blob: ba14d707d67c7f82105fe89f70c5b78d41ed0ffa [file] [log] [blame]
/*
* Copyright (C) 2005 to 2013 by Jonathan Duddington
* email: jonsd@users.sourceforge.net
* Copyright (C) 2015-2016 Reece H. Dunn
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see: <http://www.gnu.org/licenses/>.
*/
// this version keeps wavemult window as a constant fraction
// of the cycle length - but that spreads out the HF peaks too much
#include "config.h"
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <espeak-ng/espeak_ng.h>
#include <espeak-ng/speak_lib.h>
#include "wavegen.h"
#include "common.h" // for espeak_rand
#include "synthesize.h" // for WGEN_DATA, RESONATOR, frame_t
#include "mbrola.h" // for MbrolaFill, MbrolaReset, mbrola...
#if USE_KLATT
#include "klatt.h"
#endif
#if USE_LIBSONIC
#include "sonic.h"
#endif
#include "sintab.h"
#include "speech.h"
static void SetSynth(int length, int modn, frame_t *fr1, frame_t *fr2, voice_t *v);
static voice_t *wvoice = NULL;
static int option_harmonic1 = 10;
static int flutter_amp = 64;
static int general_amplitude = 60;
static int consonant_amp = 26;
int embedded_value[N_EMBEDDED_VALUES];
static int PHASE_INC_FACTOR;
int samplerate = 0; // this is set by Wavegeninit()
static wavegen_peaks_t peaks[N_PEAKS];
static int peak_harmonic[N_PEAKS];
static int peak_height[N_PEAKS];
int echo_head;
int echo_tail;
int echo_amp = 0;
short echo_buf[N_ECHO_BUF];
static int echo_length = 0; // period (in sample\) to ensure completion of echo at the end of speech, set in WavegenSetEcho()
static int voicing;
static RESONATOR rbreath[N_PEAKS];
#define N_LOWHARM 30
#define MAX_HARMONIC 400 // 400 * 50Hz = 20 kHz, more than enough
static int harm_inc[N_LOWHARM]; // only for these harmonics do we interpolate amplitude between steps
static int *harmspect;
static int hswitch = 0;
static int hspect[2][MAX_HARMONIC]; // 2 copies, we interpolate between then
static int nsamples = 0; // number to do
static int modulation_type = 0;
static int glottal_flag = 0;
static int glottal_reduce = 0;
static WGEN_DATA wdata;
static int amp_ix;
static int amp_inc;
static unsigned char *amplitude_env = NULL;
static int samplecount = 0; // number done
static int samplecount_start = 0; // count at start of this segment
static int end_wave = 0; // continue to end of wave cycle
static int wavephase;
static int phaseinc;
static int cycle_samples; // number of samples in a cycle at current pitch
static int cbytes;
static int hf_factor;
static double minus_pi_t;
static double two_pi_t;
unsigned char *out_ptr;
unsigned char *out_end;
espeak_ng_OUTPUT_HOOKS* output_hooks = NULL;
static int const_f0 = 0;
// the queue of operations passed to wavegen from sythesize
intptr_t wcmdq[N_WCMDQ][4];
int wcmdq_head = 0;
int wcmdq_tail = 0;
// pitch,speed,
const int embedded_default[N_EMBEDDED_VALUES] = { 0, 50, espeakRATE_NORMAL, 100, 50, 0, 0, 0, espeakRATE_NORMAL, 0, 0, 0, 0, 0, 0 };
static const int embedded_max[N_EMBEDDED_VALUES] = { 0, 0x7fff, 750, 300, 99, 99, 99, 0, 750, 0, 0, 0, 0, 4, 0 };
#if USE_LIBSONIC
static sonicStream sonicSpeedupStream = NULL;
static double sonicSpeed = 1.0;
#endif
// 1st index=roughness
// 2nd index=modulation_type
// value: bits 0-3 amplitude (16ths), bits 4-7 every n cycles
#define N_ROUGHNESS 8
static const unsigned char modulation_tab[N_ROUGHNESS][8] = {
{ 0, 0x00, 0x00, 0x00, 0, 0x46, 0xf2, 0x29 },
{ 0, 0x2f, 0x00, 0x2f, 0, 0x45, 0xf2, 0x29 },
{ 0, 0x2f, 0x00, 0x2e, 0, 0x45, 0xf2, 0x28 },
{ 0, 0x2e, 0x00, 0x2d, 0, 0x34, 0xf2, 0x28 },
{ 0, 0x2d, 0x2d, 0x2c, 0, 0x34, 0xf2, 0x28 },
{ 0, 0x2b, 0x2b, 0x2b, 0, 0x34, 0xf2, 0x28 },
{ 0, 0x2a, 0x2a, 0x2a, 0, 0x34, 0xf2, 0x28 },
{ 0, 0x29, 0x29, 0x29, 0, 0x34, 0xf2, 0x28 },
};
// Flutter table, to add natural variations to the pitch
#define N_FLUTTER 0x170
static int Flutter_inc;
static const unsigned char Flutter_tab[N_FLUTTER] = {
0x80, 0x9b, 0xb5, 0xcb, 0xdc, 0xe8, 0xed, 0xec,
0xe6, 0xdc, 0xce, 0xbf, 0xb0, 0xa3, 0x98, 0x90,
0x8c, 0x8b, 0x8c, 0x8f, 0x92, 0x94, 0x95, 0x92,
0x8c, 0x83, 0x78, 0x69, 0x59, 0x49, 0x3c, 0x31,
0x2a, 0x29, 0x2d, 0x36, 0x44, 0x56, 0x69, 0x7d,
0x8f, 0x9f, 0xaa, 0xb1, 0xb2, 0xad, 0xa4, 0x96,
0x87, 0x78, 0x69, 0x5c, 0x53, 0x4f, 0x4f, 0x55,
0x5e, 0x6b, 0x7a, 0x88, 0x96, 0xa2, 0xab, 0xb0,
0xb1, 0xae, 0xa8, 0xa0, 0x98, 0x91, 0x8b, 0x88,
0x89, 0x8d, 0x94, 0x9d, 0xa8, 0xb2, 0xbb, 0xc0,
0xc1, 0xbd, 0xb4, 0xa5, 0x92, 0x7c, 0x63, 0x4a,
0x32, 0x1e, 0x0e, 0x05, 0x02, 0x05, 0x0f, 0x1e,
0x30, 0x44, 0x59, 0x6d, 0x7f, 0x8c, 0x96, 0x9c,
0x9f, 0x9f, 0x9d, 0x9b, 0x99, 0x99, 0x9c, 0xa1,
0xa9, 0xb3, 0xbf, 0xca, 0xd5, 0xdc, 0xe0, 0xde,
0xd8, 0xcc, 0xbb, 0xa6, 0x8f, 0x77, 0x60, 0x4b,
0x3a, 0x2e, 0x28, 0x29, 0x2f, 0x3a, 0x48, 0x59,
0x6a, 0x7a, 0x86, 0x90, 0x94, 0x95, 0x91, 0x89,
0x80, 0x75, 0x6b, 0x62, 0x5c, 0x5a, 0x5c, 0x61,
0x69, 0x74, 0x80, 0x8a, 0x94, 0x9a, 0x9e, 0x9d,
0x98, 0x90, 0x86, 0x7c, 0x71, 0x68, 0x62, 0x60,
0x63, 0x6b, 0x78, 0x88, 0x9b, 0xaf, 0xc2, 0xd2,
0xdf, 0xe6, 0xe7, 0xe2, 0xd7, 0xc6, 0xb2, 0x9c,
0x84, 0x6f, 0x5b, 0x4b, 0x40, 0x39, 0x37, 0x38,
0x3d, 0x43, 0x4a, 0x50, 0x54, 0x56, 0x55, 0x52,
0x4d, 0x48, 0x42, 0x3f, 0x3e, 0x41, 0x49, 0x56,
0x67, 0x7c, 0x93, 0xab, 0xc3, 0xd9, 0xea, 0xf6,
0xfc, 0xfb, 0xf4, 0xe7, 0xd5, 0xc0, 0xaa, 0x94,
0x80, 0x71, 0x64, 0x5d, 0x5a, 0x5c, 0x61, 0x68,
0x70, 0x77, 0x7d, 0x7f, 0x7f, 0x7b, 0x74, 0x6b,
0x61, 0x57, 0x4e, 0x48, 0x46, 0x48, 0x4e, 0x59,
0x66, 0x75, 0x84, 0x93, 0x9f, 0xa7, 0xab, 0xaa,
0xa4, 0x99, 0x8b, 0x7b, 0x6a, 0x5b, 0x4e, 0x46,
0x43, 0x45, 0x4d, 0x5a, 0x6b, 0x7f, 0x92, 0xa6,
0xb8, 0xc5, 0xcf, 0xd3, 0xd2, 0xcd, 0xc4, 0xb9,
0xad, 0xa1, 0x96, 0x8e, 0x89, 0x87, 0x87, 0x8a,
0x8d, 0x91, 0x92, 0x91, 0x8c, 0x84, 0x78, 0x68,
0x55, 0x41, 0x2e, 0x1c, 0x0e, 0x05, 0x01, 0x05,
0x0f, 0x1f, 0x34, 0x4d, 0x68, 0x81, 0x9a, 0xb0,
0xc1, 0xcd, 0xd3, 0xd3, 0xd0, 0xc8, 0xbf, 0xb5,
0xab, 0xa4, 0x9f, 0x9c, 0x9d, 0xa0, 0xa5, 0xaa,
0xae, 0xb1, 0xb0, 0xab, 0xa3, 0x96, 0x87, 0x76,
0x63, 0x51, 0x42, 0x36, 0x2f, 0x2d, 0x31, 0x3a,
0x48, 0x59, 0x6b, 0x7e, 0x8e, 0x9c, 0xa6, 0xaa,
0xa9, 0xa3, 0x98, 0x8a, 0x7b, 0x6c, 0x5d, 0x52,
0x4a, 0x48, 0x4a, 0x50, 0x5a, 0x67, 0x75, 0x82
};
// waveform shape table for HF peaks, formants 6,7,8
#define N_WAVEMULT 128
static int wavemult_offset = 0;
static int wavemult_max = 0;
// the presets are for 22050 Hz sample rate.
// A different rate will need to recalculate the presets in WavegenInit()
static unsigned char wavemult[N_WAVEMULT] = {
0, 0, 0, 2, 3, 5, 8, 11, 14, 18, 22, 27, 32, 37, 43, 49,
55, 62, 69, 76, 83, 90, 98, 105, 113, 121, 128, 136, 144, 152, 159, 166,
174, 181, 188, 194, 201, 207, 213, 218, 224, 228, 233, 237, 240, 244, 246, 249,
251, 252, 253, 253, 253, 253, 252, 251, 249, 246, 244, 240, 237, 233, 228, 224,
218, 213, 207, 201, 194, 188, 181, 174, 166, 159, 152, 144, 136, 128, 121, 113,
105, 98, 90, 83, 76, 69, 62, 55, 49, 43, 37, 32, 27, 22, 18, 14,
11, 8, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
// set from y = pow(2,x) * 128, x=-1 to 1
#define MAX_PITCH_VALUE 101
static const unsigned char pitch_adjust_tab[MAX_PITCH_VALUE+1] = {
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 86, 87, 88,
89, 91, 92, 93, 94, 96, 97, 98,
100, 101, 103, 104, 105, 107, 108, 110,
111, 113, 115, 116, 118, 119, 121, 123,
124, 126, 128, 130, 132, 133, 135, 137,
139, 141, 143, 145, 147, 149, 151, 153,
155, 158, 160, 162, 164, 167, 169, 171,
174, 176, 179, 181, 184, 186, 189, 191,
194, 197, 199, 202, 205, 208, 211, 214,
217, 220, 223, 226, 229, 232, 236, 239,
242, 246, 249, 252, 254, 255
};
void WcmdqStop(void)
{
wcmdq_head = 0;
wcmdq_tail = 0;
#if USE_LIBSONIC
if (sonicSpeedupStream != NULL) {
sonicDestroyStream(sonicSpeedupStream);
sonicSpeedupStream = NULL;
}
#endif
#if USE_MBROLA
if (mbrola_name[0] != 0)
MbrolaReset();
#endif
}
int WcmdqFree(void)
{
int i;
i = wcmdq_head - wcmdq_tail;
if (i <= 0) i += N_WCMDQ;
return i;
}
int WcmdqUsed(void)
{
return N_WCMDQ - WcmdqFree();
}
void WcmdqInc(void)
{
wcmdq_tail++;
if (wcmdq_tail >= N_WCMDQ) wcmdq_tail = 0;
}
static void WcmdqIncHead(void)
{
MAKE_MEM_UNDEFINED(&wcmdq[wcmdq_head], sizeof(wcmdq[wcmdq_head]));
wcmdq_head++;
if (wcmdq_head >= N_WCMDQ) wcmdq_head = 0;
}
#define PEAKSHAPEW 256
static const unsigned char pk_shape1[PEAKSHAPEW+1] = {
255, 254, 254, 254, 254, 254, 253, 253, 252, 251, 251, 250, 249, 248, 247, 246,
245, 244, 242, 241, 239, 238, 236, 234, 233, 231, 229, 227, 225, 223, 220, 218,
216, 213, 211, 209, 207, 205, 203, 201, 199, 197, 195, 193, 191, 189, 187, 185,
183, 180, 178, 176, 173, 171, 169, 166, 164, 161, 159, 156, 154, 151, 148, 146,
143, 140, 138, 135, 132, 129, 126, 123, 120, 118, 115, 112, 108, 105, 102, 99,
96, 95, 93, 91, 90, 88, 86, 85, 83, 82, 80, 79, 77, 76, 74, 73,
72, 70, 69, 68, 67, 66, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55,
55, 54, 53, 52, 52, 51, 50, 50, 49, 48, 48, 47, 47, 46, 46, 46,
45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 44, 43,
42, 42, 41, 40, 40, 39, 38, 38, 37, 36, 36, 35, 35, 34, 33, 33,
32, 32, 31, 30, 30, 29, 29, 28, 28, 27, 26, 26, 25, 25, 24, 24,
23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16,
16, 15, 15, 15, 14, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10,
10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5,
5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0
};
static const unsigned char pk_shape2[PEAKSHAPEW+1] = {
255, 254, 254, 254, 254, 254, 254, 254, 254, 254, 253, 253, 253, 253, 252, 252,
252, 251, 251, 251, 250, 250, 249, 249, 248, 248, 247, 247, 246, 245, 245, 244,
243, 243, 242, 241, 239, 237, 235, 233, 231, 229, 227, 225, 223, 221, 218, 216,
213, 211, 208, 205, 203, 200, 197, 194, 191, 187, 184, 181, 178, 174, 171, 167,
163, 160, 156, 152, 148, 144, 140, 136, 132, 127, 123, 119, 114, 110, 105, 100,
96, 94, 91, 88, 86, 83, 81, 78, 76, 74, 71, 69, 66, 64, 62, 60,
57, 55, 53, 51, 49, 47, 44, 42, 40, 38, 36, 34, 32, 30, 29, 27,
25, 23, 21, 19, 18, 16, 14, 12, 11, 9, 7, 6, 4, 3, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0
};
static const unsigned char *pk_shape;
void WavegenInit(int rate, int wavemult_fact)
{
int ix;
double x;
if (wavemult_fact == 0)
wavemult_fact = 60; // default
wvoice = NULL;
samplerate = rate;
PHASE_INC_FACTOR = 0x8000000 / samplerate; // assumes pitch is Hz*32
Flutter_inc = (64 * samplerate)/rate;
samplecount = 0;
nsamples = 0;
wavephase = 0x7fffffff;
wdata.amplitude = 32;
wdata.amplitude_fmt = 100;
for (ix = 0; ix < N_EMBEDDED_VALUES; ix++)
embedded_value[ix] = embedded_default[ix];
// set up window to generate a spread of harmonics from a
// single peak for HF peaks
wavemult_max = (samplerate * wavemult_fact)/(256 * 50);
if (wavemult_max > N_WAVEMULT) wavemult_max = N_WAVEMULT;
wavemult_offset = wavemult_max/2;
if (samplerate != 22050) {
// wavemult table has preset values for 22050 Hz, we only need to
// recalculate them if we have a different sample rate
for (ix = 0; ix < wavemult_max; ix++) {
x = 127*(1.0 - cos((M_PI*2)*ix/wavemult_max));
wavemult[ix] = (int)x;
}
}
pk_shape = pk_shape2;
#if USE_KLATT
KlattInit();
#endif
}
void WavegenFini(void)
{
#if USE_KLATT
KlattFini();
#endif
}
int GetAmplitude(void)
{
int amp;
// normal, none, reduced, moderate, strong
static const unsigned char amp_emphasis[5] = { 16, 16, 10, 16, 22 };
amp = (embedded_value[EMBED_A])*55/100;
general_amplitude = amp * amp_emphasis[embedded_value[EMBED_F]] / 16;
return general_amplitude;
}
static void WavegenSetEcho(void)
{
if (wvoice == NULL)
return;
int delay;
int amp;
voicing = wvoice->voicing;
delay = wvoice->echo_delay;
amp = wvoice->echo_amp;
if (delay >= N_ECHO_BUF)
delay = N_ECHO_BUF-1;
if (amp > 100)
amp = 100;
memset(echo_buf, 0, sizeof(echo_buf));
echo_tail = 0;
if (embedded_value[EMBED_H] > 0) {
// set echo from an embedded command in the text
amp = embedded_value[EMBED_H];
delay = 130;
}
if (delay == 0)
amp = 0;
echo_head = (delay * samplerate)/1000;
echo_length = echo_head; // ensure completion of echo at the end of speech. Use 1 delay period?
if (amp == 0)
echo_length = 0;
if (amp > 20)
echo_length = echo_head * 2; // perhaps allow 2 echo periods if the echo is loud.
// echo_amp units are 1/256ths of the amplitude of the original sound.
echo_amp = amp;
// compensate (partially) for increase in amplitude due to echo
general_amplitude = GetAmplitude();
general_amplitude = ((general_amplitude * (500-amp))/500);
}
int PeaksToHarmspect(wavegen_peaks_t *peaks, int pitch, int *htab, int control)
{
if (wvoice == NULL)
return 1;
// Calculate the amplitude of each harmonics from the formants
// Only for formants 0 to 5
// control 0=initial call, 1=every 64 cycles
// pitch and freqs are Hz<<16
int f;
wavegen_peaks_t *p;
int fp; // centre freq of peak
int fhi; // high freq of peak
int h; // harmonic number
int pk;
int hmax;
int hmax_samplerate; // highest harmonic allowed for the samplerate
int x;
int h1;
// initialise as much of *out as we will need
hmax = (peaks[wvoice->n_harmonic_peaks].freq + peaks[wvoice->n_harmonic_peaks].right)/pitch;
if (hmax >= MAX_HARMONIC)
hmax = MAX_HARMONIC-1;
// restrict highest harmonic to half the samplerate
hmax_samplerate = (((samplerate * 19)/40) << 16)/pitch; // only 95% of Nyquist freq
if (hmax > hmax_samplerate)
hmax = hmax_samplerate;
for (h = 0; h <= hmax; h++)
htab[h] = 0;
for (pk = 0; pk <= wvoice->n_harmonic_peaks; pk++) {
p = &peaks[pk];
if ((p->height == 0) || (fp = p->freq) == 0)
continue;
fhi = p->freq + p->right;
h = ((p->freq - p->left) / pitch) + 1;
if (h <= 0) h = 1;
for (f = pitch*h; f < fp; f += pitch)
htab[h++] += pk_shape[(fp-f)/(p->left>>8)] * p->height;
for (; f < fhi; f += pitch)
htab[h++] += pk_shape[(f-fp)/(p->right>>8)] * p->height;
}
int y;
int h2;
// increase bass
y = peaks[1].height * 10; // addition as a multiple of 1/256s
h2 = (1000<<16)/pitch; // decrease until 1000Hz
if (h2 > 0) {
x = y/h2;
h = 1;
while (y > 0) {
htab[h++] += y;
y -= x;
}
}
// find the nearest harmonic for HF peaks where we don't use shape
for (; pk < N_PEAKS; pk++) {
x = peaks[pk].height >> 14;
peak_height[pk] = (x * x * 5)/2;
// find the nearest harmonic for HF peaks where we don't use shape
if (control == 0) {
// set this initially, but make changes only at the quiet point
peak_harmonic[pk] = peaks[pk].freq / pitch;
}
// only use harmonics up to half the samplerate
if (peak_harmonic[pk] >= hmax_samplerate)
peak_height[pk] = 0;
}
// convert from the square-rooted values
f = 0;
for (h = 0; h <= hmax; h++, f += pitch) {
x = htab[h] >> 15;
htab[h] = (x * x) >> 8;
int ix;
if ((ix = (f >> 19)) < N_TONE_ADJUST)
htab[h] = (htab[h] * wvoice->tone_adjust[ix]) >> 13; // index tone_adjust with Hz/8
}
// adjust the amplitude of the first harmonic, affects tonal quality
h1 = htab[1] * option_harmonic1;
htab[1] = h1/8;
// calc intermediate increments of LF harmonics
if (control & 1) {
for (h = 1; h < N_LOWHARM; h++)
harm_inc[h] = (htab[h] - harmspect[h]) >> 3;
}
return hmax; // highest harmonic number
}
static void AdvanceParameters(void)
{
// Called every 64 samples to increment the formant freq, height, and widths
if (wvoice == NULL)
return;
int x;
int ix;
static int Flutter_ix = 0;
// advance the pitch
wdata.pitch_ix += wdata.pitch_inc;
if ((ix = wdata.pitch_ix>>8) > 127) ix = 127;
x = wdata.pitch_env[ix] * wdata.pitch_range;
wdata.pitch = (x>>8) + wdata.pitch_base;
amp_ix += amp_inc;
/* add pitch flutter */
if (Flutter_ix >= (N_FLUTTER*64))
Flutter_ix = 0;
x = ((int)(Flutter_tab[Flutter_ix >> 6])-0x80) * flutter_amp;
Flutter_ix += Flutter_inc;
wdata.pitch += x;
if(const_f0)
wdata.pitch = (const_f0<<12);
if (wdata.pitch < 102400)
wdata.pitch = 102400; // min pitch, 25 Hz (25 << 12)
if (samplecount == samplecount_start)
return;
for (ix = 0; ix <= wvoice->n_harmonic_peaks; ix++) {
peaks[ix].freq1 += peaks[ix].freq_inc;
peaks[ix].freq = (int)peaks[ix].freq1;
peaks[ix].height1 += peaks[ix].height_inc;
if ((peaks[ix].height = (int)peaks[ix].height1) < 0)
peaks[ix].height = 0;
peaks[ix].left1 += peaks[ix].left_inc;
peaks[ix].left = (int)peaks[ix].left1;
if (ix < 3) {
peaks[ix].right1 += peaks[ix].right_inc;
peaks[ix].right = (int)peaks[ix].right1;
} else
peaks[ix].right = peaks[ix].left;
}
for (; ix < 8; ix++) {
// formants 6,7,8 don't have a width parameter
if (ix < 7) {
peaks[ix].freq1 += peaks[ix].freq_inc;
peaks[ix].freq = (int)peaks[ix].freq1;
}
peaks[ix].height1 += peaks[ix].height_inc;
if ((peaks[ix].height = (int)peaks[ix].height1) < 0)
peaks[ix].height = 0;
}
}
static double resonator(RESONATOR *r, double input)
{
double x;
x = r->a * input + r->b * r->x1 + r->c * r->x2;
r->x2 = r->x1;
r->x1 = x;
return x;
}
static void setresonator(RESONATOR *rp, int freq, int bwidth, int init)
{
// freq Frequency of resonator in Hz
// bwidth Bandwidth of resonator in Hz
// init Initialize internal data
double x;
double arg;
if (init) {
rp->x1 = 0;
rp->x2 = 0;
}
arg = minus_pi_t * bwidth;
x = exp(arg);
rp->c = -(x * x);
arg = two_pi_t * freq;
rp->b = x * cos(arg) * 2.0;
rp->a = 1.0 - rp->b - rp->c;
}
void InitBreath(void)
{
int ix;
minus_pi_t = -M_PI / samplerate;
two_pi_t = -2.0 * minus_pi_t;
for (ix = 0; ix < N_PEAKS; ix++)
setresonator(&rbreath[ix], 2000, 200, 1);
}
static void SetBreath(void)
{
int pk;
if (wvoice == NULL || wvoice->breath[0] == 0)
return;
for (pk = 1; pk < N_PEAKS; pk++) {
if (wvoice->breath[pk] != 0) {
// breath[0] indicates that some breath formants are needed
// set the freq from the current synthesis formant and the width from the voice data
setresonator(&rbreath[pk], peaks[pk].freq >> 16, wvoice->breathw[pk], 0);
}
}
}
static int ApplyBreath(void)
{
if (wvoice == NULL)
return 0;
int value = 0;
int noise;
int ix;
// use two random numbers, for alternate formants
noise = espeak_rand(-0x2000, 0x1fff);
for (ix = 1; ix < N_PEAKS; ix++) {
int amp;
if ((amp = wvoice->breath[ix]) != 0) {
amp *= (peaks[ix].height >> 14);
value += (int)resonator(&rbreath[ix], noise) * amp;
}
}
return value;
}
static int Wavegen(int length, int modulation, bool resume, frame_t *fr1, frame_t *fr2, voice_t *wvoice)
{
if (resume == false)
SetSynth(length, modulation, fr1, fr2, wvoice);
if (wvoice == NULL)
return 0;
unsigned short waveph;
unsigned short theta;
int total;
int h;
int ix;
int z, z1, z2;
int echo;
int ov;
static int maxh, maxh2;
int pk;
signed char c;
int sample;
int amp;
int modn_amp = 1, modn_period;
static int agc = 256;
static int h_switch_sign = 0;
static int cycle_count = 0;
static int amplitude2 = 0; // adjusted for pitch
// continue until the output buffer is full, or
// the required number of samples have been produced
for (;;) {
if ((end_wave == 0) && (samplecount == nsamples))
return 0;
if ((samplecount & 0x3f) == 0) {
// every 64 samples, adjust the parameters
if (samplecount == 0) {
hswitch = 0;
harmspect = hspect[0];
maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[0], 0);
// adjust amplitude to compensate for fewer harmonics at higher pitch
amplitude2 = (wdata.amplitude * (wdata.pitch >> 8) * wdata.amplitude_fmt)/(10000 << 3);
// switch sign of harmonics above about 900Hz, to reduce max peak amplitude
h_switch_sign = 890 / (wdata.pitch >> 12);
} else
AdvanceParameters();
// pitch is Hz<<12
phaseinc = (wdata.pitch>>7) * PHASE_INC_FACTOR;
cycle_samples = samplerate/(wdata.pitch >> 12); // sr/(pitch*2)
hf_factor = wdata.pitch >> 11;
maxh = maxh2;
harmspect = hspect[hswitch];
hswitch ^= 1;
maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[hswitch], 1);
SetBreath();
} else if ((samplecount & 0x07) == 0) {
for (h = 1; h < N_LOWHARM && h <= maxh2 && h <= maxh; h++)
harmspect[h] += harm_inc[h];
// bring automatic gain control back towards unity
if (agc < 256) agc++;
}
samplecount++;
if (wavephase > 0) {
wavephase += phaseinc;
if (wavephase < 0) {
// sign has changed, reached a quiet point in the waveform
cbytes = wavemult_offset - (cycle_samples)/2;
if (samplecount > nsamples)
return 0;
cycle_count++;
for (pk = wvoice->n_harmonic_peaks+1; pk < N_PEAKS; pk++) {
// find the nearest harmonic for HF peaks where we don't use shape
peak_harmonic[pk] = ((peaks[pk].freq / (wdata.pitch*8)) + 1) / 2;
}
// adjust amplitude to compensate for fewer harmonics at higher pitch
amplitude2 = (wdata.amplitude * (wdata.pitch >> 8) * wdata.amplitude_fmt)/(10000 << 3);
if (glottal_flag > 0) {
if (glottal_flag == 3) {
if ((nsamples-samplecount) < (cycle_samples*2)) {
// Vowel before glottal-stop.
// This is the start of the penultimate cycle, reduce its amplitude
glottal_flag = 2;
amplitude2 = (amplitude2 * glottal_reduce)/256;
}
} else if (glottal_flag == 4) {
// Vowel following a glottal-stop.
// This is the start of the second cycle, reduce its amplitude
glottal_flag = 2;
amplitude2 = (amplitude2 * glottal_reduce)/256;
} else
glottal_flag--;
}
if (amplitude_env != NULL) {
// amplitude envelope is only used for creaky voice effect on certain vowels/tones
if ((ix = amp_ix>>8) > 127) ix = 127;
amp = amplitude_env[ix];
amplitude2 = (amplitude2 * amp)/128;
}
// introduce roughness into the sound by reducing the amplitude of
modn_period = 0;
if (voice->roughness < N_ROUGHNESS) {
modn_period = modulation_tab[voice->roughness][modulation_type];
modn_amp = modn_period & 0xf;
modn_period = modn_period >> 4;
}
if (modn_period != 0) {
if (modn_period == 0xf) {
// just once */
amplitude2 = (amplitude2 * modn_amp)/16;
modulation_type = 0;
} else {
// reduce amplitude every [modn_period} cycles
if ((cycle_count % modn_period) == 0)
amplitude2 = (amplitude2 * modn_amp)/16;
}
}
}
} else
wavephase += phaseinc;
waveph = (unsigned short)(wavephase >> 16);
total = 0;
// apply HF peaks, formants 6,7,8
// add a single harmonic and then spread this my multiplying by a
// window. This is to reduce the processing power needed to add the
// higher frequence harmonics.
cbytes++;
if (cbytes >= 0 && cbytes < wavemult_max) {
for (pk = wvoice->n_harmonic_peaks+1; pk < N_PEAKS; pk++) {
theta = peak_harmonic[pk] * waveph;
total += (long)sin_tab[theta >> 5] * peak_height[pk];
}
// spread the peaks by multiplying by a window
total = (long)(total / hf_factor) * wavemult[cbytes];
}
// apply main peaks, formants 0 to 5
theta = waveph;
for (h = 1; h <= h_switch_sign; h++) {
total += ((int)sin_tab[theta >> 5] * harmspect[h]);
theta += waveph;
}
while (h <= maxh) {
total -= ((int)sin_tab[theta >> 5] * harmspect[h]);
theta += waveph;
h++;
}
if (voicing != 64)
total = (total >> 6) * voicing;
if (wvoice->breath[0])
total += ApplyBreath();
// mix with sampled wave if required
z2 = 0;
if (wdata.mix_wavefile_ix < wdata.n_mix_wavefile) {
if (wdata.mix_wave_scale == 0) {
// a 16 bit sample
c = wdata.mix_wavefile[wdata.mix_wavefile_ix+wdata.mix_wavefile_offset+1];
sample = wdata.mix_wavefile[wdata.mix_wavefile_ix+wdata.mix_wavefile_offset] + (c * 256);
wdata.mix_wavefile_ix += 2;
} else {
// a 8 bit sample, scaled
sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_offset+wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
}
z2 = (sample * wdata.amplitude_v) >> 10;
z2 = (z2 * wdata.mix_wave_amp)/32;
if ((wdata.mix_wavefile_ix + wdata.mix_wavefile_offset) >= wdata.mix_wavefile_max) // reached the end of available WAV data
wdata.mix_wavefile_offset -= (wdata.mix_wavefile_max*3)/4;
}
z1 = z2 + (((total>>8) * amplitude2) >> 13);
echo = (echo_buf[echo_tail++] * echo_amp);
z1 += echo >> 8;
if (echo_tail >= N_ECHO_BUF)
echo_tail = 0;
z = (z1 * agc) >> 8;
// check for overflow, 16bit signed samples
if (z >= 32768) {
ov = 8388608/z1 - 1; // 8388608 is 2^23, i.e. max value * 256
if (ov < agc) agc = ov; // set agc to number of 1/256ths to multiply the sample by
z = (z1 * agc) >> 8; // reduce sample by agc value to prevent overflow
} else if (z <= -32768) {
ov = -8388608/z1 - 1;
if (ov < agc) agc = ov;
z = (z1 * agc) >> 8;
}
*out_ptr++ = z;
*out_ptr++ = z >> 8;
if(output_hooks && output_hooks->outputVoiced) output_hooks->outputVoiced(z);
echo_buf[echo_head++] = z;
if (echo_head >= N_ECHO_BUF)
echo_head = 0;
if (out_ptr + 2 > out_end)
return 1;
}
}
static int PlaySilence(int length, bool resume)
{
static int n_samples;
nsamples = 0;
samplecount = 0;
wavephase = 0x7fffffff;
if (length == 0)
return 0;
if (resume == false)
n_samples = length;
int value = 0;
while (n_samples-- > 0) {
value = (echo_buf[echo_tail++] * echo_amp) >> 8;
if (echo_tail >= N_ECHO_BUF)
echo_tail = 0;
*out_ptr++ = value;
*out_ptr++ = value >> 8;
if(output_hooks && output_hooks->outputSilence) output_hooks->outputSilence(value);
echo_buf[echo_head++] = value;
if (echo_head >= N_ECHO_BUF)
echo_head = 0;
if (out_ptr + 2 > out_end)
return 1;
}
return 0;
}
static int PlayWave(int length, bool resume, unsigned char *data, int scale, int amp)
{
static int n_samples;
static int ix = 0;
int value;
signed char c;
if (resume == false) {
n_samples = length;
ix = 0;
}
nsamples = 0;
samplecount = 0;
while (n_samples-- > 0) {
if (scale == 0) {
// 16 bits data
c = data[ix+1];
value = data[ix] + (c * 256);
ix += 2;
} else {
// 8 bit data, shift by the specified scale factor
value = (signed char)data[ix++] * scale;
}
value *= (consonant_amp * general_amplitude); // reduce strength of consonant
value = value >> 10;
value = (value * amp)/32;
value += ((echo_buf[echo_tail++] * echo_amp) >> 8);
if (value > 32767)
value = 32767;
else if (value < -32768)
value = -32768;
if (echo_tail >= N_ECHO_BUF)
echo_tail = 0;
out_ptr[0] = value;
out_ptr[1] = value >> 8;
if(output_hooks && output_hooks->outputUnvoiced) output_hooks->outputUnvoiced(value);
out_ptr += 2;
echo_buf[echo_head++] = (value*3)/4;
if (echo_head >= N_ECHO_BUF)
echo_head = 0;
if (out_ptr + 2 > out_end)
return 1;
}
return 0;
}
static int SetWithRange0(int value, int max)
{
if (value < 0)
return 0;
if (value > max)
return max;
return value;
}
static void SetPitchFormants(void)
{
if (wvoice == NULL)
return;
int ix;
int factor = 256;
int pitch_value;
// adjust formants to give better results for a different voice pitch
if ((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
pitch_value = MAX_PITCH_VALUE;
if (pitch_value > 50) {
// only adjust if the pitch is higher than normal
factor = 256 + (25 * (pitch_value - 50))/50;
}
for (ix = 0; ix <= 5; ix++)
wvoice->freq[ix] = (wvoice->freq2[ix] * factor)/256;
factor = embedded_value[EMBED_T]*3;
wvoice->height[0] = (wvoice->height2[0] * (256 - factor*2))/256;
wvoice->height[1] = (wvoice->height2[1] * (256 - factor))/256;
}
void SetEmbedded(int control, int value)
{
// there was an embedded command in the text at this point
int sign = 0;
int command;
command = control & 0x1f;
if ((control & 0x60) == 0x60)
sign = -1;
else if ((control & 0x60) == 0x40)
sign = 1;
if (command < N_EMBEDDED_VALUES) {
if (sign == 0)
embedded_value[command] = value;
else
embedded_value[command] += (value * sign);
embedded_value[command] = SetWithRange0(embedded_value[command], embedded_max[command]);
}
switch (command)
{
case EMBED_T:
WavegenSetEcho(); // and drop through to case P
case EMBED_P:
SetPitchFormants();
break;
case EMBED_A: // amplitude
general_amplitude = GetAmplitude();
break;
case EMBED_F: // emphasis
general_amplitude = GetAmplitude();
break;
case EMBED_H:
WavegenSetEcho();
break;
}
}
void WavegenSetVoice(voice_t *v)
{
static voice_t v2;
memcpy(&v2, v, sizeof(v2));
wvoice = &v2;
if (v->peak_shape == 0)
pk_shape = pk_shape1;
else
pk_shape = pk_shape2;
consonant_amp = (v->consonant_amp * 26) /100;
if (samplerate <= 11000) {
consonant_amp = consonant_amp*2; // emphasize consonants at low sample rates
option_harmonic1 = 6;
}
WavegenSetEcho();
SetPitchFormants();
MarkerEvent(espeakEVENT_SAMPLERATE, 0, wvoice->samplerate, 0, out_ptr);
}
static void SetAmplitude(int length, unsigned char *amp_env, int value)
{
if (wvoice == NULL)
return;
amp_ix = 0;
if (length == 0)
amp_inc = 0;
else
amp_inc = (256 * ENV_LEN * STEPSIZE)/length;
wdata.amplitude = (value * general_amplitude)/16;
wdata.amplitude_v = (wdata.amplitude * wvoice->consonant_ampv * 15)/100; // for wave mixed with voiced sounds
amplitude_env = amp_env;
}
void SetPitch2(voice_t *voice, int pitch1, int pitch2, int *pitch_base, int *pitch_range)
{
int base;
int range;
int pitch_value;
if (pitch1 > pitch2) {
int x;
x = pitch1; // swap values
pitch1 = pitch2;
pitch2 = x;
}
if ((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
pitch_value = MAX_PITCH_VALUE;
pitch_value -= embedded_value[EMBED_T]; // adjust tone for announcing punctuation
if (pitch_value < 0)
pitch_value = 0;
base = (voice->pitch_base * pitch_adjust_tab[pitch_value])/128;
range = (voice->pitch_range * embedded_value[EMBED_R])/50;
// compensate for change in pitch when the range is narrowed or widened
base -= (range - voice->pitch_range)*18;
*pitch_base = base + (pitch1 * range)/2;
*pitch_range = base + (pitch2 * range)/2 - *pitch_base;
}
static void SetPitch(int length, unsigned char *env, int pitch1, int pitch2)
{
if (wvoice == NULL)
return;
// length in samples
if ((wdata.pitch_env = env) == NULL)
wdata.pitch_env = env_fall; // default
wdata.pitch_ix = 0;
if (length == 0)
wdata.pitch_inc = 0;
else
wdata.pitch_inc = (256 * ENV_LEN * STEPSIZE)/length;
SetPitch2(wvoice, pitch1, pitch2, &wdata.pitch_base, &wdata.pitch_range);
// set initial pitch
wdata.pitch = ((wdata.pitch_env[0] * wdata.pitch_range) >>8) + wdata.pitch_base; // Hz << 12
flutter_amp = wvoice->flutter;
}
static void SetSynth(int length, int modn, frame_t *fr1, frame_t *fr2, voice_t *v)
{
if (wvoice == NULL || v == NULL)
return;
int ix;
double next;
int length2;
int length4;
int qix;
static const int glottal_reduce_tab1[4] = { 0x30, 0x30, 0x40, 0x50 }; // vowel before [?], amp * 1/256
static const int glottal_reduce_tab2[4] = { 0x90, 0xa0, 0xb0, 0xc0 }; // vowel after [?], amp * 1/256
end_wave = 1;
// any additional information in the param1 ?
modulation_type = modn & 0xff;
glottal_flag = 0;
if (modn & 0x400) {
glottal_flag = 3; // before a glottal stop
glottal_reduce = glottal_reduce_tab1[(modn >> 8) & 3];
}
if (modn & 0x800) {
glottal_flag = 4; // after a glottal stop
glottal_reduce = glottal_reduce_tab2[(modn >> 8) & 3];
}
for (qix = wcmdq_head+1;; qix++) {
if (qix >= N_WCMDQ) qix = 0;
if (qix == wcmdq_tail) break;
int cmd = wcmdq[qix][0];
if (cmd == WCMD_SPECT) {
end_wave = 0; // next wave generation is from another spectrum
break;
}
if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE))
break; // next is not from spectrum, so continue until end of wave cycle
}
// round the length to a multiple of the stepsize
length2 = (length + STEPSIZE/2) & ~0x3f;
if (length2 == 0)
length2 = STEPSIZE;
// add this length to any left over from the previous synth
samplecount_start = samplecount;
nsamples += length2;
length4 = length2/4;
peaks[7].freq = (7800 * v->freq[7] + v->freqadd[7]*256) << 8;
peaks[8].freq = (9000 * v->freq[8] + v->freqadd[8]*256) << 8;
for (ix = 0; ix < 8; ix++) {
if (ix < 7) {
peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
peaks[ix].freq = (int)peaks[ix].freq1;
next = (fr2->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
peaks[ix].freq_inc = ((next - peaks[ix].freq1) * (STEPSIZE/4)) / length4; // lower headroom for fixed point math
}
peaks[ix].height1 = (fr1->fheight[ix] * v->height[ix]) << 6;
peaks[ix].height = (int)peaks[ix].height1;
next = (fr2->fheight[ix] * v->height[ix]) << 6;
peaks[ix].height_inc = ((next - peaks[ix].height1) * STEPSIZE) / length2;
if ((ix <= 5) && (ix <= wvoice->n_harmonic_peaks)) {
peaks[ix].left1 = (fr1->fwidth[ix] * v->width[ix]) << 10;
peaks[ix].left = (int)peaks[ix].left1;
next = (fr2->fwidth[ix] * v->width[ix]) << 10;
peaks[ix].left_inc = ((next - peaks[ix].left1) * STEPSIZE) / length2;
if (ix < 3) {
peaks[ix].right1 = (fr1->fright[ix] * v->width[ix]) << 10;
peaks[ix].right = (int)peaks[ix].right1;
next = (fr2->fright[ix] * v->width[ix]) << 10;
peaks[ix].right_inc = ((next - peaks[ix].right1) * STEPSIZE) / length2;
} else
peaks[ix].right = peaks[ix].left;
}
}
}
void Write4Bytes(FILE *f, int value)
{
// Write 4 bytes to a file, least significant first
int ix;
for (ix = 0; ix < 4; ix++) {
fputc(value & 0xff, f);
value = value >> 8;
}
}
static int WavegenFill2(void)
{
// Pick up next wavegen commands from the queue
// return: 0 output buffer has been filled
// return: 1 input command queue is now empty
intptr_t *q;
int length;
int result;
int marker_type;
static bool resume = false;
static int echo_complete = 0;
while (out_ptr < out_end) {
if (WcmdqUsed() <= 0) {
if (echo_complete > 0) {
// continue to play silence until echo is completed
resume = PlaySilence(echo_complete, resume);
if (resume == true)
return 0; // not yet finished
}
return 1; // queue empty, close sound channel
}
result = 0;
q = wcmdq[wcmdq_head];
length = q[1];
switch (q[0] & 0xff)
{
case WCMD_PITCH:
SetPitch(length, (unsigned char *)q[2], q[3] >> 16, q[3] & 0xffff);
break;
case WCMD_PHONEME_ALIGNMENT:
{
char* data = (char*)q[1];
output_hooks->outputPhoSymbol(data,q[2]);
free(data);
}
break;
case WCMD_PAUSE:
if (resume == false)
echo_complete -= length;
wdata.n_mix_wavefile = 0;
wdata.amplitude_fmt = 100;
#if USE_KLATT
KlattReset(1);
#endif
result = PlaySilence(length, resume);
break;
case WCMD_WAVE:
echo_complete = echo_length;
wdata.n_mix_wavefile = 0;
#if USE_KLATT
KlattReset(1);
#endif
result = PlayWave(length, resume, (unsigned char *)q[2], q[3] & 0xff, q[3] >> 8);
break;
case WCMD_WAVE2:
// wave file to be played at the same time as synthesis
wdata.mix_wave_amp = q[3] >> 8;
wdata.mix_wave_scale = q[3] & 0xff;
wdata.n_mix_wavefile = (length & 0xffff);
wdata.mix_wavefile_max = (length >> 16) & 0xffff;
if (wdata.mix_wave_scale == 0) {
wdata.n_mix_wavefile *= 2;
wdata.mix_wavefile_max *= 2;
}
wdata.mix_wavefile_ix = 0;
wdata.mix_wavefile_offset = 0;
wdata.mix_wavefile = (unsigned char *)q[2];
break;
case WCMD_SPECT2: // as WCMD_SPECT but stop any concurrent wave file
wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
case WCMD_SPECT:
echo_complete = echo_length;
result = Wavegen(length & 0xffff, q[1] >> 16, resume, (frame_t *)q[2], (frame_t *)q[3], wvoice);
break;
#if USE_KLATT
case WCMD_KLATT2: // as WCMD_SPECT but stop any concurrent wave file
wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
case WCMD_KLATT:
echo_complete = echo_length;
result = Wavegen_Klatt(length & 0xffff, resume, (frame_t *)q[2], (frame_t *)q[3], &wdata, wvoice);
break;
#endif
case WCMD_MARKER:
marker_type = q[0] >> 8;
MarkerEvent(marker_type, q[1], q[2], q[3], out_ptr);
break;
case WCMD_AMPLITUDE:
SetAmplitude(length, (unsigned char *)q[2], q[3]);
break;
case WCMD_VOICE:
WavegenSetVoice((voice_t *)q[2]);
free((voice_t *)q[2]);
break;
case WCMD_EMBEDDED:
SetEmbedded(q[1], q[2]);
break;
#if USE_MBROLA
case WCMD_MBROLA_DATA:
if (wvoice != NULL)
result = MbrolaFill(length, resume, (general_amplitude * wvoice->voicing)/64);
break;
#endif
case WCMD_FMT_AMPLITUDE:
if ((wdata.amplitude_fmt = q[1]) == 0)
wdata.amplitude_fmt = 100; // percentage, but value=0 means 100%
break;
#if USE_LIBSONIC
case WCMD_SONIC_SPEED:
sonicSpeed = (double)q[1] / 1024;
if (sonicSpeedupStream && (sonicSpeed <= 1.0)) {
sonicFlushStream(sonicSpeedupStream);
int length = (out_end - out_ptr);
length = sonicReadShortFromStream(sonicSpeedupStream, (short*)out_ptr, length/2);
out_ptr += length * 2;
}
break;
#endif
}
if (result == 0) {
WcmdqIncHead();
resume = false;
} else
resume = true;
}
return 0;
}
#if USE_LIBSONIC
// Speed up the audio samples with libsonic.
static int SpeedUp(short *outbuf, int length_in, int length_out, int end_of_text)
{
if (length_in > 0) {
if (sonicSpeedupStream == NULL)
sonicSpeedupStream = sonicCreateStream(22050, 1);
if (sonicGetSpeed(sonicSpeedupStream) != sonicSpeed)
sonicSetSpeed(sonicSpeedupStream, sonicSpeed);
sonicWriteShortToStream(sonicSpeedupStream, outbuf, length_in);
}
if (sonicSpeedupStream == NULL)
return 0;
if (end_of_text)
sonicFlushStream(sonicSpeedupStream);
return sonicReadShortFromStream(sonicSpeedupStream, outbuf, length_out);
}
#endif
// Call WavegenFill2, and then speed up the output samples.
int WavegenFill(void)
{
int finished;
#if USE_LIBSONIC
unsigned char *p_start;
p_start = out_ptr;
#endif
finished = WavegenFill2();
#if USE_LIBSONIC
if (sonicSpeed > 1.0) {
int length;
int max_length;
max_length = (out_end - p_start);
length = 2*SpeedUp((short *)p_start, (out_ptr-p_start)/2, max_length/2, finished);
out_ptr = p_start + length;
if (length >= max_length)
finished = 0; // there may be more data to flush
}
#endif
return finished;
}
#pragma GCC visibility push(default)
ESPEAK_NG_API espeak_ng_STATUS
espeak_ng_SetOutputHooks(espeak_ng_OUTPUT_HOOKS* hooks)
{
output_hooks = hooks;
return 0;
}
ESPEAK_NG_API espeak_ng_STATUS
espeak_ng_SetConstF0(int f0)
{
const_f0 = f0;
return ENS_OK;
}
#pragma GCC visibility pop