| /* |
| * This file is part of the coreboot project. |
| * |
| * It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c). |
| * |
| * Modifications are: |
| * Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com> |
| * Copyright (C) 2003-2004 Linux Networx |
| * (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx) |
| * Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com> |
| * Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov> |
| * Copyright (C) 2005-2006 Tyan |
| * (Written by Yinghai Lu <yhlu@tyan.com> for Tyan) |
| * Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org> |
| * Copyright (C) 2009 Myles Watson <mylesgw@gmail.com> |
| */ |
| |
| /* |
| * (c) 1999--2000 Martin Mares <mj@suse.cz> |
| */ |
| |
| /* |
| * Lots of mods by Ron Minnich <rminnich@lanl.gov>, with |
| * the final architecture guidance from Tom Merritt <tjm@codegen.com>. |
| * |
| * In particular, we changed from the one-pass original version to |
| * Tom's recommended multiple-pass version. I wasn't sure about doing |
| * it with multiple passes, until I actually started doing it and saw |
| * the wisdom of Tom's recommendations... |
| * |
| * Lots of cleanups by Eric Biederman to handle bridges, and to |
| * handle resource allocation for non-PCI devices. |
| */ |
| |
| #include <console/console.h> |
| #include <arch/io.h> |
| #include <device/device.h> |
| #include <device/pci.h> |
| #include <device/pci_ids.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <smp/spinlock.h> |
| #if CONFIG_ARCH_X86 |
| #include <arch/ebda.h> |
| #endif |
| #include <timer.h> |
| |
| /** Linked list of ALL devices */ |
| struct device *all_devices = &dev_root; |
| /** Pointer to the last device */ |
| extern struct device *last_dev; |
| /** Linked list of free resources */ |
| struct resource *free_resources = NULL; |
| |
| /** |
| * Initialize all chips of statically known devices. |
| * |
| * Will be called before bus enumeration to initialize chips stated in the |
| * device tree. |
| */ |
| void dev_initialize_chips(void) |
| { |
| struct device *dev; |
| |
| for (dev = all_devices; dev; dev = dev->next) { |
| /* Initialize chip if we haven't yet. */ |
| if (dev->chip_ops && dev->chip_ops->init && |
| !dev->chip_ops->initialized) { |
| post_log_path(dev); |
| dev->chip_ops->init(dev->chip_info); |
| dev->chip_ops->initialized = 1; |
| } |
| } |
| post_log_clear(); |
| } |
| |
| DECLARE_SPIN_LOCK(dev_lock) |
| |
| #if CONFIG_GFXUMA |
| /* IGD UMA memory */ |
| uint64_t uma_memory_base = 0; |
| uint64_t uma_memory_size = 0; |
| #endif |
| |
| /** |
| * Allocate a new device structure. |
| * |
| * Allocte a new device structure and attach it to the device tree as a |
| * child of the parent bus. |
| * |
| * @param parent Parent bus the newly created device should be attached to. |
| * @param path Path to the device to be created. |
| * @return Pointer to the newly created device structure. |
| * |
| * @see device_path |
| */ |
| static device_t __alloc_dev(struct bus *parent, struct device_path *path) |
| { |
| device_t dev, child; |
| |
| /* Find the last child of our parent. */ |
| for (child = parent->children; child && child->sibling; /* */ ) |
| child = child->sibling; |
| |
| dev = malloc(sizeof(*dev)); |
| if (dev == 0) |
| die("alloc_dev(): out of memory.\n"); |
| |
| memset(dev, 0, sizeof(*dev)); |
| memcpy(&dev->path, path, sizeof(*path)); |
| |
| /* By default devices are enabled. */ |
| dev->enabled = 1; |
| |
| /* Add the new device to the list of children of the bus. */ |
| dev->bus = parent; |
| if (child) |
| child->sibling = dev; |
| else |
| parent->children = dev; |
| |
| /* Append a new device to the global device list. |
| * The list is used to find devices once everything is set up. |
| */ |
| last_dev->next = dev; |
| last_dev = dev; |
| |
| return dev; |
| } |
| |
| device_t alloc_dev(struct bus *parent, struct device_path *path) |
| { |
| device_t dev; |
| spin_lock(&dev_lock); |
| dev = __alloc_dev(parent, path); |
| spin_unlock(&dev_lock); |
| return dev; |
| } |
| |
| /** |
| * See if a device structure already exists and if not allocate it. |
| * |
| * @param parent The bus to find the device on. |
| * @param path The relative path from the bus to the appropriate device. |
| * @return Pointer to a device structure for the device on bus at path. |
| */ |
| device_t alloc_find_dev(struct bus *parent, struct device_path *path) |
| { |
| device_t child; |
| spin_lock(&dev_lock); |
| child = find_dev_path(parent, path); |
| if (!child) |
| child = __alloc_dev(parent, path); |
| spin_unlock(&dev_lock); |
| return child; |
| } |
| |
| /** |
| * Round a number up to an alignment. |
| * |
| * @param val The starting value. |
| * @param roundup Alignment as a power of two. |
| * @return Rounded up number. |
| */ |
| static resource_t round(resource_t val, unsigned long pow) |
| { |
| resource_t mask; |
| mask = (1ULL << pow) - 1ULL; |
| val += mask; |
| val &= ~mask; |
| return val; |
| } |
| |
| /** |
| * Read the resources on all devices of a given bus. |
| * |
| * @param bus Bus to read the resources on. |
| */ |
| static void read_resources(struct bus *bus) |
| { |
| struct device *curdev; |
| |
| printk(BIOS_SPEW, "%s %s bus %x link: %d\n", dev_path(bus->dev), |
| __func__, bus->secondary, bus->link_num); |
| |
| /* Walk through all devices and find which resources they need. */ |
| for (curdev = bus->children; curdev; curdev = curdev->sibling) { |
| struct bus *link; |
| |
| if (!curdev->enabled) |
| continue; |
| |
| if (!curdev->ops || !curdev->ops->read_resources) { |
| printk(BIOS_ERR, "%s missing read_resources\n", |
| dev_path(curdev)); |
| continue; |
| } |
| post_log_path(curdev); |
| curdev->ops->read_resources(curdev); |
| |
| /* Read in the resources behind the current device's links. */ |
| for (link = curdev->link_list; link; link = link->next) |
| read_resources(link); |
| } |
| post_log_clear(); |
| printk(BIOS_SPEW, "%s read_resources bus %d link: %d done\n", |
| dev_path(bus->dev), bus->secondary, bus->link_num); |
| } |
| |
| struct pick_largest_state { |
| struct resource *last; |
| struct device *result_dev; |
| struct resource *result; |
| int seen_last; |
| }; |
| |
| static void pick_largest_resource(void *gp, struct device *dev, |
| struct resource *resource) |
| { |
| struct pick_largest_state *state = gp; |
| struct resource *last; |
| |
| last = state->last; |
| |
| /* Be certain to pick the successor to last. */ |
| if (resource == last) { |
| state->seen_last = 1; |
| return; |
| } |
| if (resource->flags & IORESOURCE_FIXED) |
| return; /* Skip it. */ |
| if (last && ((last->align < resource->align) || |
| ((last->align == resource->align) && |
| (last->size < resource->size)) || |
| ((last->align == resource->align) && |
| (last->size == resource->size) && (!state->seen_last)))) { |
| return; |
| } |
| if (!state->result || |
| (state->result->align < resource->align) || |
| ((state->result->align == resource->align) && |
| (state->result->size < resource->size))) { |
| state->result_dev = dev; |
| state->result = resource; |
| } |
| } |
| |
| static struct device *largest_resource(struct bus *bus, |
| struct resource **result_res, |
| unsigned long type_mask, |
| unsigned long type) |
| { |
| struct pick_largest_state state; |
| |
| state.last = *result_res; |
| state.result_dev = NULL; |
| state.result = NULL; |
| state.seen_last = 0; |
| |
| search_bus_resources(bus, type_mask, type, pick_largest_resource, |
| &state); |
| |
| *result_res = state.result; |
| return state.result_dev; |
| } |
| |
| /** |
| * This function is the guts of the resource allocator. |
| * |
| * The problem. |
| * - Allocate resource locations for every device. |
| * - Don't overlap, and follow the rules of bridges. |
| * - Don't overlap with resources in fixed locations. |
| * - Be efficient so we don't have ugly strategies. |
| * |
| * The strategy. |
| * - Devices that have fixed addresses are the minority so don't |
| * worry about them too much. Instead only use part of the address |
| * space for devices with programmable addresses. This easily handles |
| * everything except bridges. |
| * |
| * - PCI devices are required to have their sizes and their alignments |
| * equal. In this case an optimal solution to the packing problem |
| * exists. Allocate all devices from highest alignment to least |
| * alignment or vice versa. Use this. |
| * |
| * - So we can handle more than PCI run two allocation passes on bridges. The |
| * first to see how large the resources are behind the bridge, and what |
| * their alignment requirements are. The second to assign a safe address to |
| * the devices behind the bridge. This allows us to treat a bridge as just |
| * a device with a couple of resources, and not need to special case it in |
| * the allocator. Also this allows handling of other types of bridges. |
| * |
| * @param bus The bus we are traversing. |
| * @param bridge The bridge resource which must contain the bus' resources. |
| * @param type_mask This value gets ANDed with the resource type. |
| * @param type This value must match the result of the AND. |
| * @return TODO |
| */ |
| static void compute_resources(struct bus *bus, struct resource *bridge, |
| unsigned long type_mask, unsigned long type) |
| { |
| struct device *dev; |
| struct resource *resource; |
| resource_t base; |
| base = round(bridge->base, bridge->align); |
| |
| printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d" |
| " limit: %llx\n", dev_path(bus->dev), __func__, |
| (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? |
| "prefmem" : "mem", base, bridge->size, bridge->align, |
| bridge->gran, bridge->limit); |
| |
| /* For each child which is a bridge, compute the resource needs. */ |
| for (dev = bus->children; dev; dev = dev->sibling) { |
| struct resource *child_bridge; |
| |
| if (!dev->link_list) |
| continue; |
| |
| /* Find the resources with matching type flags. */ |
| for (child_bridge = dev->resource_list; child_bridge; |
| child_bridge = child_bridge->next) { |
| struct bus* link; |
| |
| if (!(child_bridge->flags & IORESOURCE_BRIDGE) |
| || (child_bridge->flags & type_mask) != type) |
| continue; |
| |
| /* |
| * Split prefetchable memory if combined. Many domains |
| * use the same address space for prefetchable memory |
| * and non-prefetchable memory. Bridges below them need |
| * it separated. Add the PREFETCH flag to the type_mask |
| * and type. |
| */ |
| link = dev->link_list; |
| while (link && link->link_num != |
| IOINDEX_LINK(child_bridge->index)) |
| link = link->next; |
| |
| if (link == NULL) { |
| printk(BIOS_ERR, "link %ld not found on %s\n", |
| IOINDEX_LINK(child_bridge->index), |
| dev_path(dev)); |
| } |
| |
| compute_resources(link, child_bridge, |
| type_mask | IORESOURCE_PREFETCH, |
| type | (child_bridge->flags & |
| IORESOURCE_PREFETCH)); |
| } |
| } |
| |
| /* Remember we haven't found anything yet. */ |
| resource = NULL; |
| |
| /* |
| * Walk through all the resources on the current bus and compute the |
| * amount of address space taken by them. Take granularity and |
| * alignment into account. |
| */ |
| while ((dev = largest_resource(bus, &resource, type_mask, type))) { |
| |
| /* Size 0 resources can be skipped. */ |
| if (!resource->size) |
| continue; |
| |
| /* Propagate the resource alignment to the bridge resource. */ |
| if (resource->align > bridge->align) |
| bridge->align = resource->align; |
| |
| /* Propagate the resource limit to the bridge register. */ |
| if (bridge->limit > resource->limit) |
| bridge->limit = resource->limit; |
| |
| /* Warn if it looks like APICs aren't declared. */ |
| if ((resource->limit == 0xffffffff) && |
| (resource->flags & IORESOURCE_ASSIGNED)) { |
| printk(BIOS_ERR, |
| "Resource limit looks wrong! (no APIC?)\n"); |
| printk(BIOS_ERR, "%s %02lx limit %08llx\n", |
| dev_path(dev), resource->index, resource->limit); |
| } |
| |
| if (resource->flags & IORESOURCE_IO) { |
| /* |
| * Don't allow potential aliases over the legacy PCI |
| * expansion card addresses. The legacy PCI decodes |
| * only 10 bits, uses 0x100 - 0x3ff. Therefore, only |
| * 0x00 - 0xff can be used out of each 0x400 block of |
| * I/O space. |
| */ |
| if ((base & 0x300) != 0) { |
| base = (base & ~0x3ff) + 0x400; |
| } |
| /* |
| * Don't allow allocations in the VGA I/O range. |
| * PCI has special cases for that. |
| */ |
| else if ((base >= 0x3b0) && (base <= 0x3df)) { |
| base = 0x3e0; |
| } |
| } |
| /* Base must be aligned. */ |
| base = round(base, resource->align); |
| resource->base = base; |
| base += resource->size; |
| |
| printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n", |
| dev_path(dev), resource->index, resource->base, |
| resource->base + resource->size - 1, |
| (resource->flags & IORESOURCE_IO) ? "io" : |
| (resource->flags & IORESOURCE_PREFETCH) ? |
| "prefmem" : "mem"); |
| } |
| |
| /* |
| * A PCI bridge resource does not need to be a power of two size, but |
| * it does have a minimum granularity. Round the size up to that |
| * minimum granularity so we know not to place something else at an |
| * address postitively decoded by the bridge. |
| */ |
| bridge->size = round(base, bridge->gran) - |
| round(bridge->base, bridge->align); |
| |
| printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d" |
| " limit: %llx done\n", dev_path(bus->dev), __func__, |
| (bridge->flags & IORESOURCE_IO) ? "io" : |
| (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem", |
| base, bridge->size, bridge->align, bridge->gran, bridge->limit); |
| } |
| |
| /** |
| * This function is the second part of the resource allocator. |
| * |
| * See the compute_resources function for a more detailed explanation. |
| * |
| * This function assigns the resources a value. |
| * |
| * @param bus The bus we are traversing. |
| * @param bridge The bridge resource which must contain the bus' resources. |
| * @param type_mask This value gets ANDed with the resource type. |
| * @param type This value must match the result of the AND. |
| * |
| * @see compute_resources |
| */ |
| static void allocate_resources(struct bus *bus, struct resource *bridge, |
| unsigned long type_mask, unsigned long type) |
| { |
| struct device *dev; |
| struct resource *resource; |
| resource_t base; |
| base = bridge->base; |
| |
| printk(BIOS_SPEW, "%s %s_%s: base:%llx size:%llx align:%d gran:%d " |
| "limit:%llx\n", dev_path(bus->dev), __func__, |
| (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? |
| "prefmem" : "mem", |
| base, bridge->size, bridge->align, bridge->gran, bridge->limit); |
| |
| /* Remember we haven't found anything yet. */ |
| resource = NULL; |
| |
| /* |
| * Walk through all the resources on the current bus and allocate them |
| * address space. |
| */ |
| while ((dev = largest_resource(bus, &resource, type_mask, type))) { |
| |
| /* Propagate the bridge limit to the resource register. */ |
| if (resource->limit > bridge->limit) |
| resource->limit = bridge->limit; |
| |
| /* Size 0 resources can be skipped. */ |
| if (!resource->size) { |
| /* Set the base to limit so it doesn't confuse tolm. */ |
| resource->base = resource->limit; |
| resource->flags |= IORESOURCE_ASSIGNED; |
| continue; |
| } |
| |
| if (resource->flags & IORESOURCE_IO) { |
| /* |
| * Don't allow potential aliases over the legacy PCI |
| * expansion card addresses. The legacy PCI decodes |
| * only 10 bits, uses 0x100 - 0x3ff. Therefore, only |
| * 0x00 - 0xff can be used out of each 0x400 block of |
| * I/O space. |
| */ |
| if ((base & 0x300) != 0) { |
| base = (base & ~0x3ff) + 0x400; |
| } |
| /* |
| * Don't allow allocations in the VGA I/O range. |
| * PCI has special cases for that. |
| */ |
| else if ((base >= 0x3b0) && (base <= 0x3df)) { |
| base = 0x3e0; |
| } |
| } |
| |
| if ((round(base, resource->align) + resource->size - 1) <= |
| resource->limit) { |
| /* Base must be aligned. */ |
| base = round(base, resource->align); |
| resource->base = base; |
| resource->flags |= IORESOURCE_ASSIGNED; |
| resource->flags &= ~IORESOURCE_STORED; |
| base += resource->size; |
| } else { |
| printk(BIOS_ERR, "!! Resource didn't fit !!\n"); |
| printk(BIOS_ERR, " aligned base %llx size %llx " |
| "limit %llx\n", round(base, resource->align), |
| resource->size, resource->limit); |
| printk(BIOS_ERR, " %llx needs to be <= %llx " |
| "(limit)\n", (round(base, resource->align) + |
| resource->size) - 1, resource->limit); |
| printk(BIOS_ERR, " %s%s %02lx * [0x%llx - 0x%llx]" |
| " %s\n", (resource->flags & IORESOURCE_ASSIGNED) |
| ? "Assigned: " : "", dev_path(dev), |
| resource->index, resource->base, |
| resource->base + resource->size - 1, |
| (resource->flags & IORESOURCE_IO) ? "io" |
| : (resource->flags & IORESOURCE_PREFETCH) |
| ? "prefmem" : "mem"); |
| } |
| |
| printk(BIOS_SPEW, "%s%s %02lx * [0x%llx - 0x%llx] %s\n", |
| (resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: " |
| : "", dev_path(dev), resource->index, resource->base, |
| resource->size ? resource->base + resource->size - 1 : |
| resource->base, (resource->flags & IORESOURCE_IO) |
| ? "io" : (resource->flags & IORESOURCE_PREFETCH) |
| ? "prefmem" : "mem"); |
| } |
| |
| /* |
| * A PCI bridge resource does not need to be a power of two size, but |
| * it does have a minimum granularity. Round the size up to that |
| * minimum granularity so we know not to place something else at an |
| * address positively decoded by the bridge. |
| */ |
| |
| bridge->flags |= IORESOURCE_ASSIGNED; |
| |
| printk(BIOS_SPEW, "%s %s_%s: next_base: %llx size: %llx align: %d " |
| "gran: %d done\n", dev_path(bus->dev), __func__, |
| (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? |
| "prefmem" : "mem", base, bridge->size, bridge->align, |
| bridge->gran); |
| |
| /* For each child which is a bridge, allocate_resources. */ |
| for (dev = bus->children; dev; dev = dev->sibling) { |
| struct resource *child_bridge; |
| |
| if (!dev->link_list) |
| continue; |
| |
| /* Find the resources with matching type flags. */ |
| for (child_bridge = dev->resource_list; child_bridge; |
| child_bridge = child_bridge->next) { |
| struct bus* link; |
| |
| if (!(child_bridge->flags & IORESOURCE_BRIDGE) || |
| (child_bridge->flags & type_mask) != type) |
| continue; |
| |
| /* |
| * Split prefetchable memory if combined. Many domains |
| * use the same address space for prefetchable memory |
| * and non-prefetchable memory. Bridges below them need |
| * it separated. Add the PREFETCH flag to the type_mask |
| * and type. |
| */ |
| link = dev->link_list; |
| while (link && link->link_num != |
| IOINDEX_LINK(child_bridge->index)) |
| link = link->next; |
| if (link == NULL) |
| printk(BIOS_ERR, "link %ld not found on %s\n", |
| IOINDEX_LINK(child_bridge->index), |
| dev_path(dev)); |
| |
| allocate_resources(link, child_bridge, |
| type_mask | IORESOURCE_PREFETCH, |
| type | (child_bridge->flags & |
| IORESOURCE_PREFETCH)); |
| } |
| } |
| } |
| |
| #if CONFIG_PCI_64BIT_PREF_MEM |
| #define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM) |
| #else |
| #define MEM_MASK (IORESOURCE_MEM) |
| #endif |
| |
| #define IO_MASK (IORESOURCE_IO) |
| #define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM) |
| #define MEM_TYPE (IORESOURCE_MEM) |
| #define IO_TYPE (IORESOURCE_IO) |
| |
| struct constraints { |
| struct resource pref, io, mem; |
| }; |
| |
| static void constrain_resources(struct device *dev, struct constraints* limits) |
| { |
| struct device *child; |
| struct resource *res; |
| struct resource *lim; |
| struct bus *link; |
| |
| printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev)); |
| |
| /* Constrain limits based on the fixed resources of this device. */ |
| for (res = dev->resource_list; res; res = res->next) { |
| if (!(res->flags & IORESOURCE_FIXED)) |
| continue; |
| if (!res->size) { |
| /* It makes no sense to have 0-sized, fixed resources.*/ |
| printk(BIOS_ERR, "skipping %s@%lx fixed resource, " |
| "size=0!\n", dev_path(dev), res->index); |
| continue; |
| } |
| |
| /* PREFETCH, MEM, or I/O - skip any others. */ |
| if ((res->flags & MEM_MASK) == PREF_TYPE) |
| lim = &limits->pref; |
| else if ((res->flags & MEM_MASK) == MEM_TYPE) |
| lim = &limits->mem; |
| else if ((res->flags & IO_MASK) == IO_TYPE) |
| lim = &limits->io; |
| else |
| continue; |
| |
| /* |
| * Is it a fixed resource outside the current known region? |
| * If so, we don't have to consider it - it will be handled |
| * correctly and doesn't affect current region's limits. |
| */ |
| if (((res->base + res->size -1) < lim->base) |
| || (res->base > lim->limit)) |
| continue; |
| |
| /* |
| * Choose to be above or below fixed resources. This check is |
| * signed so that "negative" amounts of space are handled |
| * correctly. |
| */ |
| if ((signed long long)(lim->limit - (res->base + res->size -1)) |
| > (signed long long)(res->base - lim->base)) |
| lim->base = res->base + res->size; |
| else |
| lim->limit = res->base -1; |
| } |
| |
| /* Descend into every enabled child and look for fixed resources. */ |
| for (link = dev->link_list; link; link = link->next) { |
| for (child = link->children; child; child = child->sibling) { |
| if (child->enabled) |
| constrain_resources(child, limits); |
| } |
| } |
| } |
| |
| static void avoid_fixed_resources(struct device *dev) |
| { |
| struct constraints limits; |
| struct resource *res; |
| |
| printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev)); |
| |
| /* Initialize constraints to maximum size. */ |
| limits.pref.base = 0; |
| limits.pref.limit = 0xffffffffffffffffULL; |
| limits.io.base = 0; |
| limits.io.limit = 0xffffffffffffffffULL; |
| limits.mem.base = 0; |
| limits.mem.limit = 0xffffffffffffffffULL; |
| |
| /* Constrain the limits to dev's initial resources. */ |
| for (res = dev->resource_list; res; res = res->next) { |
| if ((res->flags & IORESOURCE_FIXED)) |
| continue; |
| printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__, |
| dev_path(dev), res->index, res->limit); |
| if ((res->flags & MEM_MASK) == PREF_TYPE && |
| (res->limit < limits.pref.limit)) |
| limits.pref.limit = res->limit; |
| if ((res->flags & MEM_MASK) == MEM_TYPE && |
| (res->limit < limits.mem.limit)) |
| limits.mem.limit = res->limit; |
| if ((res->flags & IO_MASK) == IO_TYPE && |
| (res->limit < limits.io.limit)) |
| limits.io.limit = res->limit; |
| } |
| |
| /* Look through the tree for fixed resources and update the limits. */ |
| constrain_resources(dev, &limits); |
| |
| /* Update dev's resources with new limits. */ |
| for (res = dev->resource_list; res; res = res->next) { |
| struct resource *lim; |
| |
| if ((res->flags & IORESOURCE_FIXED)) |
| continue; |
| |
| /* PREFETCH, MEM, or I/O - skip any others. */ |
| if ((res->flags & MEM_MASK) == PREF_TYPE) |
| lim = &limits.pref; |
| else if ((res->flags & MEM_MASK) == MEM_TYPE) |
| lim = &limits.mem; |
| else if ((res->flags & IO_MASK) == IO_TYPE) |
| lim = &limits.io; |
| else |
| continue; |
| |
| printk(BIOS_SPEW, "%s2: %s@%02lx limit %08llx\n", __func__, |
| dev_path(dev), res->index, res->limit); |
| printk(BIOS_SPEW, "\tlim->base %08llx lim->limit %08llx\n", |
| lim->base, lim->limit); |
| |
| /* Is the resource outside the limits? */ |
| if (lim->base > res->base) |
| res->base = lim->base; |
| if (res->limit > lim->limit) |
| res->limit = lim->limit; |
| } |
| } |
| |
| device_t vga_pri = 0; |
| static void set_vga_bridge_bits(void) |
| { |
| /* |
| * FIXME: Modify set_vga_bridge() so it is less PCI centric! |
| * This function knows too much about PCI stuff, it should be just |
| * an iterator/visitor. |
| */ |
| |
| /* FIXME: Handle the VGA palette snooping. */ |
| struct device *dev, *vga, *vga_onboard; |
| struct bus *bus; |
| |
| bus = 0; |
| vga = 0; |
| vga_onboard = 0; |
| |
| dev = NULL; |
| while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) { |
| if (!dev->enabled) |
| continue; |
| |
| printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev)); |
| |
| if (dev->on_mainboard) { |
| vga_onboard = dev; |
| } else { |
| vga = dev; |
| } |
| |
| /* It isn't safe to enable all VGA cards. */ |
| dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO); |
| } |
| |
| if (!vga) |
| vga = vga_onboard; |
| |
| if (CONFIG_ONBOARD_VGA_IS_PRIMARY && vga_onboard) |
| vga = vga_onboard; |
| |
| /* If we prefer plugin VGA over chipset VGA, the chipset might |
| want to know. */ |
| if (!CONFIG_ONBOARD_VGA_IS_PRIMARY && (vga != vga_onboard) && |
| vga_onboard && vga_onboard->ops && vga_onboard->ops->disable) { |
| printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n"); |
| vga_onboard->ops->disable(vga_onboard); |
| } |
| |
| if (vga) { |
| /* VGA is first add-on card or the only onboard VGA. */ |
| printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga)); |
| /* All legacy VGA cards have MEM & I/O space registers. */ |
| vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO); |
| vga_pri = vga; |
| bus = vga->bus; |
| } |
| |
| /* Now walk up the bridges setting the VGA enable. */ |
| while (bus) { |
| printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n", |
| dev_path(bus->dev)); |
| bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA; |
| bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus; |
| } |
| } |
| |
| /** |
| * Assign the computed resources to the devices on the bus. |
| * |
| * Use the device specific set_resources() method to store the computed |
| * resources to hardware. For bridge devices, the set_resources() method |
| * has to recurse into every down stream buses. |
| * |
| * Mutual recursion: |
| * assign_resources() -> device_operation::set_resources() |
| * device_operation::set_resources() -> assign_resources() |
| * |
| * @param bus Pointer to the structure for this bus. |
| */ |
| void assign_resources(struct bus *bus) |
| { |
| struct device *curdev; |
| |
| printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n", |
| dev_path(bus->dev), bus->secondary, bus->link_num); |
| |
| for (curdev = bus->children; curdev; curdev = curdev->sibling) { |
| if (!curdev->enabled || !curdev->resource_list) |
| continue; |
| |
| if (!curdev->ops || !curdev->ops->set_resources) { |
| printk(BIOS_ERR, "%s missing set_resources\n", |
| dev_path(curdev)); |
| continue; |
| } |
| post_log_path(curdev); |
| curdev->ops->set_resources(curdev); |
| } |
| post_log_clear(); |
| printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n", |
| dev_path(bus->dev), bus->secondary, bus->link_num); |
| } |
| |
| /** |
| * Enable the resources for devices on a link. |
| * |
| * Enable resources of the device by calling the device specific |
| * enable_resources() method. |
| * |
| * The parent's resources should be enabled first to avoid having enabling |
| * order problem. This is done by calling the parent's enable_resources() |
| * method before its childrens' enable_resources() methods. |
| * |
| * @param link The link whose devices' resources are to be enabled. |
| */ |
| static void enable_resources(struct bus *link) |
| { |
| struct device *dev; |
| struct bus *c_link; |
| |
| for (dev = link->children; dev; dev = dev->sibling) { |
| if (dev->enabled && dev->ops && dev->ops->enable_resources) { |
| post_log_path(dev); |
| dev->ops->enable_resources(dev); |
| } |
| } |
| |
| for (dev = link->children; dev; dev = dev->sibling) { |
| for (c_link = dev->link_list; c_link; c_link = c_link->next) |
| enable_resources(c_link); |
| } |
| post_log_clear(); |
| } |
| |
| /** |
| * Reset all of the devices on a bus and clear the bus's reset_needed flag. |
| * |
| * @param bus Pointer to the bus structure. |
| * @return 1 if the bus was successfully reset, 0 otherwise. |
| */ |
| int reset_bus(struct bus *bus) |
| { |
| if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) { |
| bus->dev->ops->reset_bus(bus); |
| bus->reset_needed = 0; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * Scan for devices on a bus. |
| * |
| * If there are bridges on the bus, recursively scan the buses behind the |
| * bridges. If the setting up and tuning of the bus causes a reset to be |
| * required, reset the bus and scan it again. |
| * |
| * @param busdev Pointer to the bus device. |
| * @param max Current bus number. |
| * @return The maximum bus number found, after scanning all subordinate buses. |
| */ |
| unsigned int scan_bus(struct device *busdev, unsigned int max) |
| { |
| unsigned int new_max; |
| int do_scan_bus; |
| |
| if (!busdev || !busdev->enabled || !busdev->ops || |
| !busdev->ops->scan_bus) { |
| return max; |
| } |
| |
| post_log_path(busdev); |
| |
| do_scan_bus = 1; |
| while (do_scan_bus) { |
| struct bus *link; |
| new_max = busdev->ops->scan_bus(busdev, max); |
| do_scan_bus = 0; |
| for (link = busdev->link_list; link; link = link->next) { |
| if (link->reset_needed) { |
| if (reset_bus(link)) |
| do_scan_bus = 1; |
| else |
| busdev->bus->reset_needed = 1; |
| } |
| } |
| } |
| return new_max; |
| } |
| |
| /** |
| * Determine the existence of devices and extend the device tree. |
| * |
| * Most of the devices in the system are listed in the mainboard devicetree.cb |
| * file. The device structures for these devices are generated at compile |
| * time by the config tool and are organized into the device tree. This |
| * function determines if the devices created at compile time actually exist |
| * in the physical system. |
| * |
| * For devices in the physical system but not listed in devicetree.cb, |
| * the device structures have to be created at run time and attached to the |
| * device tree. |
| * |
| * This function starts from the root device 'dev_root', scans the buses in |
| * the system recursively, and modifies the device tree according to the |
| * result of the probe. |
| * |
| * This function has no idea how to scan and probe buses and devices at all. |
| * It depends on the bus/device specific scan_bus() method to do it. The |
| * scan_bus() method also has to create the device structure and attach |
| * it to the device tree. |
| */ |
| void dev_enumerate(void) |
| { |
| struct device *root; |
| |
| printk(BIOS_INFO, "Enumerating buses...\n"); |
| |
| root = &dev_root; |
| |
| show_all_devs(BIOS_SPEW, "Before device enumeration."); |
| printk(BIOS_SPEW, "Compare with tree...\n"); |
| show_devs_tree(root, BIOS_SPEW, 0, 0); |
| |
| if (root->chip_ops && root->chip_ops->enable_dev) |
| root->chip_ops->enable_dev(root); |
| |
| if (!root->ops || !root->ops->scan_bus) { |
| printk(BIOS_ERR, "dev_root missing scan_bus operation"); |
| return; |
| } |
| scan_bus(root, 0); |
| post_log_clear(); |
| printk(BIOS_INFO, "done\n"); |
| } |
| |
| /** |
| * Configure devices on the devices tree. |
| * |
| * Starting at the root of the device tree, travel it recursively in two |
| * passes. In the first pass, we compute and allocate resources (ranges) |
| * requried by each device. In the second pass, the resources ranges are |
| * relocated to their final position and stored to the hardware. |
| * |
| * I/O resources grow upward. MEM resources grow downward. |
| * |
| * Since the assignment is hierarchical we set the values into the dev_root |
| * struct. |
| */ |
| void dev_configure(void) |
| { |
| struct resource *res; |
| struct device *root; |
| struct device *child; |
| |
| set_vga_bridge_bits(); |
| |
| printk(BIOS_INFO, "Allocating resources...\n"); |
| |
| root = &dev_root; |
| |
| /* |
| * Each domain should create resources which contain the entire address |
| * space for IO, MEM, and PREFMEM resources in the domain. The |
| * allocation of device resources will be done from this address space. |
| */ |
| |
| /* Read the resources for the entire tree. */ |
| |
| printk(BIOS_INFO, "Reading resources...\n"); |
| read_resources(root->link_list); |
| printk(BIOS_INFO, "Done reading resources.\n"); |
| |
| print_resource_tree(root, BIOS_SPEW, "After reading."); |
| |
| /* Compute resources for all domains. */ |
| for (child = root->link_list->children; child; child = child->sibling) { |
| if (!(child->path.type == DEVICE_PATH_DOMAIN)) |
| continue; |
| post_log_path(child); |
| for (res = child->resource_list; res; res = res->next) { |
| if (res->flags & IORESOURCE_FIXED) |
| continue; |
| if (res->flags & IORESOURCE_PREFETCH) { |
| compute_resources(child->link_list, |
| res, MEM_MASK, PREF_TYPE); |
| continue; |
| } |
| if (res->flags & IORESOURCE_MEM) { |
| compute_resources(child->link_list, |
| res, MEM_MASK, MEM_TYPE); |
| continue; |
| } |
| if (res->flags & IORESOURCE_IO) { |
| compute_resources(child->link_list, |
| res, IO_MASK, IO_TYPE); |
| continue; |
| } |
| } |
| } |
| |
| /* For all domains. */ |
| for (child = root->link_list->children; child; child=child->sibling) |
| if (child->path.type == DEVICE_PATH_DOMAIN) |
| avoid_fixed_resources(child); |
| |
| /* |
| * Now we need to adjust the resources. MEM resources need to start at |
| * the highest address managable. |
| */ |
| for (child = root->link_list->children; child; child = child->sibling) { |
| if (child->path.type != DEVICE_PATH_DOMAIN) |
| continue; |
| for (res = child->resource_list; res; res = res->next) { |
| if (!(res->flags & IORESOURCE_MEM) || |
| res->flags & IORESOURCE_FIXED) |
| continue; |
| res->base = resource_max(res); |
| } |
| } |
| |
| /* Store the computed resource allocations into device registers ... */ |
| printk(BIOS_INFO, "Setting resources...\n"); |
| for (child = root->link_list->children; child; child = child->sibling) { |
| if (!(child->path.type == DEVICE_PATH_DOMAIN)) |
| continue; |
| post_log_path(child); |
| for (res = child->resource_list; res; res = res->next) { |
| if (res->flags & IORESOURCE_FIXED) |
| continue; |
| if (res->flags & IORESOURCE_PREFETCH) { |
| allocate_resources(child->link_list, |
| res, MEM_MASK, PREF_TYPE); |
| continue; |
| } |
| if (res->flags & IORESOURCE_MEM) { |
| allocate_resources(child->link_list, |
| res, MEM_MASK, MEM_TYPE); |
| continue; |
| } |
| if (res->flags & IORESOURCE_IO) { |
| allocate_resources(child->link_list, |
| res, IO_MASK, IO_TYPE); |
| continue; |
| } |
| } |
| } |
| assign_resources(root->link_list); |
| printk(BIOS_INFO, "Done setting resources.\n"); |
| print_resource_tree(root, BIOS_SPEW, "After assigning values."); |
| |
| printk(BIOS_INFO, "Done allocating resources.\n"); |
| } |
| |
| /** |
| * Enable devices on the device tree. |
| * |
| * Starting at the root, walk the tree and enable all devices/bridges by |
| * calling the device's enable_resources() method. |
| */ |
| void dev_enable(void) |
| { |
| struct bus *link; |
| |
| printk(BIOS_INFO, "Enabling resources...\n"); |
| |
| /* Now enable everything. */ |
| for (link = dev_root.link_list; link; link = link->next) |
| enable_resources(link); |
| |
| printk(BIOS_INFO, "done.\n"); |
| } |
| |
| /** |
| * Initialize a specific device. |
| * |
| * The parent should be initialized first to avoid having an ordering problem. |
| * This is done by calling the parent's init() method before its childrens' |
| * init() methods. |
| * |
| * @param dev The device to be initialized. |
| */ |
| static void init_dev(struct device *dev) |
| { |
| if (!dev->enabled) |
| return; |
| |
| if (!dev->initialized && dev->ops && dev->ops->init) { |
| #if CONFIG_HAVE_MONOTONIC_TIMER |
| struct mono_time start_time; |
| struct rela_time dev_init_time; |
| |
| timer_monotonic_get(&start_time); |
| #endif |
| if (dev->path.type == DEVICE_PATH_I2C) { |
| printk(BIOS_DEBUG, "smbus: %s[%d]->", |
| dev_path(dev->bus->dev), dev->bus->link_num); |
| } |
| |
| printk(BIOS_DEBUG, "%s init\n", dev_path(dev)); |
| dev->initialized = 1; |
| dev->ops->init(dev); |
| #if CONFIG_HAVE_MONOTONIC_TIMER |
| dev_init_time = current_time_from(&start_time); |
| printk(BIOS_DEBUG, "%s init %ld usecs\n", dev_path(dev), |
| rela_time_in_microseconds(&dev_init_time)); |
| #endif |
| } |
| } |
| |
| static void init_link(struct bus *link) |
| { |
| struct device *dev; |
| struct bus *c_link; |
| |
| for (dev = link->children; dev; dev = dev->sibling) { |
| post_code(POST_BS_DEV_INIT); |
| post_log_path(dev); |
| init_dev(dev); |
| } |
| |
| for (dev = link->children; dev; dev = dev->sibling) { |
| for (c_link = dev->link_list; c_link; c_link = c_link->next) |
| init_link(c_link); |
| } |
| } |
| |
| /** |
| * Initialize all devices in the global device tree. |
| * |
| * Starting at the root device, call the device's init() method to do |
| * device-specific setup, then call each child's init() method. |
| */ |
| void dev_initialize(void) |
| { |
| struct bus *link; |
| |
| printk(BIOS_INFO, "Initializing devices...\n"); |
| |
| #if CONFIG_ARCH_X86 |
| /* Ensure EBDA is prepared before Option ROMs. */ |
| setup_default_ebda(); |
| #endif |
| |
| /* First call the mainboard init. */ |
| init_dev(&dev_root); |
| |
| /* Now initialize everything. */ |
| for (link = dev_root.link_list; link; link = link->next) |
| init_link(link); |
| post_log_clear(); |
| |
| printk(BIOS_INFO, "Devices initialized\n"); |
| show_all_devs(BIOS_SPEW, "After init."); |
| } |