| import base64, os, tempfile, operator, pickle, datetime, django.db |
| import os.path, getpass |
| from math import sqrt |
| |
| # When you import matplotlib, it tries to write some temp files for better |
| # performance, and it does that to the directory in MPLCONFIGDIR, or, if that |
| # doesn't exist, the home directory. Problem is, the home directory is not |
| # writable when running under Apache, and matplotlib's not smart enough to |
| # handle that. It does appear smart enough to handle the files going |
| # away after they are written, though. |
| |
| temp_dir = os.path.join(tempfile.gettempdir(), |
| '.matplotlib-%s' % getpass.getuser()) |
| if not os.path.exists(temp_dir): |
| os.mkdir(temp_dir) |
| os.environ['MPLCONFIGDIR'] = temp_dir |
| |
| import matplotlib |
| matplotlib.use('Agg') |
| |
| import matplotlib.figure, matplotlib.backends.backend_agg |
| import StringIO, colorsys, PIL.Image, PIL.ImageChops |
| from autotest_lib.frontend.afe import readonly_connection |
| from autotest_lib.frontend.afe.model_logic import ValidationError |
| from simplejson import encoder |
| from autotest_lib.client.common_lib import global_config |
| from autotest_lib.frontend.tko import models, tko_rpc_utils |
| |
| _FIGURE_DPI = 100 |
| _FIGURE_WIDTH_IN = 10 |
| _FIGURE_BOTTOM_PADDING_IN = 2 # for x-axis labels |
| |
| _SINGLE_PLOT_HEIGHT = 6 |
| _MULTIPLE_PLOT_HEIGHT_PER_PLOT = 4 |
| |
| _MULTIPLE_PLOT_MARKER_TYPE = 'o' |
| _MULTIPLE_PLOT_MARKER_SIZE = 4 |
| _SINGLE_PLOT_STYLE = 'bs-' # blue squares with lines connecting |
| _SINGLE_PLOT_ERROR_BAR_COLOR = 'r' |
| |
| _LEGEND_FONT_SIZE = 'xx-small' |
| _LEGEND_HANDLE_LENGTH = 0.03 |
| _LEGEND_NUM_POINTS = 3 |
| _LEGEND_MARKER_TYPE = 'o' |
| |
| _LINE_XTICK_LABELS_SIZE = 'x-small' |
| _BAR_XTICK_LABELS_SIZE = 8 |
| |
| _json_encoder = encoder.JSONEncoder() |
| |
| class NoDataError(Exception): |
| """\ |
| Exception to raise if the graphing query returned an empty resultset. |
| """ |
| |
| |
| def _colors(n): |
| """\ |
| Generator function for creating n colors. The return value is a tuple |
| representing the RGB of the color. |
| """ |
| for i in xrange(n): |
| yield colorsys.hsv_to_rgb(float(i) / n, 1.0, 1.0) |
| |
| |
| def _resort(kernel_labels, list_to_sort): |
| """\ |
| Resorts a list, using a list of kernel strings as the keys. Returns the |
| resorted list. |
| """ |
| |
| labels = [tko_rpc_utils.KernelString(label) for label in kernel_labels] |
| resorted_pairs = sorted(zip(labels, list_to_sort)) |
| |
| # We only want the resorted list; we are not interested in the kernel |
| # strings. |
| return [pair[1] for pair in resorted_pairs] |
| |
| |
| def _quote(string): |
| return "%s%s%s" % ("'", string.replace("'", r"\'"), "'") |
| |
| |
| _HTML_TEMPLATE = """\ |
| <html><head></head><body> |
| <img src="data:image/png;base64,%s" usemap="#%s" |
| border="0" alt="graph"> |
| <map name="%s">%s</map> |
| </body></html>""" |
| |
| _AREA_TEMPLATE = """\ |
| <area shape="rect" coords="%i,%i,%i,%i" title="%s" |
| href="#" |
| onclick="%s(%s); return false;">""" |
| |
| |
| class MetricsPlot(object): |
| def __init__(self, query_dict, plot_type, inverted_series, normalize_to, |
| drilldown_callback): |
| """ |
| query_dict: dictionary containing the main query and the drilldown |
| queries. The main query returns a row for each x value. The first |
| column contains the x-axis label. Subsequent columns contain data |
| for each series, named by the column names. A column named |
| 'errors-<x>' will be interpreted as errors for the series named <x>. |
| |
| plot_type: 'Line' or 'Bar', depending on the plot type the user wants |
| |
| inverted_series: list of series that should be plotted on an inverted |
| y-axis |
| |
| normalize_to: |
| None - do not normalize |
| 'first' - normalize against the first data point |
| 'x__%s' - normalize against the x-axis value %s |
| 'series__%s' - normalize against the series %s |
| |
| drilldown_callback: name of drilldown callback method. |
| """ |
| self.query_dict = query_dict |
| if plot_type == 'Line': |
| self.is_line = True |
| elif plot_type == 'Bar': |
| self.is_line = False |
| else: |
| raise ValidationError({'plot' : 'Plot must be either Line or Bar'}) |
| self.plot_type = plot_type |
| self.inverted_series = inverted_series |
| self.normalize_to = normalize_to |
| if self.normalize_to is None: |
| self.normalize_to = '' |
| self.drilldown_callback = drilldown_callback |
| |
| |
| class QualificationHistogram(object): |
| def __init__(self, query, filter_string, interval, drilldown_callback): |
| """ |
| query: the main query to retrieve the pass rate information. The first |
| column contains the hostnames of all the machines that satisfied the |
| global filter. The second column (titled 'total') contains the total |
| number of tests that ran on that machine and satisfied the global |
| filter. The third column (titled 'good') contains the number of |
| those tests that passed on that machine. |
| |
| filter_string: filter to apply to the common global filter to show the |
| Table View drilldown of a histogram bucket |
| |
| interval: interval for each bucket. E.g., 10 means that buckets should |
| be 0-10%, 10%-20%, ... |
| |
| """ |
| self.query = query |
| self.filter_string = filter_string |
| self.interval = interval |
| self.drilldown_callback = drilldown_callback |
| |
| |
| def _create_figure(height_inches): |
| """\ |
| Creates an instance of matplotlib.figure.Figure, given the height in inches. |
| Returns the figure and the height in pixels. |
| """ |
| |
| fig = matplotlib.figure.Figure( |
| figsize=(_FIGURE_WIDTH_IN, height_inches + _FIGURE_BOTTOM_PADDING_IN), |
| dpi=_FIGURE_DPI, facecolor='white') |
| fig.subplots_adjust(bottom=float(_FIGURE_BOTTOM_PADDING_IN) / height_inches) |
| return (fig, fig.get_figheight() * _FIGURE_DPI) |
| |
| |
| def _create_line(plots, labels, plot_info): |
| """\ |
| Given all the data for the metrics, create a line plot. |
| |
| plots: list of dicts containing the plot data. Each dict contains: |
| x: list of x-values for the plot |
| y: list of corresponding y-values |
| errors: errors for each data point, or None if no error information |
| available |
| label: plot title |
| labels: list of x-tick labels |
| plot_info: a MetricsPlot |
| """ |
| # when we're doing any kind of normalization, all series get put into a |
| # single plot |
| single = bool(plot_info.normalize_to) |
| |
| area_data = [] |
| lines = [] |
| if single: |
| plot_height = _SINGLE_PLOT_HEIGHT |
| else: |
| plot_height = _MULTIPLE_PLOT_HEIGHT_PER_PLOT * len(plots) |
| figure, height = _create_figure(plot_height) |
| |
| if single: |
| subplot = figure.add_subplot(1, 1, 1) |
| |
| # Plot all the data |
| for plot_index, (plot, color) in enumerate(zip(plots, _colors(len(plots)))): |
| needs_invert = (plot['label'] in plot_info.inverted_series) |
| |
| # Add a new subplot, if user wants multiple subplots |
| # Also handle axis inversion for subplots here |
| if not single: |
| subplot = figure.add_subplot(len(plots), 1, plot_index + 1) |
| subplot.set_title(plot['label']) |
| if needs_invert: |
| # for separate plots, just invert the y-axis |
| subplot.set_ylim(1, 0) |
| elif needs_invert: |
| # for a shared plot (normalized data), need to invert the y values |
| # manually, since all plots share a y-axis |
| plot['y'] = [-y for y in plot['y']] |
| |
| # Plot the series |
| subplot.set_xticks(range(0, len(labels))) |
| subplot.set_xlim(-1, len(labels)) |
| if single: |
| lines += subplot.plot(plot['x'], plot['y'], label=plot['label'], |
| marker=_MULTIPLE_PLOT_MARKER_TYPE, |
| markersize=_MULTIPLE_PLOT_MARKER_SIZE) |
| error_bar_color = lines[-1].get_color() |
| else: |
| lines += subplot.plot(plot['x'], plot['y'], _SINGLE_PLOT_STYLE, |
| label=plot['label']) |
| error_bar_color = _SINGLE_PLOT_ERROR_BAR_COLOR |
| if plot['errors']: |
| subplot.errorbar(plot['x'], plot['y'], linestyle='None', |
| yerr=plot['errors'], color=error_bar_color) |
| subplot.set_xticklabels([]) |
| |
| # Construct the information for the drilldowns. |
| # We need to do this in a separate loop so that all the data is in |
| # matplotlib before we start calling transform(); otherwise, it will return |
| # incorrect data because it hasn't finished adjusting axis limits. |
| for line in lines: |
| |
| # Get the pixel coordinates of each point on the figure |
| x = line.get_xdata() |
| y = line.get_ydata() |
| label = line.get_label() |
| icoords = line.get_transform().transform(zip(x,y)) |
| |
| # Get the appropriate drilldown query |
| drill = plot_info.query_dict['__' + label + '__'] |
| |
| # Set the title attributes (hover-over tool-tips) |
| x_labels = [labels[x_val] for x_val in x] |
| titles = ['%s - %s: %f' % (label, x_label, y_val) |
| for x_label, y_val in zip(x_labels, y)] |
| |
| # Get the appropriate parameters for the drilldown query |
| params = [dict(query=drill, series=line.get_label(), param=x_label) |
| for x_label in x_labels] |
| |
| area_data += [dict(left=ix - 5, top=height - iy - 5, |
| right=ix + 5, bottom=height - iy + 5, |
| title= title, |
| callback=plot_info.drilldown_callback, |
| callback_arguments=param_dict) |
| for (ix, iy), title, param_dict |
| in zip(icoords, titles, params)] |
| |
| subplot.set_xticklabels(labels, rotation=90, size=_LINE_XTICK_LABELS_SIZE) |
| |
| # Show the legend if there are not multiple subplots |
| if single: |
| font_properties = matplotlib.font_manager.FontProperties( |
| size=_LEGEND_FONT_SIZE) |
| legend = figure.legend(lines, [plot['label'] for plot in plots], |
| prop=font_properties, |
| handlelen=_LEGEND_HANDLE_LENGTH, |
| numpoints=_LEGEND_NUM_POINTS) |
| # Workaround for matplotlib not keeping all line markers in the legend - |
| # it seems if we don't do this, matplotlib won't keep all the line |
| # markers in the legend. |
| for line in legend.get_lines(): |
| line.set_marker(_LEGEND_MARKER_TYPE) |
| |
| return (figure, area_data) |
| |
| |
| def _get_adjusted_bar(x, bar_width, series_index, num_plots): |
| """\ |
| Adjust the list 'x' to take the multiple series into account. Each series |
| should be shifted such that the middle series lies at the appropriate x-axis |
| tick with the other bars around it. For example, if we had four series |
| (i.e. four bars per x value), we want to shift the left edges of the bars as |
| such: |
| Bar 1: -2 * width |
| Bar 2: -width |
| Bar 3: none |
| Bar 4: width |
| """ |
| adjust = (-0.5 * num_plots - 1 + series_index) * bar_width |
| return [x_val + adjust for x_val in x] |
| |
| |
| # TODO(showard): merge much of this function with _create_line by extracting and |
| # parameterizing methods |
| def _create_bar(plots, labels, plot_info): |
| """\ |
| Given all the data for the metrics, create a line plot. |
| |
| plots: list of dicts containing the plot data. |
| x: list of x-values for the plot |
| y: list of corresponding y-values |
| errors: errors for each data point, or None if no error information |
| available |
| label: plot title |
| labels: list of x-tick labels |
| plot_info: a MetricsPlot |
| """ |
| |
| area_data = [] |
| bars = [] |
| figure, height = _create_figure(_SINGLE_PLOT_HEIGHT) |
| |
| # Set up the plot |
| subplot = figure.add_subplot(1, 1, 1) |
| subplot.set_xticks(range(0, len(labels))) |
| subplot.set_xlim(-1, len(labels)) |
| subplot.set_xticklabels(labels, rotation=90, size=_BAR_XTICK_LABELS_SIZE) |
| # draw a bold line at y=0, making it easier to tell if bars are dipping |
| # below the axis or not. |
| subplot.axhline(linewidth=2, color='black') |
| |
| # width here is the width for each bar in the plot. Matplotlib default is |
| # 0.8. |
| width = 0.8 / len(plots) |
| |
| # Plot the data |
| for plot_index, (plot, color) in enumerate(zip(plots, _colors(len(plots)))): |
| # Invert the y-axis if needed |
| if plot['label'] in plot_info.inverted_series: |
| plot['y'] = [-y for y in plot['y']] |
| |
| adjusted_x = _get_adjusted_bar(plot['x'], width, plot_index + 1, |
| len(plots)) |
| bar_data = subplot.bar(adjusted_x, plot['y'], |
| width=width, yerr=plot['errors'], |
| facecolor=color, |
| label=plot['label']) |
| bars.append(bar_data[0]) |
| |
| # Construct the information for the drilldowns. |
| # See comment in _create_line for why we need a separate loop to do this. |
| for plot_index, plot in enumerate(plots): |
| adjusted_x = _get_adjusted_bar(plot['x'], width, plot_index + 1, |
| len(plots)) |
| |
| # Let matplotlib plot the data, so that we can get the data-to-image |
| # coordinate transforms |
| line = subplot.plot(adjusted_x, plot['y'], linestyle='None')[0] |
| label = plot['label'] |
| upper_left_coords = line.get_transform().transform(zip(adjusted_x, |
| plot['y'])) |
| bottom_right_coords = line.get_transform().transform( |
| [(x + width, 0) for x in adjusted_x]) |
| |
| # Get the drilldown query |
| drill = plot_info.query_dict['__' + label + '__'] |
| |
| # Set the title attributes |
| x_labels = [labels[x] for x in plot['x']] |
| titles = ['%s - %s: %f' % (plot['label'], label, y) |
| for label, y in zip(x_labels, plot['y'])] |
| params = [dict(query=drill, series=plot['label'], param=x_label) |
| for x_label in x_labels] |
| area_data += [dict(left=ulx, top=height - uly, |
| right=brx, bottom=height - bry, |
| title=title, |
| callback=plot_info.drilldown_callback, |
| callback_arguments=param_dict) |
| for (ulx, uly), (brx, bry), title, param_dict |
| in zip(upper_left_coords, bottom_right_coords, titles, |
| params)] |
| |
| figure.legend(bars, [plot['label'] for plot in plots]) |
| return (figure, area_data) |
| |
| |
| def _normalize(data_values, data_errors, base_values, base_errors): |
| """\ |
| Normalize the data against a baseline. |
| |
| data_values: y-values for the to-be-normalized data |
| data_errors: standard deviations for the to-be-normalized data |
| base_values: list of values normalize against |
| base_errors: list of standard deviations for those base values |
| """ |
| values = [] |
| for value, base in zip(data_values, base_values): |
| try: |
| values.append(100 * (value - base) / base) |
| except ZeroDivisionError: |
| # Base is 0.0 so just simplify: |
| # If value < base: append -100.0; |
| # If value == base: append 0.0 (obvious); and |
| # If value > base: append 100.0. |
| values.append(100 * float(cmp(value, base))) |
| |
| # Based on error for f(x,y) = 100 * (x - y) / y |
| if data_errors: |
| if not base_errors: |
| base_errors = [0] * len(data_errors) |
| errors = [] |
| for data, error, base_value, base_error in zip( |
| data_values, data_errors, base_values, base_errors): |
| try: |
| errors.append(sqrt(error**2 * (100 / base_value)**2 |
| + base_error**2 * (100 * data / base_value**2)**2 |
| + error * base_error * (100 / base_value**2)**2)) |
| except ZeroDivisionError: |
| # Again, base is 0.0 so do the simple thing. |
| errors.append(100 * abs(error)) |
| else: |
| errors = None |
| |
| return (values, errors) |
| |
| |
| def _create_png(figure): |
| """\ |
| Given the matplotlib figure, generate the PNG data for it. |
| """ |
| |
| # Draw the image |
| canvas = matplotlib.backends.backend_agg.FigureCanvasAgg(figure) |
| canvas.draw() |
| size = canvas.get_renderer().get_canvas_width_height() |
| image_as_string = canvas.tostring_rgb() |
| image = PIL.Image.fromstring('RGB', size, image_as_string, 'raw', 'RGB', 0, |
| 1) |
| image_background = PIL.Image.new(image.mode, image.size, |
| figure.get_facecolor()) |
| |
| # Crop the image to remove surrounding whitespace |
| non_whitespace = PIL.ImageChops.difference(image, image_background) |
| bounding_box = non_whitespace.getbbox() |
| image = image.crop(bounding_box) |
| |
| image_data = StringIO.StringIO() |
| image.save(image_data, format='PNG') |
| |
| return image_data.getvalue(), bounding_box |
| |
| |
| def _create_image_html(figure, area_data, plot_info): |
| """\ |
| Given the figure and drilldown data, construct the HTML that will render the |
| graph as a PNG image, and attach the image map to that image. |
| |
| figure: figure containing the drawn plot(s) |
| area_data: list of parameters for each area of the image map. See the |
| definition of the template string '_AREA_TEMPLATE' |
| plot_info: a MetricsPlot or QualHistogram |
| """ |
| |
| png, bbox = _create_png(figure) |
| |
| # Construct the list of image map areas |
| areas = [_AREA_TEMPLATE % |
| (data['left'] - bbox[0], data['top'] - bbox[1], |
| data['right'] - bbox[0], data['bottom'] - bbox[1], |
| data['title'], data['callback'], |
| _json_encoder.encode(data['callback_arguments']) |
| .replace('"', '"')) |
| for data in area_data] |
| |
| map_name = plot_info.drilldown_callback + '_map' |
| return _HTML_TEMPLATE % (base64.b64encode(png), map_name, map_name, |
| '\n'.join(areas)) |
| |
| |
| def _find_plot_by_label(plots, label): |
| for index, plot in enumerate(plots): |
| if plot['label'] == label: |
| return index |
| raise ValueError('no plot labeled "%s" found' % label) |
| |
| |
| def _normalize_to_series(plots, base_series): |
| base_series_index = _find_plot_by_label(plots, base_series) |
| base_plot = plots[base_series_index] |
| base_xs = base_plot['x'] |
| base_values = base_plot['y'] |
| base_errors = base_plot['errors'] |
| del plots[base_series_index] |
| |
| for plot in plots: |
| old_xs, old_values, old_errors = plot['x'], plot['y'], plot['errors'] |
| new_xs, new_values, new_errors = [], [], [] |
| new_base_values, new_base_errors = [], [] |
| # Select only points in the to-be-normalized data that have a |
| # corresponding baseline value |
| for index, x_value in enumerate(old_xs): |
| try: |
| base_index = base_xs.index(x_value) |
| except ValueError: |
| continue |
| |
| new_xs.append(x_value) |
| new_values.append(old_values[index]) |
| new_base_values.append(base_values[base_index]) |
| if old_errors: |
| new_errors.append(old_errors[index]) |
| new_base_errors.append(base_errors[base_index]) |
| |
| if not new_xs: |
| raise NoDataError('No normalizable data for series ' + |
| plot['label']) |
| plot['x'] = new_xs |
| plot['y'] = new_values |
| if old_errors: |
| plot['errors'] = new_errors |
| |
| plot['y'], plot['errors'] = _normalize(plot['y'], plot['errors'], |
| new_base_values, |
| new_base_errors) |
| |
| |
| def _create_metrics_plot_helper(plot_info, extra_text=None): |
| """ |
| Create a metrics plot of the given plot data. |
| plot_info: a MetricsPlot object. |
| extra_text: text to show at the uppper-left of the graph |
| |
| TODO(showard): move some/all of this logic into methods on MetricsPlot |
| """ |
| query = plot_info.query_dict['__main__'] |
| cursor = readonly_connection.connection().cursor() |
| cursor.execute(query) |
| |
| if not cursor.rowcount: |
| raise NoDataError('query did not return any data') |
| rows = cursor.fetchall() |
| # "transpose" rows, so columns[0] is all the values from the first column, |
| # etc. |
| columns = zip(*rows) |
| |
| plots = [] |
| labels = [str(label) for label in columns[0]] |
| needs_resort = (cursor.description[0][0] == 'kernel') |
| |
| # Collect all the data for the plot |
| col = 1 |
| while col < len(cursor.description): |
| y = columns[col] |
| label = cursor.description[col][0] |
| col += 1 |
| if (col < len(cursor.description) and |
| 'errors-' + label == cursor.description[col][0]): |
| errors = columns[col] |
| col += 1 |
| else: |
| errors = None |
| if needs_resort: |
| y = _resort(labels, y) |
| if errors: |
| errors = _resort(labels, errors) |
| |
| x = [index for index, value in enumerate(y) if value is not None] |
| if not x: |
| raise NoDataError('No data for series ' + label) |
| y = [y[i] for i in x] |
| if errors: |
| errors = [errors[i] for i in x] |
| plots.append({ |
| 'label': label, |
| 'x': x, |
| 'y': y, |
| 'errors': errors |
| }) |
| |
| if needs_resort: |
| labels = _resort(labels, labels) |
| |
| # Normalize the data if necessary |
| normalize_to = plot_info.normalize_to |
| if normalize_to == 'first' or normalize_to.startswith('x__'): |
| if normalize_to != 'first': |
| baseline = normalize_to[3:] |
| try: |
| baseline_index = labels.index(baseline) |
| except ValueError: |
| raise ValidationError({ |
| 'Normalize' : 'Invalid baseline %s' % baseline |
| }) |
| for plot in plots: |
| if normalize_to == 'first': |
| plot_index = 0 |
| else: |
| try: |
| plot_index = plot['x'].index(baseline_index) |
| # if the value is not found, then we cannot normalize |
| except ValueError: |
| raise ValidationError({ |
| 'Normalize' : ('%s does not have a value for %s' |
| % (plot['label'], normalize_to[3:])) |
| }) |
| base_values = [plot['y'][plot_index]] * len(plot['y']) |
| if plot['errors']: |
| base_errors = [plot['errors'][plot_index]] * len(plot['errors']) |
| plot['y'], plot['errors'] = _normalize(plot['y'], plot['errors'], |
| base_values, |
| None or base_errors) |
| |
| elif normalize_to.startswith('series__'): |
| base_series = normalize_to[8:] |
| _normalize_to_series(plots, base_series) |
| |
| # Call the appropriate function to draw the line or bar plot |
| if plot_info.is_line: |
| figure, area_data = _create_line(plots, labels, plot_info) |
| else: |
| figure, area_data = _create_bar(plots, labels, plot_info) |
| |
| # TODO(showard): extract these magic numbers to named constants |
| if extra_text: |
| text_y = .95 - .0075 * len(plots) |
| figure.text(.1, text_y, extra_text, size='xx-small') |
| |
| return (figure, area_data) |
| |
| |
| def create_metrics_plot(query_dict, plot_type, inverted_series, normalize_to, |
| drilldown_callback, extra_text=None): |
| plot_info = MetricsPlot(query_dict, plot_type, inverted_series, |
| normalize_to, drilldown_callback) |
| figure, area_data = _create_metrics_plot_helper(plot_info, extra_text) |
| return _create_image_html(figure, area_data, plot_info) |
| |
| |
| def _get_hostnames_in_bucket(hist_data, bucket): |
| """\ |
| Get all the hostnames that constitute a particular bucket in the histogram. |
| |
| hist_data: list containing tuples of (hostname, pass_rate) |
| bucket: tuple containing the (low, high) values of the target bucket |
| """ |
| |
| return [hostname for hostname, pass_rate in hist_data |
| if bucket[0] <= pass_rate < bucket[1]] |
| |
| |
| def _create_qual_histogram_helper(plot_info, extra_text=None): |
| """\ |
| Create a machine qualification histogram of the given data. |
| |
| plot_info: a QualificationHistogram |
| extra_text: text to show at the upper-left of the graph |
| |
| TODO(showard): move much or all of this into methods on |
| QualificationHistogram |
| """ |
| cursor = readonly_connection.connection().cursor() |
| cursor.execute(plot_info.query) |
| |
| if not cursor.rowcount: |
| raise NoDataError('query did not return any data') |
| |
| # Lists to store the plot data. |
| # hist_data store tuples of (hostname, pass_rate) for machines that have |
| # pass rates between 0 and 100%, exclusive. |
| # no_tests is a list of machines that have run none of the selected tests |
| # no_pass is a list of machines with 0% pass rate |
| # perfect is a list of machines with a 100% pass rate |
| hist_data = [] |
| no_tests = [] |
| no_pass = [] |
| perfect = [] |
| |
| # Construct the lists of data to plot |
| for hostname, total, good in cursor.fetchall(): |
| if total == 0: |
| no_tests.append(hostname) |
| continue |
| |
| if good == 0: |
| no_pass.append(hostname) |
| elif good == total: |
| perfect.append(hostname) |
| else: |
| percentage = 100.0 * good / total |
| hist_data.append((hostname, percentage)) |
| |
| interval = plot_info.interval |
| bins = range(0, 100, interval) |
| if bins[-1] != 100: |
| bins.append(bins[-1] + interval) |
| |
| figure, height = _create_figure(_SINGLE_PLOT_HEIGHT) |
| subplot = figure.add_subplot(1, 1, 1) |
| |
| # Plot the data and get all the bars plotted |
| _,_, bars = subplot.hist([data[1] for data in hist_data], |
| bins=bins, align='left') |
| bars += subplot.bar([-interval], len(no_pass), |
| width=interval, align='center') |
| bars += subplot.bar([bins[-1]], len(perfect), |
| width=interval, align='center') |
| bars += subplot.bar([-3 * interval], len(no_tests), |
| width=interval, align='center') |
| |
| buckets = [(bin, min(bin + interval, 100)) for bin in bins[:-1]] |
| # set the x-axis range to cover all the normal bins plus the three "special" |
| # ones - N/A (3 intervals left), 0% (1 interval left) ,and 100% (far right) |
| subplot.set_xlim(-4 * interval, bins[-1] + interval) |
| subplot.set_xticks([-3 * interval, -interval] + bins + [100 + interval]) |
| subplot.set_xticklabels(['N/A', '0%'] + |
| ['%d%% - <%d%%' % bucket for bucket in buckets] + |
| ['100%'], rotation=90, size='small') |
| |
| # Find the coordinates on the image for each bar |
| x = [] |
| y = [] |
| for bar in bars: |
| x.append(bar.get_x()) |
| y.append(bar.get_height()) |
| f = subplot.plot(x, y, linestyle='None')[0] |
| upper_left_coords = f.get_transform().transform(zip(x, y)) |
| bottom_right_coords = f.get_transform().transform( |
| [(x_val + interval, 0) for x_val in x]) |
| |
| # Set the title attributes |
| titles = ['%d%% - <%d%%: %d machines' % (bucket[0], bucket[1], y_val) |
| for bucket, y_val in zip(buckets, y)] |
| titles.append('0%%: %d machines' % len(no_pass)) |
| titles.append('100%%: %d machines' % len(perfect)) |
| titles.append('N/A: %d machines' % len(no_tests)) |
| |
| # Get the hostnames for each bucket in the histogram |
| names_list = [_get_hostnames_in_bucket(hist_data, bucket) |
| for bucket in buckets] |
| names_list += [no_pass, perfect] |
| |
| if plot_info.filter_string: |
| plot_info.filter_string += ' AND ' |
| |
| # Construct the list of drilldown parameters to be passed when the user |
| # clicks on the bar. |
| params = [] |
| for names in names_list: |
| if names: |
| hostnames = ','.join(_quote(hostname) for hostname in names) |
| hostname_filter = 'hostname IN (%s)' % hostnames |
| full_filter = plot_info.filter_string + hostname_filter |
| params.append({'type': 'normal', |
| 'filterString': full_filter}) |
| else: |
| params.append({'type': 'empty'}) |
| |
| params.append({'type': 'not_applicable', |
| 'hosts': '<br />'.join(no_tests)}) |
| |
| area_data = [dict(left=ulx, top=height - uly, |
| right=brx, bottom=height - bry, |
| title=title, callback=plot_info.drilldown_callback, |
| callback_arguments=param_dict) |
| for (ulx, uly), (brx, bry), title, param_dict |
| in zip(upper_left_coords, bottom_right_coords, titles, params)] |
| |
| # TODO(showard): extract these magic numbers to named constants |
| if extra_text: |
| figure.text(.1, .95, extra_text, size='xx-small') |
| |
| return (figure, area_data) |
| |
| |
| def create_qual_histogram(query, filter_string, interval, drilldown_callback, |
| extra_text=None): |
| plot_info = QualificationHistogram(query, filter_string, interval, |
| drilldown_callback) |
| figure, area_data = _create_qual_histogram_helper(plot_info, extra_text) |
| return _create_image_html(figure, area_data, plot_info) |
| |
| |
| def create_embedded_plot(model, update_time): |
| """\ |
| Given an EmbeddedGraphingQuery object, generate the PNG image for it. |
| |
| model: EmbeddedGraphingQuery object |
| update_time: 'Last updated' time |
| """ |
| |
| params = pickle.loads(model.params) |
| extra_text = 'Last updated: %s' % update_time |
| |
| if model.graph_type == 'metrics': |
| plot_info = MetricsPlot(query_dict=params['queries'], |
| plot_type=params['plot'], |
| inverted_series=params['invert'], |
| normalize_to=None, |
| drilldown_callback='') |
| figure, areas_unused = _create_metrics_plot_helper(plot_info, |
| extra_text) |
| elif model.graph_type == 'qual': |
| plot_info = QualificationHistogram( |
| query=params['query'], filter_string=params['filter_string'], |
| interval=params['interval'], drilldown_callback='') |
| figure, areas_unused = _create_qual_histogram_helper(plot_info, |
| extra_text) |
| else: |
| raise ValueError('Invalid graph_type %s' % model.graph_type) |
| |
| image, bounding_box_unused = _create_png(figure) |
| return image |
| |
| |
| _cache_timeout = global_config.global_config.get_config_value( |
| 'AUTOTEST_WEB', 'graph_cache_creation_timeout_minutes') |
| |
| |
| def handle_plot_request(id, max_age): |
| """\ |
| Given the embedding id of a graph, generate a PNG of the embedded graph |
| associated with that id. |
| |
| id: id of the embedded graph |
| max_age: maximum age, in minutes, that a cached version should be held |
| """ |
| model = models.EmbeddedGraphingQuery.objects.get(id=id) |
| |
| # Check if the cached image needs to be updated |
| now = datetime.datetime.now() |
| update_time = model.last_updated + datetime.timedelta(minutes=int(max_age)) |
| if now > update_time: |
| cursor = django.db.connection.cursor() |
| |
| # We want this query to update the refresh_time only once, even if |
| # multiple threads are running it at the same time. That is, only the |
| # first thread will win the race, and it will be the one to update the |
| # cached image; all other threads will show that they updated 0 rows |
| query = """ |
| UPDATE embedded_graphing_queries |
| SET refresh_time = NOW() |
| WHERE id = %s AND ( |
| refresh_time IS NULL OR |
| refresh_time + INTERVAL %s MINUTE < NOW() |
| ) |
| """ |
| cursor.execute(query, (id, _cache_timeout)) |
| |
| # Only refresh the cached image if we were successful in updating the |
| # refresh time |
| if cursor.rowcount: |
| model.cached_png = create_embedded_plot(model, now.ctime()) |
| model.last_updated = now |
| model.refresh_time = None |
| model.save() |
| |
| return model.cached_png |