blob: 5fe206ff2a18f8b2956f2959f56de621c6a59a4d [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2005 Eric W. Biederman and Tom Zimmerman
* Copyright (C) 2008 Arastra, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include "raminit_ep80579.h"
#include "ep80579.h"
#define BAR 0x90000000
static void sdram_set_registers(const struct mem_controller *ctrl)
{
static const u32 register_values[] = {
PCI_ADDR(0, 0x00, 0, CKDIS), 0xffff0000, 0x0000ffff,
PCI_ADDR(0, 0x00, 0, DEVPRES), 0x00000000, 0x07420001 | DEVPRES_CONFIG,
PCI_ADDR(0, 0x00, 0, PAM-1), 0xcccccc7f, 0x33333000,
PCI_ADDR(0, 0x00, 0, PAM+3), 0xcccccccc, 0x33333333,
PCI_ADDR(0, 0x00, 0, DEVPRES1), 0xffffffff, 0x0040003a,
PCI_ADDR(0, 0x00, 0, SMRBASE), 0x00000fff, BAR | 0,
};
int i;
int max;
for (i = 0; i < ARRAY_SIZE(register_values); i += 3) {
device_t dev;
u32 where;
u32 reg;
dev = (register_values[i] & ~0xff) - PCI_DEV(0, 0x00, 0) + ctrl->f0;
where = register_values[i] & 0xff;
reg = pci_read_config32(dev, where);
reg &= register_values[i+1];
reg |= register_values[i+2];
pci_write_config32(dev, where, reg);
}
}
struct dimm_size {
u32 side1;
u32 side2;
};
static struct dimm_size spd_get_dimm_size(u16 device)
{
/* Calculate the log base 2 size of a DIMM in bits */
struct dimm_size sz;
int value, low, ddr2;
sz.side1 = 0;
sz.side2 = 0;
/* Note it might be easier to use byte 31 here, it has the DIMM size as
* a multiple of 4MB. The way we do it now we can size both
* sides of an assymetric dimm.
*/
value = spd_read_byte(device, SPD_NUM_ROWS);
if (value < 0) goto hw_err;
if ((value & 0xf) == 0) goto val_err;
sz.side1 += value & 0xf;
value = spd_read_byte(device, SPD_NUM_COLUMNS);
if (value < 0) goto hw_err;
if ((value & 0xf) == 0) goto val_err;
sz.side1 += value & 0xf;
value = spd_read_byte(device, SPD_NUM_BANKS_PER_SDRAM);
if (value < 0) goto hw_err;
if ((value & 0xff) == 0) goto val_err;
sz.side1 += log2(value & 0xff);
/* Get the module data width and convert it to a power of two */
value = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_MSB);
if (value < 0) goto hw_err;
value &= 0xff;
value <<= 8;
low = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_LSB);
if (low < 0) goto hw_err;
value = value | (low & 0xff);
if ((value != 72) && (value != 64)) goto val_err;
sz.side1 += log2(value);
/* side 2 */
value = spd_read_byte(device, SPD_NUM_DIMM_BANKS);
if (value < 0) goto hw_err;
value &= 7;
value++;
if (value == 1) goto out;
if (value != 2) goto val_err;
/* Start with the symmetrical case */
sz.side2 = sz.side1;
value = spd_read_byte(device, SPD_NUM_ROWS);
if (value < 0) goto hw_err;
if ((value & 0xf0) == 0) goto out; /* If symmetrical we are done */
sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */
value = spd_read_byte(device, SPD_NUM_COLUMNS);
if (value < 0) goto hw_err;
if ((value & 0xff) == 0) goto val_err;
sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in columns on side 2 */
goto out;
val_err:
die("Bad SPD value\n");
/* If an hw_error occurs report that I have no memory */
hw_err:
sz.side1 = 0;
sz.side2 = 0;
out:
print_debug("dimm ");
print_debug_hex8(device);
print_debug(" size = ");
print_debug_hex8(sz.side1);
print_debug(".");
print_debug_hex8(sz.side2);
print_debug("\n");
return sz;
}
static long spd_set_ram_size(const struct mem_controller *ctrl, u8 dimm_mask)
{
int i;
int cum;
for (i = cum = 0; i < DIMM_SOCKETS; i++) {
struct dimm_size sz;
if (dimm_mask & (1 << i)) {
sz = spd_get_dimm_size(ctrl->channel0[i]);
if (sz.side1 < 29) {
return -1; /* Report SPD error */
}
/* convert bits to multiples of 64MB */
sz.side1 -= 29;
cum += (1 << sz.side1);
pci_write_config8(ctrl->f0, DRB + (i*2), cum);
pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
if (spd_read_byte(ctrl->channel0[i], SPD_NUM_DIMM_BANKS) & 0x1) {
cum <<= 1;
}
}
else {
pci_write_config8(ctrl->f0, DRB + (i*2), cum);
pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
}
}
print_debug("DRB = ");
print_debug_hex32(pci_read_config32(ctrl->f0, DRB));
print_debug("\n");
cum >>= 1;
/* set TOM top of memory */
pci_write_config16(ctrl->f0, TOM, cum);
print_debug("TOM = ");
print_debug_hex16(cum);
print_debug("\n");
/* set TOLM top of low memory */
if (cum > 0x18) {
cum = 0x18;
}
cum <<= 11;
pci_write_config16(ctrl->f0, TOLM, cum);
print_debug("TOLM = ");
print_debug_hex16(cum);
print_debug("\n");
return 0;
}
static u8 spd_detect_dimms(const struct mem_controller *ctrl)
{
u8 dimm_mask = 0;
int i;
for (i = 0; i < DIMM_SOCKETS; i++) {
int byte;
u16 device;
device = ctrl->channel0[i];
if (device) {
byte = spd_read_byte(device, SPD_MEMORY_TYPE);
print_debug("spd ");
print_debug_hex8(device);
print_debug(" = ");
print_debug_hex8(byte);
print_debug("\n");
if (byte == 8) {
dimm_mask |= (1 << i);
}
}
}
return dimm_mask;
}
static int spd_set_row_attributes(const struct mem_controller *ctrl,
u8 dimm_mask)
{
int value;
int i;
for (i = 0; i < DIMM_SOCKETS; i++) {
u32 dra = 0;
int reg = 0;
if (!(dimm_mask & (1 << i))) {
continue;
}
value = spd_read_byte(ctrl->channel0[i], SPD_NUM_ROWS);
if (value < 0) die("Bad SPD data\n");
if ((value & 0xf) == 0) die("Invalid # of rows\n");
dra |= (((value-13) & 0x7) << 23);
dra |= (((value-13) & 0x7) << 29);
reg += value & 0xf;
value = spd_read_byte(ctrl->channel0[i], SPD_NUM_COLUMNS);
if (value < 0) die("Bad SPD data\n");
if ((value & 0xf) == 0) die("Invalid # of columns\n");
dra |= (((value-10) & 0x7) << 20);
dra |= (((value-10) & 0x7) << 26);
reg += value & 0xf;
value = spd_read_byte(ctrl->channel0[i], SPD_NUM_BANKS_PER_SDRAM);
if (value < 0) die("Bad SPD data\n");
if ((value & 0xff) == 0) die("Invalid # of banks\n");
reg += log2(value & 0xff);
print_debug("dimm ");
print_debug_hex8(i);
print_debug(" reg = ");
print_debug_hex8(reg);
print_debug("\n");
/* set device density */
dra |= ((31-reg));
dra |= ((31-reg) << 6);
/* set device width (x8) */
dra |= (1 << 4);
dra |= (1 << 10);
/* set device type (registered) */
dra |= (1 << 14);
/* set number of ranks (0=single, 1=dual) */
value = spd_read_byte(ctrl->channel0[i], SPD_NUM_DIMM_BANKS);
dra |= ((value & 0x1) << 17);
print_debug("DRA");
print_debug_hex8(i);
print_debug(" = ");
print_debug_hex32(dra);
print_debug("\n");
pci_write_config32(ctrl->f0, DRA + (i*4), dra);
}
return 0;
}
static u32 spd_set_drt_attributes(const struct mem_controller *ctrl,
u8 dimm_mask, u32 drc)
{
int i;
u32 val, val1;
u32 cl;
u32 trc = 0;
u32 trfc = 0;
u32 tras = 0;
u32 trtp = 0;
u32 twtr = 0;
int index = drc & 0x00000003;
int ci;
static const u8 latencies[] = { /* 533, 800, 400, 667 */
0x10, 0x60, 0x10, 0x20 };
static const u32 drt0[] = { /* 533, 800, 400, 667 */
0x24240002, 0x24360002, 0x24220002, 0x24360002 };
static const u32 drt1[] = { /* 533, 800, 400, 667 */
0x00400000, 0x00900000, 0x00200000, 0x00700000 };
static const u32 magic[] = { /* 533, 800, 400, 667 */
0x007b8221, 0x00b94331, 0x005ca1a1, 0x009a62b1 };
static const u32 mrs[] = { /* 533, 800, 400, 667 */
0x07020000, 0x0b020000, 0x05020000, 0x09020000 };
static const int cycle[] = { /* 533, 800, 400, 667 */
15, 10, 20, 12 }; /* cycle time in 1/4 ns units */
static const int byte40rem[] = {
0, 1, 2, 2, 3, 3, 0, 0 }; /* byte 40 remainder in 1/4 ns units */
/* CAS latency in cycles */
val = latencies[index];
for (i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i)))
continue;
val &= spd_read_byte(ctrl->channel0[i], SPD_ACCEPTABLE_CAS_LATENCIES);
}
if (val & 0x10)
cl = 4;
else if (val & 0x20)
cl = 5;
else if (val & 0x40)
cl = 6;
else
die("CAS latency mismatch\n");
print_debug("cl = ");
print_debug_hex8(cl);
print_debug("\n");
ci = cycle[index];
/* Trc, Trfc in cycles */
for (i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i)))
continue;
val1 = spd_read_byte(ctrl->channel0[i], SPD_BYTE_41_42_EXTENSION);
val = spd_read_byte(ctrl->channel0[i], SPD_MIN_ACT_TO_ACT_AUTO_REFRESH);
val <<= 2; /* convert to 1/4 ns */
val += byte40rem[(val1 >> 4) & 0x7];
val = (val + ci - 1) / ci + 1; /* convert to cycles */
if (trc < val)
trc = val;
val = spd_read_byte(ctrl->channel0[i], SPD_MIN_AUTO_REFRESH_TO_ACT);
val <<= 2; /* convert to 1/4 ns */
if (val1 & 0x01)
val += 1024;
val += byte40rem[(val1 >> 1) & 0x7];
val = (val + ci - 1) / ci; /* convert to cycles */
if (trfc < val)
trfc = val;
}
print_debug("trc = ");
print_debug_hex8(trc);
print_debug("\n");
print_debug("trfc = ");
print_debug_hex8(trfc);
print_debug("\n");
/* Tras, Trtp, Twtr in cycles */
for (i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i)))
continue;
val = spd_read_byte(ctrl->channel0[i], SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
val <<= 2; /* convert to 1/4 ns */
val = (val + ci - 1) / ci; /* convert to cycles */
if (tras < val)
tras = val;
val = spd_read_byte(ctrl->channel0[i], SPD_INT_READ_TO_PRECHARGE_DELAY);
val = (val + ci - 1) / ci; /* convert to cycles */
if (trtp < val)
trtp = val;
val = spd_read_byte(ctrl->channel0[i], SPD_INT_WRITE_TO_READ_DELAY);
val = (val + ci - 1) / ci; /* convert to cycles */
if (twtr < val)
twtr = val;
}
print_debug("tras = ");
print_debug_hex8(tras);
print_debug("\n");
print_debug("trtp = ");
print_debug_hex8(trtp);
print_debug("\n");
print_debug("twtr = ");
print_debug_hex8(twtr);
print_debug("\n");
val = (drt0[index] | ((trc - 11) << 12) | ((cl - 3) << 9)
| ((cl - 3) << 6) | ((cl - 3) << 3));
print_debug("drt0 = ");
print_debug_hex32(val);
print_debug("\n");
pci_write_config32(ctrl->f0, DRT0, val);
val = (drt1[index] | ((tras - 8) << 28) | ((trtp - 2) << 25)
| (twtr << 15));
print_debug("drt1 = ");
print_debug_hex32(val);
print_debug("\n");
pci_write_config32(ctrl->f0, DRT1, val);
val = (magic[index]);
print_debug("magic = ");
print_debug_hex32(val);
print_debug("\n");
pci_write_config32(PCI_DEV(0, 0x08, 0), 0xcc, val);
val = (mrs[index] | (cl << 20));
print_debug("mrs = ");
print_debug_hex32(val);
print_debug("\n");
return val;
}
static int spd_set_dram_controller_mode(const struct mem_controller *ctrl,
u8 dimm_mask)
{
int value;
int drc = 0;
int i;
msr_t msr;
u8 cycle = 0x25;
for (i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i)))
continue;
if ((spd_read_byte(ctrl->channel0[i], SPD_MODULE_DATA_WIDTH_LSB) & 0xf0) != 0x40)
die("ERROR: Only 64-bit DIMMs supported\n");
if (!(spd_read_byte(ctrl->channel0[i], SPD_DIMM_CONFIG_TYPE) & 0x02))
die("ERROR: Only ECC DIMMs supported\n");
if (spd_read_byte(ctrl->channel0[i], SPD_PRIMARY_SDRAM_WIDTH) != 0x08)
die("ERROR: Only x8 DIMMs supported\n");
value = spd_read_byte(ctrl->channel0[i], SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
if (value > cycle)
cycle = value;
}
print_debug("cycle = ");
print_debug_hex8(cycle);
print_debug("\n");
drc |= (1 << 20); /* enable ECC */
drc |= (3 << 30); /* enable CKE on each DIMM */
drc |= (1 << 4); /* enable CKE globally */
/* TODO check: */
/* set front side bus speed */
msr = rdmsr(0xcd); /* returns 0 on Pentium M 90nm */
print_debug("msr 0xcd = ");
print_debug_hex32(msr.hi);
print_debug_hex32(msr.lo);
print_debug("\n");
/* TODO check that this msr really indicates fsb speed! */
if (msr.lo & 0x07) {
print_info("533 MHz FSB\n");
if (cycle <= 0x25) {
drc |= 0x5;
print_info("400 MHz DDR\n");
} else if (cycle <= 0x30) {
drc |= 0x7;
print_info("333 MHz DDR\n");
} else if (cycle <= 0x3d) {
drc |= 0x4;
print_info("266 MHz DDR\n");
} else {
drc |= 0x2;
print_info("200 MHz DDR\n");
}
}
else {
print_info("400 MHz FSB\n");
if (cycle <= 0x30) {
drc |= 0x7;
print_info("333 MHz DDR\n");
} else if (cycle <= 0x3d) {
drc |= 0x0;
print_info("266 MHz DDR\n");
} else {
drc |= 0x2;
print_info("200 MHz DDR\n");
}
}
print_debug("DRC = ");
print_debug_hex32(drc);
print_debug("\n");
return drc;
}
static void sdram_set_spd_registers(const struct mem_controller *ctrl)
{
u8 dimm_mask;
int i;
/* Test if we can read the SPD */
dimm_mask = spd_detect_dimms(ctrl);
if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
print_err("No memory for this cpu\n");
return;
}
return;
}
static void set_on_dimm_termination_enable(const struct mem_controller *ctrl)
{
u8 c1,c2;
u32 dimm,i;
u32 data32;
u32 t4;
/* Set up northbridge values */
/* ODT enable */
pci_write_config32(ctrl->f0, SDRC, 0xa0002c30);
c1 = pci_read_config8(ctrl->f0, DRB);
c2 = pci_read_config8(ctrl->f0, DRB+2);
if (c1 == c2) {
/* 1 single-rank DIMM */
data32 = 0x00000010;
}
else {
/* 2 single-rank DIMMs or 1 double-rank DIMM */
data32 = 0x00002010;
}
print_debug("ODT Value = ");
print_debug_hex32(data32);
print_debug("\n");
pci_write_config32(ctrl->f0, DDR2ODTC, data32);
for (i = 0; i < 2; i++) {
print_debug("ODT CS");
print_debug_hex8(i);
print_debug("\n");
write32(BAR+DCALADDR, 0x0b840001);
write32(BAR+DCALCSR, 0x80000003 | ((i+1)<<21));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
}
static void dump_dcal_regs(void)
{
int i;
for (i = 0x0; i < 0x2a0; i += 4) {
if ((i % 16) == 0) {
print_debug("\n");
print_debug_hex16(i);
print_debug(": ");
}
print_debug_hex32(read32(BAR+i));
print_debug(" ");
}
print_debug("\n");
}
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
int i;
int cs;
long mask;
u32 drc;
u32 data32;
u32 mode_reg;
msr_t msr;
u16 data16;
mask = spd_detect_dimms(ctrl);
print_debug("Starting SDRAM Enable\n");
/* Set DRAM type and Front Side Bus frequency */
drc = spd_set_dram_controller_mode(ctrl, mask);
if (drc == 0) {
die("Error calculating DRC\n");
}
data32 = drc & ~(3 << 20); /* clear ECC mode */
data32 = data32 | (3 << 5); /* temp turn off ODT */
/* Set DRAM controller mode */
pci_write_config32(ctrl->f0, DRC, data32);
/* Turn the clocks on */
pci_write_config16(ctrl->f0, CKDIS, 0x0000);
/* Program row size */
spd_set_ram_size(ctrl, mask);
/* Program row attributes */
spd_set_row_attributes(ctrl, mask);
/* Program timing values */
mode_reg = spd_set_drt_attributes(ctrl, mask, drc);
dump_dcal_regs();
/* Apply NOP */
for (cs = 0; cs < 2; cs++) {
print_debug("NOP CS");
print_debug_hex8(cs);
print_debug("\n");
udelay(16);
write32(BAR+DCALCSR, (0x00000000 | ((cs+1)<<21)));
write32(BAR+DCALCSR, (0x80000000 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
/* Apply NOP */
udelay(16);
for (cs = 0; cs < 2; cs++) {
print_debug("NOP CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR + DCALCSR, (0x80000000 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
/* Precharge all banks */
udelay(16);
for (cs = 0; cs < 2; cs++) {
print_debug("Precharge CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+DCALADDR, 0x04000000);
write32(BAR+DCALCSR, (0x80000002 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
/* EMRS: Enable DLLs, set OCD calibration mode to default */
udelay(16);
for (cs = 0; cs < 2; cs++) {
print_debug("EMRS CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+DCALADDR, 0x0b840001);
write32(BAR+DCALCSR, (0x80000003 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
/* MRS: Reset DLLs */
udelay(16);
for (cs = 0; cs < 2; cs++) {
print_debug("MRS CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+DCALADDR, mode_reg);
write32(BAR+DCALCSR, (0x80000003 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
/* Precharge all banks */
udelay(48);
for (cs = 0; cs < 2; cs++) {
print_debug("Precharge CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+DCALADDR, 0x04000000);
write32(BAR+DCALCSR, (0x80000002 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
/* Do 2 refreshes */
for (i = 0; i < 2; i++) {
udelay(16);
for (cs = 0; cs < 2; cs++) {
print_debug("Refresh CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+DCALCSR, (0x80000001 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
}
/* MRS: Set DLLs to normal */
udelay(16);
for (cs = 0; cs < 2; cs++) {
print_debug("MRS CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+DCALADDR, (mode_reg & ~(1<<24)));
write32(BAR+DCALCSR, (0x80000003 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
/* EMRS: Enable DLLs */
udelay(16);
for (cs = 0; cs < 2; cs++) {
print_debug("EMRS CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+DCALADDR, 0x0b840001);
write32(BAR+DCALCSR, (0x80000003 | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
udelay(16);
/* No command */
write32(BAR+DCALCSR, 0x0000000f);
write32(BAR, 0x00100000);
/* Enable on-DIMM termination */
set_on_dimm_termination_enable(ctrl);
dump_dcal_regs();
/* Receive enable calibration */
udelay(16);
for (cs = 0; cs < 1; cs++) {
print_debug("receive enable calibration CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+DCALCSR, (0x8000000c | ((cs+1)<<21)));
do data32 = read32(BAR+DCALCSR);
while (data32 & 0x80000000);
}
dump_dcal_regs();
/* Adjust RCOMP */
data32 = read32(BAR+DDRIOMC2);
data32 &= ~(0xf << 16);
data32 |= (0xb << 16);
write32(BAR+DDRIOMC2, data32);
dump_dcal_regs();
data32 = drc & ~(3 << 20); /* clear ECC mode */
pci_write_config32(ctrl->f0, DRC, data32);
write32(BAR+DCALCSR, 0x0008000f);
/* Clear memory and init ECC */
for (cs = 0; cs < 2; cs++) {
if (!(mask & (1<<cs)))
continue;
print_debug("clear memory CS");
print_debug_hex8(cs);
print_debug("\n");
write32(BAR+MBCSR, 0xa00000f0 | ((cs+1)<<20) | (0<<16));
do data32 = read32(BAR+MBCSR);
while (data32 & 0x80000000);
if (data32 & 0x40000000)
print_debug("failed!\n");
}
/* Clear read/write FIFO pointers */
print_debug("clear read/write fifo pointers\n");
write32(BAR+DDRIOMC2, read32(BAR+DDRIOMC2) | (1<<15));
udelay(16);
write32(BAR+DDRIOMC2, read32(BAR+DDRIOMC2) & ~(1<<15));
udelay(16);
dump_dcal_regs();
print_debug("Done\n");
/* Set initialization complete */
drc |= (1 << 29);
drc |= (3 << 30);
data32 = drc & ~(3 << 20); /* clear ECC mode */
pci_write_config32(ctrl->f0, DRC, data32);
/* Set the ECC mode */
pci_write_config32(ctrl->f0, DRC, drc);
/* The memory is now set up--use it */
cache_ramstage();
}
static inline int memory_initialized(void)
{
return pci_read_config32(PCI_DEV(0, 0x00, 0), DRC) & (1 << 29);
}