blob: 6c04ec3dce41775bc8d182c5d49f7d0e528deb2e [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright 2015 MediaTek Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <delay.h>
#include <device/i2c.h>
#include <string.h>
#include <symbols.h>
#include <timer.h>
#include <arch/io.h>
#include <soc/addressmap.h>
#include <soc/i2c.h>
#include <soc/pll.h>
#define I2C_CLK_HZ (AXI_HZ / 16)
static struct mtk_i2c i2c[7] = {
/* i2c0 setting */
{
.i2c_regs = (void *)I2C_BASE,
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x80),
},
/* i2c1 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0x1000),
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x100),
},
/* i2c2 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0x2000),
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x180),
},
/* i2c3 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0x9000),
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x200),
},
/* i2c4 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0xa000),
.i2c_dma_regs = (void *)(I2C_DMA_BASE + 0x280),
},
/* i2c5 is reserved for internal use. */
{
},
/* i2c6 setting */
{
.i2c_regs = (void *)(I2C_BASE + 0xc000),
.i2c_dma_regs = (void *)I2C_DMA_BASE,
}
};
#define I2CTAG "[I2C][PL] "
#if CONFIG_DEBUG_I2C
#define I2CLOG(fmt, arg...) printk(BIOS_INFO, I2CTAG fmt, ##arg)
#else
#define I2CLOG(fmt, arg...)
#endif /* CONFIG_DEBUG_I2C */
#define I2CERR(fmt, arg...) printk(BIOS_ERR, I2CTAG fmt, ##arg)
static inline void i2c_dma_reset(struct mt8173_i2c_dma_regs *dma_regs)
{
write32(&dma_regs->dma_rst, 0x1);
udelay(50);
write32(&dma_regs->dma_rst, 0x2);
udelay(50);
write32(&dma_regs->dma_rst, 0x0);
udelay(50);
}
void mtk_i2c_bus_init(uint8_t bus)
{
uint8_t sample_div;
uint8_t step_div;
uint32_t i2c_freq;
assert(bus < ARRAY_SIZE(i2c));
/* Calculate i2c frequency */
sample_div = 1;
step_div = div_round_up(I2C_CLK_HZ, (400 * KHz * sample_div * 2));
i2c_freq = I2C_CLK_HZ / (step_div * sample_div * 2);
assert(sample_div < 8 && step_div < 64 && i2c_freq < 400 * KHz &&
i2c_freq >= 380 * KHz);
/* Init i2c bus Timing register */
write32(&i2c[bus].i2c_regs->timing, (sample_div - 1) << 8 |
(step_div - 1));
}
static inline void mtk_i2c_dump_info(uint8_t bus)
{
struct mt8173_i2c_regs *regs;
regs = i2c[bus].i2c_regs;
I2CLOG("I2C register:\nSLAVE_ADDR %x\nINTR_MASK %x\nINTR_STAT %x\n"
"CONTROL %x\nTRANSFER_LEN %x\nTRANSAC_LEN %x\nDELAY_LEN %x\n"
"TIMING %x\nSTART %x\nFIFO_STAT %x\nIO_CONFIG %x\nHS %x\n"
"DEBUGSTAT %x\nEXT_CONF %x\n",
(read32(&regs->salve_addr)),
(read32(&regs->intr_mask)),
(read32(&regs->intr_stat)),
(read32(&regs->control)),
(read32(&regs->transfer_len)),
(read32(&regs->transac_len)),
(read32(&regs->delay_len)),
(read32(&regs->timing)),
(read32(&regs->start)),
(read32(&regs->fifo_stat)),
(read32(&regs->io_config)),
(read32(&regs->hs)),
(read32(&regs->debug_stat)),
(read32(&regs->ext_conf)));
I2CLOG("addr address %x\n", (uint32_t)regs);
}
static uint32_t mtk_i2c_transfer(uint8_t bus, struct i2c_seg *seg,
enum i2c_modes read)
{
uint32_t ret_code = I2C_OK;
uint16_t status;
uint32_t time_out_val = 0;
uint8_t addr;
uint32_t write_len = 0;
uint32_t read_len = 0;
uint8_t *write_buffer = NULL;
uint8_t *read_buffer = NULL;
struct mt8173_i2c_regs *regs;
struct mt8173_i2c_dma_regs *dma_regs;
struct stopwatch sw;
regs = i2c[bus].i2c_regs;
dma_regs = i2c[bus].i2c_dma_regs;
addr = seg[0].chip;
switch (read) {
case I2C_WRITE_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
write_len = seg[0].len;
write_buffer = seg[0].buf;
break;
case I2C_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
read_len = seg[0].len;
read_buffer = seg[0].buf;
break;
/* Must use special write-then-read mode for repeated starts. */
case I2C_WRITE_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
assert(seg[1].len > 0 && seg[1].len <= 255);
write_len = seg[0].len;
read_len = seg[1].len;
write_buffer = seg[0].buf;
read_buffer = seg[1].buf;
break;
}
/* Clear interrupt status */
write32(&regs->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
write32(&regs->fifo_addr_clr, 0x1);
/* Enable interrupt */
write32(&regs->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
switch (read) {
case I2C_WRITE_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(&regs->control, ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transac_len, 1);
write32(&regs->transfer_len, write_len);
/* set i2c write slave address*/
write32(&regs->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_TX);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
break;
case I2C_READ_MODE:
/* control registers */
write32(&regs->control, ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transac_len, 1);
write32(&regs->transfer_len, read_len);
/* set i2c read slave address*/
write32(&regs->slave_addr, (addr << 1 | 0x1));
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_RX);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
case I2C_WRITE_READ_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(&regs->control, DIR_CHG | ACK_ERR_DET_EN | DMA_EN |
CLK_EXT | REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transfer_len, write_len);
write32(&regs->transfer_aux_len, read_len);
write32(&regs->transac_len, 2);
/* set i2c write slave address*/
write32(&regs->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
}
write32(&dma_regs->dma_int_flag, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_en, I2C_DMA_START_EN);
/* start transfer transaction */
write32(&regs->start, 0x1);
stopwatch_init_msecs_expire(&sw, 100);
/* polling mode : see if transaction complete */
while (1) {
status = read32(&regs->intr_stat);
if (status & I2C_HS_NACKERR) {
ret_code = I2C_TRANSFER_FAIL_HS_NACKERR;
I2CERR("[i2c%d transfer] transaction NACK error\n",
bus);
mtk_i2c_dump_info(bus);
break;
} else if (status & I2C_ACKERR) {
ret_code = I2C_TRANSFER_FAIL_ACKERR;
I2CERR("[i2c%d transfer] transaction ACK error\n", bus);
mtk_i2c_dump_info(bus);
break;
} else if (status & I2C_TRANSAC_COMP) {
ret_code = I2C_OK;
memcpy(read_buffer, _dma_coherent, read_len);
break;
}
if (stopwatch_expired(&sw)) {
ret_code = I2C_TRANSFER_FAIL_TIMEOUT;
I2CERR("[i2c%d transfer] transaction timeout:%d\n", bus,
time_out_val);
mtk_i2c_dump_info(bus);
break;
}
}
write32(&regs->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
/* clear bit mask */
write32(&regs->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
/* reset the i2c controller for next i2c transfer. */
write32(&regs->softreset, 0x1);
i2c_dma_reset(dma_regs);
return ret_code;
}
static uint8_t mtk_i2c_should_combine(struct i2c_seg *seg, int left_count)
{
if (left_count >= 2 && seg[0].read == 0 && seg[1].read == 1 &&
seg[0].chip == seg[1].chip)
return 1;
else
return 0;
}
int platform_i2c_transfer(unsigned bus, struct i2c_seg *segments, int seg_count)
{
int ret = 0;
int i;
int read;
for (i = 0; i < seg_count; i++) {
if (mtk_i2c_should_combine(&segments[i], seg_count - i))
read = I2C_WRITE_READ_MODE;
else
read = segments[i].read;
ret = mtk_i2c_transfer(bus, &segments[i], read);
if (ret)
break;
if (read == I2C_WRITE_READ_MODE)
i++;
}
return ret;
}