blob: 4fe6489be2078468d4c4c0564cdc27f1d59c4bb0 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 ChromeOS Authors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <types.h>
#include <string.h>
#include <device/device.h>
#include <device/pci.h>
#include <cpu/cpu.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <console/console.h>
#include <northbridge/intel/haswell/haswell.h>
#include <southbridge/intel/lynxpoint/pch.h>
#include "haswell.h"
#define EMRRphysBase_MSR 0x1f4
#define EMRRphysMask_MSR 0x1f5
#define UNCORE_EMRRphysBase_MSR 0x2f4
#define UNCORE_EMRRphysMask_MSR 0x2f5
#define SMM_MCA_CAP_MSR 0x17d
#define SMM_CPU_SVRSTR_BIT 57
#define SMM_CPU_SVRSTR_MASK (1 << (SMM_CPU_SVRSTR_BIT - 32))
#define SMM_FEATURE_CONTROL_MSR 0x4e0
#define SMM_CPU_SAVE_EN (1 << 1)
/* SMM save state MSRs */
#define SMBASE_MSR 0xc20
#define IEDBASE_MSR 0xc22
#define SMRR_SUPPORTED (1<<11)
#define EMRR_SUPPORTED (1<<12)
struct smm_relocation_params {
u32 smram_base;
u32 smram_size;
u32 ied_base;
u32 ied_size;
msr_t smrr_base;
msr_t smrr_mask;
msr_t emrr_base;
msr_t emrr_mask;
msr_t uncore_emrr_base;
msr_t uncore_emrr_mask;
/* The smm_save_state_in_msrs field indicates if SMM save state
* locations live in MSRs. This indicates to the CPUs how to adjust
* the SMMBASE and IEDBASE */
int smm_save_state_in_msrs;
};
/* This gets filled in and used during relocation. */
static struct smm_relocation_params smm_reloc_params;
static inline void write_smrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG, "Writing SMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->smrr_base.lo, relo_params->smrr_mask.lo);
wrmsr(SMRRphysBase_MSR, relo_params->smrr_base);
wrmsr(SMRRphysMask_MSR, relo_params->smrr_mask);
}
static inline void write_emrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG, "Writing EMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->emrr_base.lo, relo_params->emrr_mask.lo);
wrmsr(EMRRphysBase_MSR, relo_params->emrr_base);
wrmsr(EMRRphysMask_MSR, relo_params->emrr_mask);
}
static inline void write_uncore_emrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG,
"Writing UNCORE_EMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->uncore_emrr_base.lo,
relo_params->uncore_emrr_mask.lo);
wrmsr(UNCORE_EMRRphysBase_MSR, relo_params->uncore_emrr_base);
wrmsr(UNCORE_EMRRphysMask_MSR, relo_params->uncore_emrr_mask);
}
static void update_save_state(int cpu,
struct smm_relocation_params *relo_params,
const struct smm_runtime *runtime)
{
u32 smbase;
u32 iedbase;
/* The relocated handler runs with all CPUs concurrently. Therefore
* stagger the entry points adjusting SMBASE downwards by save state
* size * CPU num. */
smbase = relo_params->smram_base - cpu * runtime->save_state_size;
iedbase = relo_params->ied_base;
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
smbase, iedbase);
/* All threads need to set IEDBASE and SMBASE to the relocated
* handler region. However, the save state location depends on the
* smm_save_state_in_msrs field in the relocation parameters. If
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
* the SMM handler in parallel, and each CPUs save state area is
* located in their respective MSR space. If smm_save_state_in_msrs
* is zero then the SMM relocation is happening serially so the
* save state is at the same default location for all CPUs. */
if (relo_params->smm_save_state_in_msrs) {
msr_t smbase_msr;
msr_t iedbase_msr;
smbase_msr.lo = smbase;
smbase_msr.hi = 0;
/* According the BWG the IEDBASE MSR is in bits 63:32. It's
* not clear why it differs from the SMBASE MSR. */
iedbase_msr.lo = 0;
iedbase_msr.hi = iedbase;
wrmsr(SMBASE_MSR, smbase_msr);
wrmsr(IEDBASE_MSR, iedbase_msr);
} else {
em64t101_smm_state_save_area_t *save_state;
save_state = (void *)(runtime->smbase + SMM_DEFAULT_SIZE -
runtime->save_state_size);
save_state->smbase = smbase;
save_state->iedbase = iedbase;
}
}
/* Returns 1 if SMM MSR save state was set. */
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
{
msr_t smm_mca_cap;
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
msr_t smm_feature_control;
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
smm_feature_control.hi = 0;
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
relo_params->smm_save_state_in_msrs = 1;
}
return relo_params->smm_save_state_in_msrs;
}
/* The relocation work is actually performed in SMM context, but the code
* resides in the ramstage module. This occurs by trampolining from the default
* SMRAM entry point to here. */
static void asmlinkage
cpu_smm_do_relocation(void *arg, int cpu, const struct smm_runtime *runtime)
{
msr_t mtrr_cap;
struct smm_relocation_params *relo_params = arg;
if (cpu >= CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
return;
}
printk(BIOS_DEBUG, "In relocation handler: cpu %d\n", cpu);
/* Determine if the processor supports saving state in MSRs. If so,
* enable it before the non-BSPs run so that SMM relocation can occur
* in parallel in the non-BSP CPUs. */
if (cpu == 0) {
/* If smm_save_state_in_msrs is 1 then that means this is the
* 2nd time through the relocation handler for the BSP.
* Parallel SMM handler relocation is taking place. However,
* it is desired to access other CPUs save state in the real
* SMM handler. Therefore, disable the SMM save state in MSRs
* feature. */
if (relo_params->smm_save_state_in_msrs) {
msr_t smm_feature_control;
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
} else if (bsp_setup_msr_save_state(relo_params))
/* Just return from relocation handler if MSR save
* state is enabled. In that case the BSP will come
* back into the relocation handler to setup the new
* SMBASE as well disabling SMM save state in MSRs. */
return;
}
/* Make appropriate changes to the save state map. */
update_save_state(cpu, relo_params, runtime);
/* Write EMRR and SMRR MSRs based on indicated support. */
mtrr_cap = rdmsr(MTRRcap_MSR);
if (mtrr_cap.lo & SMRR_SUPPORTED)
write_smrr(relo_params);
if (mtrr_cap.lo & EMRR_SUPPORTED) {
write_emrr(relo_params);
/* UNCORE_EMRR msrs are package level. Therefore, only
* configure these MSRs on the BSP. */
if (cpu == 0)
write_uncore_emrr(relo_params);
}
}
static u32 northbridge_get_base_reg(device_t dev, int reg)
{
u32 value;
value = pci_read_config32(dev, reg);
/* Base registers are at 1MiB granularity. */
value &= ~((1 << 20) - 1);
return value;
}
static void fill_in_relocation_params(device_t dev,
struct smm_relocation_params *params)
{
u32 tseg_size;
u32 tsegmb;
u32 bgsm;
u32 emrr_base;
u32 emrr_size;
int phys_bits;
/* All range registers are aligned to 4KiB */
const u32 rmask = ~((1 << 12) - 1);
/* Some of the range registers are dependent on the number of physical
* address bits supported. */
phys_bits = cpuid_eax(0x80000008) & 0xff;
/* The range bounded by the TSEGMB and BGSM registers encompasses the
* SMRAM range as well as the IED range. However, the SMRAM available
* to the handler is 4MiB since the IEDRAM lives TSEGMB + 4MiB.
*/
tsegmb = northbridge_get_base_reg(dev, TSEG);
bgsm = northbridge_get_base_reg(dev, BGSM);
tseg_size = bgsm - tsegmb;
params->smram_base = tsegmb;
params->smram_size = 4 << 20;
params->ied_base = tsegmb + params->smram_size;
params->ied_size = tseg_size - params->smram_size;
/* Adjust available SMM handler memory size. */
params->smram_size -= RESERVED_SMM_SIZE;
/* SMRR has 32-bits of valid address aligned to 4KiB. */
params->smrr_base.lo = (params->smram_base & rmask) | MTRR_TYPE_WRBACK;
params->smrr_base.hi = 0;
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRRphysMaskValid;
params->smrr_mask.hi = 0;
/* The EMRR and UNCORE_EMRR are at IEDBASE + 2MiB */
emrr_base = (params->ied_base + (2 << 20)) & rmask;
emrr_size = params->ied_size - (2 << 20);
/* EMRR has 46 bits of valid address aligned to 4KiB. It's dependent
* on the number of physical address bits supported. */
params->emrr_base.lo = emrr_base | MTRR_TYPE_WRBACK;
params->emrr_base.hi = 0;
params->emrr_mask.lo = (~(emrr_size - 1) & rmask) | MTRRphysMaskValid;
params->emrr_mask.hi = (1 << (phys_bits - 32)) - 1;
/* UNCORE_EMRR has 39 bits of valid address aligned to 4KiB. */
params->uncore_emrr_base.lo = emrr_base;
params->uncore_emrr_base.hi = 0;
params->uncore_emrr_mask.lo = (~(emrr_size - 1) & rmask) |
MTRRphysMaskValid;
params->uncore_emrr_mask.hi = (1 << (39 - 32)) - 1;
}
static void adjust_apic_id_map(struct smm_loader_params *smm_params)
{
struct smm_runtime *runtime;
int i;
/* Adjust the APIC id map if HT is disabled. */
if (!ht_disabled)
return;
runtime = smm_params->runtime;
/* The APIC ids increment by 2 when HT is disabled. */
for (i = 0; i < CONFIG_MAX_CPUS; i++)
runtime->apic_id_to_cpu[i] = runtime->apic_id_to_cpu[i] * 2;
}
static int install_relocation_handler(int num_cpus,
struct smm_relocation_params *relo_params)
{
/* The default SMM entry can happen in parallel or serially. If the
* default SMM entry is done in parallel the BSP has already setup
* the saving state to each CPU's MSRs. At least one save state size
* is required for the initial SMM entry for the BSP to determine if
* parallel SMM relocation is even feasible. Set the stack size to
* the save state size, and call into the do_relocation handler. */
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = 1,
.handler = (smm_handler_t)&cpu_smm_do_relocation,
.handler_arg = (void *)relo_params,
};
if (smm_setup_relocation_handler(&smm_params))
return -1;
adjust_apic_id_map(&smm_params);
return 0;
}
static void setup_ied_area(struct smm_relocation_params *params)
{
char *ied_base;
struct ied_header ied = {
.signature = "INTEL RSVD",
.size = params->ied_size,
.reserved = {0},
};
ied_base = (void *)params->ied_base;
/* Place IED header at IEDBASE. */
memcpy(ied_base, &ied, sizeof(ied));
/* Zero out 32KiB at IEDBASE + 1MiB */
memset(ied_base + (1 << 20), 0, (32 << 10));
/* According to the BWG MP init section 2MiB of memory at IEDBASE +
* 2MiB should be zeroed as well. However, I suspect what is inteneded
* is to clear the memory covered by EMRR. TODO(adurbin): figure out if * this is really required. */
//memset(ied_base + (2 << 20), 0, (2 << 20));
}
static int install_permanent_handler(int num_cpus,
struct smm_relocation_params *relo_params)
{
/* There are num_cpus concurrent stacks and num_cpus concurrent save
* state areas. Lastly, set the stack size to the save state size. */
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = num_cpus,
};
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n",
relo_params->smram_base);
if (smm_load_module((void *)relo_params->smram_base,
relo_params->smram_size, &smm_params))
return -1;
adjust_apic_id_map(&smm_params);
return 0;
}
static int cpu_smm_setup(void)
{
device_t dev;
int num_cpus;
msr_t msr;
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
dev = dev_find_slot(0, PCI_DEVFN(0, 0));
fill_in_relocation_params(dev, &smm_reloc_params);
setup_ied_area(&smm_reloc_params);
msr = rdmsr(CORE_THREAD_COUNT_MSR);
num_cpus = msr.lo & 0xffff;
if (num_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Error: Hardware CPUs (%d) > MAX_CPUS (%d)\n",
num_cpus, CONFIG_MAX_CPUS);
}
if (install_relocation_handler(num_cpus, &smm_reloc_params)) {
printk(BIOS_CRIT, "SMM Relocation handler install failed.\n");
return -1;
}
if (install_permanent_handler(num_cpus, &smm_reloc_params)) {
printk(BIOS_CRIT, "SMM Permanent handler install failed.\n");
return -1;
}
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
/* TODO(adurbin): Is this really needed? */
wbinvd();
return 0;
}
int smm_initialize(void)
{
/* Return early if CPU SMM setup failed. */
if (cpu_smm_setup())
return -1;
/* Clear the SMM state in the southbridge. */
southbridge_smm_clear_state();
/* Run the relocation handler. */
smm_initiate_relocation();
/* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
* shall take place. Run the relocation handler a second time to do
* the final move. */
if (smm_reloc_params.smm_save_state_in_msrs) {
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
release_aps_for_smm_relocation(1);
smm_initiate_relocation_parallel();
} else {
release_aps_for_smm_relocation(0);
}
/* Now that all APs have been relocated as well as the BSP let SMIs
* start flowing. */
southbridge_smm_enable_smi();
/* Lock down the SMRAM space. */
smm_lock();
return 0;
}
void smm_init(void)
{
/* smm_init() is normally called from initialize_cpus() in
* lapic_cpu_init.c. However, that path is no longer used. Don't reuse
* the function name because that would cause confusion.
* The smm_initialize() function above is used to setup SMM at the
* appropriate time. */
}
void smm_lock(void)
{
/* LOCK the SMM memory window and enable normal SMM.
* After running this function, only a full reset can
* make the SMM registers writable again.
*/
printk(BIOS_DEBUG, "Locking SMM.\n");
pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM,
D_LCK | G_SMRAME | C_BASE_SEG);
}