************/
int fdt_add_cpus_node(void *dtb, unsigned int afflv0,
unsigned int afflv1, unsigned int afflv2)
{
int offs;
int err;
unsigned int i, j, k;
u_register_t mpidr;
int cpuid;
if (fdt_path_offset(dtb, "/cpus") >= 0) {
return -EEXIST;
}
offs = fdt_add_subnode(dtb, 0, "cpus");
if (offs < 0) {
ERROR ("FDT: add subnode \"cpus\" node to parent node failed");
return offs;
}
err = fdt_setprop_u32(dtb, offs, "#address-cells", 2);
if (err < 0) {
ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
"#address-cells", offs);
return err;
}
err = fdt_setprop_u32(dtb, offs, "#size-cells", 0);
if (err < 0) {
ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n",
"#size-cells", offs);
return err;
}
/*
* Populate the node with the CPUs.
* As libfdt prepends subnodes within a node, reverse the index count
* so the CPU nodes would be better ordered.
*/
for (i = afflv2; i > 0U; i--) {
for (j = afflv1; j > 0U; j--) {
for (k = afflv0; k > 0U; k--) {
mpidr = ((i - 1) << MPIDR_AFF2_SHIFT) |
((j - 1) << MPIDR_AFF1_SHIFT) |
((k - 1) << MPIDR_AFF0_SHIFT) |
(read_mpidr_el1() & MPIDR_MT_MASK);
cpuid = plat_core_pos_by_mpidr(mpidr);
if (cpuid >= 0) {
/* Valid MPID found */
err = fdt_add_cpu(dtb, offs, mpidr);
if (err < 0) {
ERROR ("FDT: %s 0x%08x\n",
"error adding CPU",
(uint32_t)mpidr);
return err;
}
}
}
}
}
return offs;
}
/**
* fdt_adjust_gic_redist() - Adjust GICv3 redistributor size
* @dtb: Pointer to the DT blob in memory
* @nr_cores: Number of CPU cores on this system.
* @gicr_base: Base address of the first GICR frame, or ~0 if unchanged
* @gicr_frame_size: Size of the GICR frame per core
*
* On a GICv3 compatible interrupt controller, the redistributor provides
* a number of 64k pages per each supported core. So with a dynamic topology,
* this size cannot be known upfront and thus can't be hardcoded into the DTB.
*
* Find the DT node describing the GICv3 interrupt controller, and adjust
* the size of the redistributor to match the number of actual cores on
* this system.
* A GICv4 compatible redistributor uses four 64K pages per core, whereas GICs
* without support for direct injection of virtual interrupts use two 64K pages.
* The @gicr_frame_size parameter should be 262144 and 131072, respectively.
* Also optionally allow adjusting the GICR frame base address, when this is
* different due to ITS frames between distributor and redistributor.
*
* Return: 0 on success, negative error value otherwise.
*/
int fdt_adjust_gic_redist(void *dtb, unsigned int nr_cores,
uintptr_t gicr_base, unsigned int gicr_frame_size)
{
int offset = fdt_node_offset_by_compatible(dtb, 0, "arm,gic-v3");
uint64_t reg_64;
uint32_t reg_32;
void *val;
int parent, ret;
int ac, sc;
if (offset < 0) {
return offset;
}
parent = fdt_parent_offset(dtb, offset);
if (parent < 0) {
return parent;
}
ac = fdt_address_cells(dtb, parent);
sc = fdt_size_cells(dtb, parent);
if (ac < 0 || sc < 0) {
return -EINVAL;
}
if (gicr_base != INVALID_BASE_ADDR) {
if (ac == 1) {
reg_32 = cpu_to_fdt32(gicr_base);
val = &reg_32;
} else {
reg_64 = cpu_to_fdt64(gicr_base);
val = &reg_64;
}
/*
* The redistributor base address is the second address in
* the "reg" entry, so we have to skip one address and one
* size cell.
*/
ret = fdt_setprop_inplace_namelen_partial(dtb, offset,
"reg", 3,
(ac + sc) * 4,
val, ac * 4);
if (ret < 0) {
return ret;
}
}
if (sc == 1) {
reg_32 = cpu_to_fdt32(nr_cores * gicr_frame_size);
val = &reg_32;
} else {
reg_64 = cpu_to_fdt64(nr_cores * (uint64_t)gicr_frame_size);
val = &reg_64;
}
/*
* The redistributor is described in the second "reg" entry.
* So we have to skip one address and one size cell, then another
* address cell to get to the second size cell.
*/
return fdt_setprop_inplace_namelen_partial(dtb, offset, "reg", 3,
(ac + sc + ac) * 4,
val, sc * 4);
}