blob: 8977377b5772648112da8d509ca3def5af1c9448 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
* Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
* Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
* Copyright (C) 2008 coresystems GmbH <info@coresystems.de>
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
* Copyright (C) 2011 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#if defined(__i386__) || defined(__x86_64__)
#include <string.h>
#include <stdlib.h>
#include "flash.h"
#include "programmer.h"
#include "spi.h"
#include "ich_descriptors.h"
#include "chipdrivers.h"
/* ICH9 controller register definition */
#define ICH9_REG_HSFS 0x04 /* 16 Bits Hardware Sequencing Flash Status */
#define HSFS_FDONE_OFF 0 /* 0: Flash Cycle Done */
#define HSFS_FDONE (0x1 << HSFS_FDONE_OFF)
#define HSFS_FCERR_OFF 1 /* 1: Flash Cycle Error */
#define HSFS_FCERR (0x1 << HSFS_FCERR_OFF)
#define HSFS_AEL_OFF 2 /* 2: Access Error Log */
#define HSFS_AEL (0x1 << HSFS_AEL_OFF)
#define HSFS_BERASE_OFF 3 /* 3-4: Block/Sector Erase Size */
#define HSFS_BERASE (0x3 << HSFS_BERASE_OFF)
#define HSFS_SCIP_OFF 5 /* 5: SPI Cycle In Progress */
#define HSFS_SCIP (0x1 << HSFS_SCIP_OFF)
/* 6-12: reserved */
#define HSFS_FDOPSS_OFF 13 /* 13: Flash Descriptor Override Pin-Strap Status */
#define HSFS_FDOPSS (0x1 << HSFS_FDOPSS_OFF)
#define HSFS_FDV_OFF 14 /* 14: Flash Descriptor Valid */
#define HSFS_FDV (0x1 << HSFS_FDV_OFF)
#define HSFS_FLOCKDN_OFF 15 /* 15: Flash Configuration Lock-Down */
#define HSFS_FLOCKDN (0x1 << HSFS_FLOCKDN_OFF)
#define ICH9_REG_HSFC 0x06 /* 16 Bits Hardware Sequencing Flash Control */
#define HSFC_FGO_OFF 0 /* 0: Flash Cycle Go */
#define HSFC_FGO (0x1 << HSFC_FGO_OFF)
#define HSFC_FCYCLE_OFF 1 /* 1-2: FLASH Cycle */
#define HSFC_FCYCLE (0x3 << HSFC_FCYCLE_OFF)
/* 3-7: reserved */
#define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */
#define HSFC_FDBC (0x3f << HSFC_FDBC_OFF)
/* 14: reserved */
#define HSFC_SME_OFF 15 /* 15: SPI SMI# Enable */
#define HSFC_SME (0x1 << HSFC_SME_OFF)
#define ICH9_REG_FADDR 0x08 /* 32 Bits */
#define ICH9_REG_FDATA0 0x10 /* 64 Bytes */
#define ICH9_REG_FRAP 0x50 /* 32 Bytes Flash Region Access Permissions */
#define ICH9_REG_FREG0 0x54 /* 32 Bytes Flash Region 0 */
#define ICH9_REG_PR0 0x74 /* 32 Bytes Protected Range 0 */
#define PR_WP_OFF 31 /* 31: write protection enable */
#define PR_RP_OFF 15 /* 15: read protection enable */
#define ICH9_REG_SSFS 0x90 /* 08 Bits */
#define SSFS_SCIP_OFF 0 /* SPI Cycle In Progress */
#define SSFS_SCIP (0x1 << SSFS_SCIP_OFF)
#define SSFS_FDONE_OFF 2 /* Cycle Done Status */
#define SSFS_FDONE (0x1 << SSFS_FDONE_OFF)
#define SSFS_FCERR_OFF 3 /* Flash Cycle Error */
#define SSFS_FCERR (0x1 << SSFS_FCERR_OFF)
#define SSFS_AEL_OFF 4 /* Access Error Log */
#define SSFS_AEL (0x1 << SSFS_AEL_OFF)
/* The following bits are reserved in SSFS: 1,5-7. */
#define SSFS_RESERVED_MASK 0x000000e2
#define ICH9_REG_SSFC 0x91 /* 24 Bits */
/* We combine SSFS and SSFC to one 32-bit word,
* therefore SSFC bits are off by 8. */
/* 0: reserved */
#define SSFC_SCGO_OFF (1 + 8) /* 1: SPI Cycle Go */
#define SSFC_SCGO (0x1 << SSFC_SCGO_OFF)
#define SSFC_ACS_OFF (2 + 8) /* 2: Atomic Cycle Sequence */
#define SSFC_ACS (0x1 << SSFC_ACS_OFF)
#define SSFC_SPOP_OFF (3 + 8) /* 3: Sequence Prefix Opcode Pointer */
#define SSFC_SPOP (0x1 << SSFC_SPOP_OFF)
#define SSFC_COP_OFF (4 + 8) /* 4-6: Cycle Opcode Pointer */
#define SSFC_COP (0x7 << SSFC_COP_OFF)
/* 7: reserved */
#define SSFC_DBC_OFF (8 + 8) /* 8-13: Data Byte Count */
#define SSFC_DBC (0x3f << SSFC_DBC_OFF)
#define SSFC_DS_OFF (14 + 8) /* 14: Data Cycle */
#define SSFC_DS (0x1 << SSFC_DS_OFF)
#define SSFC_SME_OFF (15 + 8) /* 15: SPI SMI# Enable */
#define SSFC_SME (0x1 << SSFC_SME_OFF)
#define SSFC_SCF_OFF (16 + 8) /* 16-18: SPI Cycle Frequency */
#define SSFC_SCF (0x7 << SSFC_SCF_OFF)
#define SSFC_SCF_20MHZ 0x00000000
#define SSFC_SCF_33MHZ 0x01000000
/* 19-23: reserved */
#define SSFC_RESERVED_MASK 0xf8008100
#define ICH9_REG_PREOP 0x94 /* 16 Bits */
#define ICH9_REG_OPTYPE 0x96 /* 16 Bits */
#define ICH9_REG_OPMENU 0x98 /* 64 Bits */
#define ICH9_REG_BBAR 0xA0 /* 32 Bits BIOS Base Address Configuration */
#define BBAR_MASK 0x00ffff00 /* 8-23: Bottom of System Flash */
#define ICH8_REG_VSCC 0xC1 /* 32 Bits Vendor Specific Component Capabilities */
#define ICH9_REG_LVSCC 0xC4 /* 32 Bits Host Lower Vendor Specific Component Capabilities */
#define ICH9_REG_UVSCC 0xC8 /* 32 Bits Host Upper Vendor Specific Component Capabilities */
/* The individual fields of the VSCC registers are defined in the file
* ich_descriptors.h. The reason is that the same layout is also used in the
* flash descriptor to define the properties of the different flash chips
* supported. The BIOS (or the ME?) is responsible to populate the ICH registers
* with the information from the descriptor on startup depending on the actual
* chip(s) detected. */
#define ICH9_REG_FPB 0xD0 /* 32 Bits Flash Partition Boundary */
#define FPB_FPBA_OFF 0 /* 0-12: Block/Sector Erase Size */
#define FPB_FPBA (0x1FFF << FPB_FPBA_OFF)
// ICH9R SPI commands
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3
// ICH7 registers
#define ICH7_REG_SPIS 0x00 /* 16 Bits */
#define SPIS_SCIP 0x0001
#define SPIS_GRANT 0x0002
#define SPIS_CDS 0x0004
#define SPIS_FCERR 0x0008
#define SPIS_RESERVED_MASK 0x7ff0
/* VIA SPI is compatible with ICH7, but maxdata
to transfer is 16 bytes.
DATA byte count on ICH7 is 8:13, on VIA 8:11
bit 12 is port select CS0 CS1
bit 13 is FAST READ enable
bit 7 is used with fast read and one shot controls CS de-assert?
*/
#define ICH7_REG_SPIC 0x02 /* 16 Bits */
#define SPIC_SCGO 0x0002
#define SPIC_ACS 0x0004
#define SPIC_SPOP 0x0008
#define SPIC_DS 0x4000
#define ICH7_REG_SPIA 0x04 /* 32 Bits */
#define ICH7_REG_SPID0 0x08 /* 64 Bytes */
#define ICH7_REG_PREOP 0x54 /* 16 Bits */
#define ICH7_REG_OPTYPE 0x56 /* 16 Bits */
#define ICH7_REG_OPMENU 0x58 /* 64 Bits */
/* Sunrise Point (100-series PCH) */
/* 32 Bits Hardware Sequencing Flash Status */
#define PCH100_REG_HSFSC 0x04
/* Status bits */
#define HSFSC_FDONE_OFF 0 /* 0: Flash Cycle Done */
#define HSFSC_FDONE (0x1 << HSFSC_FDONE_OFF)
#define HSFSC_FCERR_OFF 1 /* 1: Flash Cycle Error */
#define HSFSC_FCERR (0x1 << HSFSC_FCERR_OFF)
#define HSFSC_AEL_OFF 2 /* 2: Access Error Log */
#define HSFSC_AEL (0x1 << HSFSC_AEL_OFF)
#define HSFSC_SCIP_OFF 5 /* 5: SPI Cycle In Progress */
#define HSFSC_SCIP (0x1 << HSFSC_SCIP_OFF)
/* 6-10: reserved */
/* 11: Flash Configuration Lock-Down WRSDIS */
#define HSFSC_WRSDIS_OFF 11
#define HSFSC_WRSDIS (0x1 << HSFSC_WRSDIS_OFF)
#define HSFSC_PRR34LCKDN_OFF 12
#define HSFSC_PRR34LCKDN (0x1 << HSFSC_PRR34LCKDN_OFF)
/* 13: Flash Descriptor Override Pin-Strap Status */
#define HSFSC_FDOPSS_OFF 13
#define HSFSC_FDOPSS (0x1 << HSFSC_FDOPSS_OFF)
#define HSFSC_FDV_OFF 14 /* 14: Flash Descriptor Valid */
#define HSFSC_FDV (0x1 << HSFSC_FDV_OFF)
#define HSFSC_FLOCKDN_OFF 15 /* 11: Flash Configuration Lock-Down */
#define HSFSC_FLOCKDN (0x1 << HSFSC_FLOCKDN_OFF)
/* Control bits */
#define HSFSC_FGO_OFF 16 /* 0: Flash Cycle Go */
#define HSFSC_FGO (0x1 << HSFSC_FGO_OFF)
#define HSFSC_FCYCLE_OFF 17 /* 17-20: FLASH Cycle */
#define HSFSC_FCYCLE (0xf << HSFSC_FCYCLE_OFF)
#define HSFSC_FDBC_OFF 24 /* 24-29 : Flash Data Byte Count */
#define HSFSC_FDBC (0x3f << HSFSC_FDBC_OFF)
#define PCH100_REG_FADDR 0x08 /* 32 Bits */
#define PCH100_REG_FDATA0 0x10 /* 64 Bytes */
#define PCH100_REG_FPR0 0x84 /* 32 Bytes Protected Range 0 */
#define PCH100_WP_OFF 31 /* 31: write protection enable */
#define PCH100_RP_OFF 15 /* 15: read protection enable */
/* The minimum erase block size in PCH which is 4k
* 256,
* 4 * 1024,
* 8 * 1024,
* 64 * 1024
*/
#define ERASE_BLOCK_SIZE 1
#define HWSEQ_READ 0
#define HWSEQ_WRITE 1
/* ICH SPI configuration lock-down. May be set during chipset enabling. */
static int ichspi_lock = 0;
uint32_t ichspi_bbar = 0;
static void *ich_spibar = NULL;
typedef struct _OPCODE {
uint8_t opcode; //This commands spi opcode
uint8_t spi_type; //This commands spi type
uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1
} OPCODE;
/* Suggested opcode definition:
* Preop 1: Write Enable
* Preop 2: Write Status register enable
*
* OP 0: Write address
* OP 1: Read Address
* OP 2: ERASE block
* OP 3: Read Status register
* OP 4: Read ID
* OP 5: Write Status register
* OP 6: chip private (read JEDEC id)
* OP 7: Chip erase
*/
typedef struct _OPCODES {
uint8_t preop[2];
OPCODE opcode[8];
} OPCODES;
static OPCODES *curopcodes = NULL;
/* HW access functions */
static uint32_t REGREAD32(int X)
{
return mmio_readl(ich_spibar + X);
}
static uint16_t REGREAD16(int X)
{
return mmio_readw(ich_spibar + X);
}
static uint16_t REGREAD8(int X)
{
return mmio_readb(ich_spibar + X);
}
#define REGWRITE32(off, val) mmio_writel(val, ich_spibar+(off))
#define REGWRITE16(off, val) mmio_writew(val, ich_spibar+(off))
#define REGWRITE8(off, val) mmio_writeb(val, ich_spibar+(off))
/* Common SPI functions */
static int find_opcode(OPCODES *op, uint8_t opcode);
static int find_preop(OPCODES *op, uint8_t preop);
static int generate_opcodes(OPCODES * op);
static int program_opcodes(OPCODES *op, int enable_undo);
static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data);
/* for pairing opcodes with their required preop */
struct preop_opcode_pair {
uint8_t preop;
uint8_t opcode;
};
/* List of opcodes which need preopcodes and matching preopcodes. Unused. */
const struct preop_opcode_pair pops[] = {
{JEDEC_WREN, JEDEC_BYTE_PROGRAM},
{JEDEC_WREN, JEDEC_SE}, /* sector erase */
{JEDEC_WREN, JEDEC_BE_52}, /* block erase */
{JEDEC_WREN, JEDEC_BE_D8}, /* block erase */
{JEDEC_WREN, JEDEC_CE_60}, /* chip erase */
{JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */
/* FIXME: WRSR requires either EWSR or WREN depending on chip type. */
{JEDEC_WREN, JEDEC_WRSR},
{JEDEC_EWSR, JEDEC_WRSR},
{0,}
};
/* Reasonable default configuration. Needs ad-hoc modifications if we
* encounter unlisted opcodes. Fun.
*/
static OPCODES O_ST_M25P = {
{
JEDEC_WREN,
JEDEC_EWSR,
},
{
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
{JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
}
};
/* List of opcodes with their corresponding spi_type
* It is used to reprogram the chipset OPCODE table on-the-fly if an opcode
* is needed which is currently not in the chipset OPCODE table
*/
static OPCODE POSSIBLE_OPCODES[] = {
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
{JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Sector erase
{JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Block erase
{JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Auto Address Increment
};
static OPCODES O_EXISTING = {};
/* pretty printing functions */
static void prettyprint_opcodes(OPCODES *ops)
{
OPCODE oc;
const char *t;
const char *a;
uint8_t i;
static const char *const spi_type[4] = {
"read w/o addr",
"write w/o addr",
"read w/ addr",
"write w/ addr"
};
static const char *const atomic_type[3] = {
"none",
" 0 ",
" 1 "
};
if (ops == NULL)
return;
msg_pdbg2(" OP Type Pre-OP\n");
for (i = 0; i < 8; i++) {
oc = ops->opcode[i];
t = (oc.spi_type > 3) ? "invalid" : spi_type[oc.spi_type];
a = (oc.atomic > 2) ? "invalid" : atomic_type[oc.atomic];
msg_pdbg2("op[%d]: 0x%02x, %s, %s\n", i, oc.opcode, t, a);
}
msg_pdbg2("Pre-OP 0: 0x%02x, Pre-OP 1: 0x%02x\n", ops->preop[0],
ops->preop[1]);
}
#define pprint_reg(reg, bit, val, sep) msg_pdbg("%s=%d" sep, #bit, (val & reg##_##bit)>>reg##_##bit##_OFF)
static void prettyprint_ich9_reg_hsfs(uint16_t reg_val)
{
msg_pdbg("HSFS: ");
pprint_reg(HSFS, FDONE, reg_val, ", ");
pprint_reg(HSFS, FCERR, reg_val, ", ");
pprint_reg(HSFS, AEL, reg_val, ", ");
pprint_reg(HSFS, BERASE, reg_val, ", ");
pprint_reg(HSFS, SCIP, reg_val, ", ");
pprint_reg(HSFS, FDOPSS, reg_val, ", ");
pprint_reg(HSFS, FDV, reg_val, ", ");
pprint_reg(HSFS, FLOCKDN, reg_val, "\n");
}
static void prettyprint_ich9_reg_hsfc(uint16_t reg_val)
{
msg_pdbg("HSFC: ");
pprint_reg(HSFC, FGO, reg_val, ", ");
pprint_reg(HSFC, FCYCLE, reg_val, ", ");
pprint_reg(HSFC, FDBC, reg_val, ", ");
pprint_reg(HSFC, SME, reg_val, "\n");
}
static void prettyprint_ich9_reg_ssfs(uint32_t reg_val)
{
msg_pdbg("SSFS: ");
pprint_reg(SSFS, SCIP, reg_val, ", ");
pprint_reg(SSFS, FDONE, reg_val, ", ");
pprint_reg(SSFS, FCERR, reg_val, ", ");
pprint_reg(SSFS, AEL, reg_val, "\n");
}
static void prettyprint_ich9_reg_ssfc(uint32_t reg_val)
{
msg_pdbg("SSFC: ");
pprint_reg(SSFC, SCGO, reg_val, ", ");
pprint_reg(SSFC, ACS, reg_val, ", ");
pprint_reg(SSFC, SPOP, reg_val, ", ");
pprint_reg(SSFC, COP, reg_val, ", ");
pprint_reg(SSFC, DBC, reg_val, ", ");
pprint_reg(SSFC, SME, reg_val, ", ");
pprint_reg(SSFC, SCF, reg_val, "\n");
}
static uint8_t lookup_spi_type(uint8_t opcode)
{
int a;
for (a = 0; a < ARRAY_SIZE(POSSIBLE_OPCODES); a++) {
if (POSSIBLE_OPCODES[a].opcode == opcode)
return POSSIBLE_OPCODES[a].spi_type;
}
return 0xFF;
}
static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt)
{
uint8_t spi_type;
spi_type = lookup_spi_type(opcode);
if (spi_type > 3) {
/* Try to guess spi type from read/write sizes.
* The following valid writecnt/readcnt combinations exist:
* writecnt = 4, readcnt >= 0
* writecnt = 1, readcnt >= 0
* writecnt >= 4, readcnt = 0
* writecnt >= 1, readcnt = 0
* writecnt >= 1 is guaranteed for all commands.
*/
if (readcnt == 0)
/* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS
* or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data
* bytes are actual the address, they go to the bus anyhow
*/
spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
else if (writecnt == 1) // and readcnt is > 0
spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
else if (writecnt == 4) // and readcnt is > 0
spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
// else we have an invalid case, will be handled below
}
if (spi_type <= 3) {
int oppos=2; // use original JEDEC_BE_D8 offset
curopcodes->opcode[oppos].opcode = opcode;
curopcodes->opcode[oppos].spi_type = spi_type;
program_opcodes(curopcodes, 0);
oppos = find_opcode(curopcodes, opcode);
msg_pdbg ("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos);
return oppos;
}
return -1;
}
static int find_opcode(OPCODES *op, uint8_t opcode)
{
int a;
if (op == NULL) {
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
return -1;
}
for (a = 0; a < 8; a++) {
if (op->opcode[a].opcode == opcode)
return a;
}
return -1;
}
static int find_preop(OPCODES *op, uint8_t preop)
{
int a;
if (op == NULL) {
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
return -1;
}
for (a = 0; a < 2; a++) {
if (op->preop[a] == preop)
return a;
}
return -1;
}
/* Create a struct OPCODES based on what we find in the locked down chipset. */
static int generate_opcodes(OPCODES * op)
{
int a;
uint16_t preop, optype;
uint32_t opmenu[2];
if (op == NULL) {
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
return -1;
}
switch (ich_generation) {
case CHIPSET_ICH7:
preop = REGREAD16(ICH7_REG_PREOP);
optype = REGREAD16(ICH7_REG_OPTYPE);
opmenu[0] = REGREAD32(ICH7_REG_OPMENU);
opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4);
break;
case CHIPSET_ICH8:
default: /* Future version might behave the same */
preop = REGREAD16(ICH9_REG_PREOP);
optype = REGREAD16(ICH9_REG_OPTYPE);
opmenu[0] = REGREAD32(ICH9_REG_OPMENU);
opmenu[1] = REGREAD32(ICH9_REG_OPMENU + 4);
break;
}
op->preop[0] = (uint8_t) preop;
op->preop[1] = (uint8_t) (preop >> 8);
for (a = 0; a < 8; a++) {
op->opcode[a].spi_type = (uint8_t) (optype & 0x3);
optype >>= 2;
}
for (a = 0; a < 4; a++) {
op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff);
opmenu[0] >>= 8;
}
for (a = 4; a < 8; a++) {
op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff);
opmenu[1] >>= 8;
}
/* No preopcodes used by default. */
for (a = 0; a < 8; a++)
op->opcode[a].atomic = 0;
return 0;
}
static int program_opcodes(OPCODES *op, int enable_undo)
{
uint8_t a;
uint16_t preop, optype;
uint32_t opmenu[2];
/* Program Prefix Opcodes */
/* 0:7 Prefix Opcode 1 */
preop = (op->preop[0]);
/* 8:16 Prefix Opcode 2 */
preop |= ((uint16_t) op->preop[1]) << 8;
/* Program Opcode Types 0 - 7 */
optype = 0;
for (a = 0; a < 8; a++) {
optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
}
/* Program Allowable Opcodes 0 - 3 */
opmenu[0] = 0;
for (a = 0; a < 4; a++) {
opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
}
/*Program Allowable Opcodes 4 - 7 */
opmenu[1] = 0;
for (a = 4; a < 8; a++) {
opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
}
msg_pdbg("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]);
switch (ich_generation) {
case CHIPSET_ICH7:
/* Register undo only for enable_undo=1, i.e. first call. */
if (enable_undo) {
rmmio_valw(ich_spibar + ICH7_REG_PREOP);
rmmio_valw(ich_spibar + ICH7_REG_OPTYPE);
rmmio_vall(ich_spibar + ICH7_REG_OPMENU);
rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4);
}
mmio_writew(preop, ich_spibar + ICH7_REG_PREOP);
mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE);
mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU);
mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4);
break;
case CHIPSET_ICH8:
default: /* Future version might behave the same */
/* Register undo only for enable_undo=1, i.e. first call. */
if (enable_undo) {
rmmio_valw(ich_spibar + ICH9_REG_PREOP);
rmmio_valw(ich_spibar + ICH9_REG_OPTYPE);
rmmio_vall(ich_spibar + ICH9_REG_OPMENU);
rmmio_vall(ich_spibar + ICH9_REG_OPMENU + 4);
}
mmio_writew(preop, ich_spibar + ICH9_REG_PREOP);
mmio_writew(optype, ich_spibar + ICH9_REG_OPTYPE);
mmio_writel(opmenu[0], ich_spibar + ICH9_REG_OPMENU);
mmio_writel(opmenu[1], ich_spibar + ICH9_REG_OPMENU + 4);
break;
}
return 0;
}
/*
* Returns -1 if at least one mandatory opcode is inaccessible, 0 otherwise.
* FIXME: this should also check for
* - at least one probing opcode (RDID (incl. AT25F variants?), REMS, RES?)
* - at least one erasing opcode (lots.)
* - at least one program opcode (BYTE_PROGRAM, AAI_WORD_PROGRAM, ...?)
* - necessary preops? (EWSR, WREN, ...?)
*/
static int ich_missing_opcodes()
{
uint8_t ops[] = {
JEDEC_READ,
JEDEC_RDSR,
0
};
int i = 0;
while (ops[i] != 0) {
msg_pspew("checking for opcode 0x%02x\n", ops[i]);
if (find_opcode(curopcodes, ops[i]) == -1)
return -1;
i++;
}
return 0;
}
/*
* Try to set BBAR (BIOS Base Address Register), but read back the value in case
* it didn't stick.
*/
static void ich_set_bbar(uint32_t min_addr)
{
int bbar_off;
switch (ich_generation) {
case CHIPSET_ICH7:
bbar_off = 0x50;
break;
case CHIPSET_ICH8:
msg_perr("BBAR offset is unknown on ICH8!\n");
return;
case CHIPSET_ICH9:
default: /* Future version might behave the same */
bbar_off = ICH9_REG_BBAR;
break;
}
ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & ~BBAR_MASK;
if (ichspi_bbar) {
msg_pdbg("Reserved bits in BBAR not zero: 0x%08x\n",
ichspi_bbar);
}
min_addr &= BBAR_MASK;
ichspi_bbar |= min_addr;
rmmio_writel(ichspi_bbar, ich_spibar + bbar_off);
ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & BBAR_MASK;
/* We don't have any option except complaining. And if the write
* failed, the restore will fail as well, so no problem there.
*/
if (ichspi_bbar != min_addr)
msg_perr("Setting BBAR to 0x%08x failed! New value: 0x%08x.\n",
min_addr, ichspi_bbar);
}
/* Read len bytes from the fdata/spid register into the data array.
*
* Note that using len > spi_master->max_data_read will return garbage or
* may even crash.
*/
static void ich_read_data(uint8_t *data, int len, int reg0_off)
{
int i;
uint32_t temp32 = 0;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = REGREAD32(reg0_off + i);
data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
}
}
/* Fill len bytes from the data array into the fdata/spid registers.
*
* Note that using len > spi_master->max_data_write will trash the registers
* following the data registers.
*/
static void ich_fill_data(const uint8_t *data, int len, int reg0_off)
{
uint32_t temp32 = 0;
int i;
if (len <= 0)
return;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = 0;
temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);
if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
REGWRITE32(reg0_off + (i - (i % 4)), temp32);
}
i--;
if ((i % 4) != 3) /* Write remaining data to regs. */
REGWRITE32(reg0_off + (i - (i % 4)), temp32);
}
/* This function generates OPCODES from or programs OPCODES to ICH according to
* the chipset's SPI configuration lock.
*
* It should be called before ICH sends any spi command.
*/
static int ich_init_opcodes(void)
{
int rc = 0;
OPCODES *curopcodes_done;
if (curopcodes)
return 0;
if (ichspi_lock) {
msg_pdbg("Reading OPCODES... ");
curopcodes_done = &O_EXISTING;
rc = generate_opcodes(curopcodes_done);
} else {
msg_pdbg("Programming OPCODES... ");
curopcodes_done = &O_ST_M25P;
rc = program_opcodes(curopcodes_done, 1);
}
if (rc) {
curopcodes = NULL;
msg_perr("failed\n");
return 1;
} else {
curopcodes = curopcodes_done;
msg_pdbg("done\n");
prettyprint_opcodes(curopcodes);
return 0;
}
}
static int ich7_run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data, int maxdata)
{
int write_cmd = 0;
int timeout;
uint32_t temp32;
uint16_t temp16;
uint64_t opmenu;
int opcode_index;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("Error: SCIP never cleared!\n");
return 1;
}
/* Program offset in flash into SPIA while preserving reserved bits. */
temp32 = REGREAD32(ICH7_REG_SPIA) & ~0x00FFFFFF;
REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF) | temp32);
/* Program data into SPID0 to N */
if (write_cmd && (datalength != 0))
ich_fill_data(data, datalength, ICH7_REG_SPID0);
/* Assemble SPIS */
temp16 = REGREAD16(ICH7_REG_SPIS);
/* keep reserved bits */
temp16 &= SPIS_RESERVED_MASK;
/* clear error status registers */
temp16 |= (SPIS_CDS | SPIS_FCERR);
REGWRITE16(ICH7_REG_SPIS, temp16);
/* Assemble SPIC */
temp16 = 0;
if (datalength != 0) {
temp16 |= SPIC_DS;
temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8;
}
/* Select opcode */
opmenu = REGREAD32(ICH7_REG_OPMENU);
opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32;
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
if ((opmenu & 0xff) == op.opcode) {
break;
}
opmenu >>= 8;
}
if (opcode_index == 8) {
msg_pdbg("Opcode %x not found.\n", op.opcode);
return 1;
}
temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4;
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
/* Handle Atomic. Atomic commands include three steps:
- sending the preop (mainly EWSR or WREN)
- sending the main command
- waiting for the busy bit (WIP) to be cleared
This means the timeout must be sufficient for chip erase
of slow high-capacity chips.
*/
switch (op.atomic) {
case 2:
/* Select second preop. */
temp16 |= SPIC_SPOP;
/* And fall through. */
case 1:
/* Atomic command (preop+op) */
temp16 |= SPIC_ACS;
timeout = 100 * 1000 * 60; /* 60 seconds */
break;
}
/* Start */
temp16 |= SPIC_SCGO;
/* write it */
REGWRITE16(ICH7_REG_SPIC, temp16);
/* Original timeout is 60 minutes, which is too excessive.
* Reduce to 30 secs for chip full erase (around 10 secs).
* We also exit the loop if the error bit is set.
*/
timeout = 100 * 1000 * 30;
while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) &&
--timeout) {
programmer_delay(10);
if (REGREAD16(ICH7_REG_SPIS) & SPIS_FCERR)
break; /* Transaction error */
}
if (!timeout) {
msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n",
REGREAD16(ICH7_REG_SPIS));
return 1;
}
/* FIXME: make sure we do not needlessly cause transaction errors. */
temp16 = REGREAD16(ICH7_REG_SPIS);
if (temp16 & SPIS_FCERR) {
msg_perr("Transaction error!\n");
/* keep reserved bits */
temp16 &= SPIS_RESERVED_MASK;
REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR);
return 1;
}
if ((!write_cmd) && (datalength != 0))
ich_read_data(data, datalength, ICH7_REG_SPID0);
return 0;
}
static int ich9_run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data)
{
int write_cmd = 0;
int timeout;
uint32_t temp32;
uint64_t opmenu;
int opcode_index;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
while ((REGREAD8(ICH9_REG_SSFS) & SSFS_SCIP) && --timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("Error: SCIP never cleared!\n");
return 1;
}
/* Program offset in flash into FADDR while preserve the reserved bits
* and clearing the 25. address bit which is only useable in hwseq. */
temp32 = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF) | temp32);
/* Program data into FDATA0 to N */
if (write_cmd && (datalength != 0))
ich_fill_data(data, datalength, ICH9_REG_FDATA0);
/* Assemble SSFS + SSFC */
temp32 = REGREAD32(ICH9_REG_SSFS);
/* Keep reserved bits only */
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
/* Clear cycle done and cycle error status registers */
temp32 |= (SSFS_FDONE | SSFS_FCERR);
REGWRITE32(ICH9_REG_SSFS, temp32);
/* Use 20 MHz */
temp32 |= SSFC_SCF_20MHZ;
/* Set data byte count (DBC) and data cycle bit (DS) */
if (datalength != 0) {
uint32_t datatemp;
temp32 |= SSFC_DS;
datatemp = ((((uint32_t)datalength - 1) << SSFC_DBC_OFF) &
SSFC_DBC);
temp32 |= datatemp;
}
/* Select opcode */
opmenu = REGREAD32(ICH9_REG_OPMENU);
opmenu |= ((uint64_t)REGREAD32(ICH9_REG_OPMENU + 4)) << 32;
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
if ((opmenu & 0xff) == op.opcode) {
break;
}
opmenu >>= 8;
}
if (opcode_index == 8) {
msg_pdbg("Opcode %x not found.\n", op.opcode);
return 1;
}
temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4);
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
/* Handle Atomic. Atomic commands include three steps:
- sending the preop (mainly EWSR or WREN)
- sending the main command
- waiting for the busy bit (WIP) to be cleared
This means the timeout must be sufficient for chip erase
of slow high-capacity chips.
*/
switch (op.atomic) {
case 2:
/* Select second preop. */
temp32 |= SSFC_SPOP;
/* And fall through. */
case 1:
/* Atomic command (preop+op) */
temp32 |= SSFC_ACS;
timeout = 100 * 1000 * 60; /* 60 seconds */
break;
}
/* Start */
temp32 |= SSFC_SCGO;
/* write it */
REGWRITE32(ICH9_REG_SSFS, temp32);
/* Wait for Cycle Done Status or Flash Cycle Error. */
while (((REGREAD32(ICH9_REG_SSFS) & (SSFS_FDONE | SSFS_FCERR)) == 0) &&
--timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("timeout, ICH9_REG_SSFS=0x%08x\n",
REGREAD32(ICH9_REG_SSFS));
return 1;
}
/* FIXME make sure we do not needlessly cause transaction errors. */
temp32 = REGREAD32(ICH9_REG_SSFS);
if (temp32 & SSFS_FCERR) {
msg_perr("Transaction error!\n");
prettyprint_ich9_reg_ssfs(temp32);
prettyprint_ich9_reg_ssfc(temp32);
/* keep reserved bits */
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
/* Clear the transaction error. */
REGWRITE32(ICH9_REG_SSFS, temp32 | SSFS_FCERR);
return 1;
}
if ((!write_cmd) && (datalength != 0))
ich_read_data(data, datalength, ICH9_REG_FDATA0);
return 0;
}
static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data)
{
/* max_data_read == max_data_write for all Intel/VIA SPI masters */
uint8_t maxlength = spi_master->max_data_read;
if (spi_master->type == SPI_CONTROLLER_NONE) {
msg_perr("%s: unsupported chipset\n", __func__);
return -1;
}
if (datalength > maxlength) {
msg_perr("%s: Internal command size error for "
"opcode 0x%02x, got datalength=%i, want <=%i\n",
__func__, op.opcode, datalength, maxlength);
return SPI_INVALID_LENGTH;
}
switch (ich_generation) {
case CHIPSET_ICH7:
return ich7_run_opcode(op, offset, datalength, data, maxlength);
case CHIPSET_ICH8:
default: /* Future version might behave the same */
return ich9_run_opcode(op, offset, datalength, data);
}
}
#define DEFAULT_NUM_FD_REGIONS 5
/*
* APL/GLK have the Device Expansion region as well. Hence, the number of
* regions is 6.
*/
#define APL_GLK_NUM_FD_REGIONS 6
/*
* Sunrisepoint have reserved regions and a region for Embedded Controller.
* Hence, the number of regions is 9.
*/
#define SUNRISEPOINT_NUM_FD_REGIONS 9
#define EMBEDDED_CONTROLLER_REGION 8
static int num_fd_regions;
const char *const region_names[] = {
"Flash Descriptor", "BIOS", "Management Engine",
"Gigabit Ethernet", "Platform Data", "Device Expansion",
"Reserved 1", "Reserved 2", "Embedded Controller",
};
enum fd_access_level {
FD_REGION_LOCKED,
FD_REGION_READ_ONLY,
FD_REGION_WRITE_ONLY,
FD_REGION_READ_WRITE,
};
struct fd_region_permission {
enum fd_access_level level;
const char *name;
} fd_region_permissions[] = {
/* order corresponds to FRAP bitfield */
{ FD_REGION_LOCKED, "locked" },
{ FD_REGION_READ_ONLY, "read-only" },
{ FD_REGION_WRITE_ONLY, "write-only" },
{ FD_REGION_READ_WRITE, "read-write" },
};
/* FIXME: Replace usage of access_names with the region_access struct */
const char *const access_names[4] = {
"locked", "read-only", "write-only", "read-write"
};
struct fd_region {
const char *name;
struct fd_region_permission *permission;
uint32_t base;
uint32_t limit;
} fd_regions[] = {
/* order corresponds to flash descriptor */
{ .name = "Flash Descriptor" },
{ .name = "BIOS" },
{ .name = "Management Engine" },
{ .name = "Gigabit Ethernet" },
{ .name = "Platform Data" },
{ .name = "Device Expansion" },
{ .name = "Reserved 1" },
{ .name = "Reserved 2" },
{ .name = "Embedded Controller" },
};
static int check_fd_permissions_hwseq(int op_type, uint32_t addr, int count)
{
int i;
int ret = 0;
/* check flash descriptor permissions (if present) */
for (i = 0; i < num_fd_regions; i++) {
const char *name = fd_regions[i].name;
enum fd_access_level level;
if ((addr + count - 1 < fd_regions[i].base) ||
(addr > fd_regions[i].limit))
continue;
if (!fd_regions[i].permission) {
msg_perr("No permissions set for flash region %s\n",
fd_regions[i].name);
break;
}
level = fd_regions[i].permission->level;
if (op_type == HWSEQ_READ) {
if (level != FD_REGION_READ_ONLY &&
level != FD_REGION_READ_WRITE) {
msg_pspew("%s: Cannot read address 0x%08x in "
"region %s\n", __func__, addr, name);
ret = SPI_ACCESS_DENIED;
}
} else if (op_type == HWSEQ_WRITE) {
if (level != FD_REGION_WRITE_ONLY &&
level != FD_REGION_READ_WRITE) {
msg_pspew("%s: Cannot write to address 0x%08x "
"in region %s\n", __func__, addr, name);
ret = SPI_ACCESS_DENIED;
}
}
break;
}
if (i == num_fd_regions) {
msg_pspew("%s: Address not covered by any descriptor 0x%06x\n",
__func__, addr);
ret = SPI_ACCESS_DENIED;
}
return ret;
}
static int check_fd_permissions(OPCODE *opcode, uint32_t addr, int count)
{
int i;
uint8_t type = opcode->spi_type;
int ret = 0;
/* check flash descriptor permissions (if present) */
for (i = 0; i < num_fd_regions; i++) {
const char *name = fd_regions[i].name;
enum fd_access_level level;
if ((addr + count - 1 < fd_regions[i].base) ||
(addr > fd_regions[i].limit))
continue;
if (!fd_regions[i].permission) {
msg_perr("No permissions set for flash region %s\n",
fd_regions[i].name);
break;
}
level = fd_regions[i].permission->level;
if (type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) {
if (level != FD_REGION_READ_ONLY &&
level != FD_REGION_READ_WRITE) {
msg_pspew("%s: Cannot read address 0x%08x in "
"region %s\n", __func__,addr,name);
ret = SPI_ACCESS_DENIED;
}
} else if (type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
if (level != FD_REGION_WRITE_ONLY &&
level != FD_REGION_READ_WRITE) {
msg_pspew("%s: Cannot write to address 0x%08x in"
"region %s\n", __func__,addr,name);
ret = SPI_ACCESS_DENIED;
}
}
break;
}
return ret;
}
static int ich_spi_send_command(const struct flashctx *flash, unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr)
{
int result;
int opcode_index = -1;
const unsigned char cmd = *writearr;
OPCODE *opcode;
uint32_t addr = 0;
uint8_t *data;
int count;
/* find cmd in opcodes-table */
opcode_index = find_opcode(curopcodes, cmd);
if (opcode_index == -1) {
if (!ichspi_lock)
opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt);
if (opcode_index == -1) {
if (!ich_dry_run)
msg_pdbg("Invalid OPCODE 0x%02x, will not execute.\n",
cmd);
return SPI_INVALID_OPCODE;
}
}
if (ich_dry_run)
return 0;
opcode = &(curopcodes->opcode[opcode_index]);
/* The following valid writecnt/readcnt combinations exist:
* writecnt = 4, readcnt >= 0
* writecnt = 1, readcnt >= 0
* writecnt >= 4, readcnt = 0
* writecnt >= 1, readcnt = 0
* writecnt >= 1 is guaranteed for all commands.
*/
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) &&
(writecnt != 4)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want =4\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) &&
(writecnt != 1)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want =1\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) &&
(writecnt < 4)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want >=4\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) &&
(readcnt)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got readcnt=%i, want =0\n", __func__, cmd,
readcnt);
return SPI_INVALID_LENGTH;
}
/* Translate read/write array/count.
* The maximum data length is identical for the maximum read length and
* for the maximum write length excluding opcode and address. Opcode and
* address are stored in separate registers, not in the data registers
* and are thus not counted towards data length. The only exception
* applies if the opcode definition (un)intentionally classifies said
* opcode incorrectly as non-address opcode or vice versa. */
if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) {
data = (uint8_t *) (writearr + 1);
count = writecnt - 1;
} else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
data = (uint8_t *) (writearr + 4);
count = writecnt - 4;
} else {
data = (uint8_t *) readarr;
count = readcnt;
}
/* if opcode-type requires an address */
if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS ||
opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
addr = (writearr[1] << 16) |
(writearr[2] << 8) | (writearr[3] << 0);
if (addr < ichspi_bbar) {
msg_perr("%s: Address 0x%06x below allowed "
"range 0x%06x-0xffffff\n", __func__,
addr, ichspi_bbar);
return SPI_INVALID_ADDRESS;
}
if (num_fd_regions > 0) {
result = check_fd_permissions(opcode, addr, count);
if (result)
return result;
}
}
result = run_opcode(flash, *opcode, addr, count, data);
if (result) {
msg_pdbg("Running OPCODE 0x%02x failed ", opcode->opcode);
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS)) {
msg_pdbg("at address 0x%06x ", addr);
}
msg_pdbg("(payload length was %d).\n", count);
/* Print out the data array if it contains data to write.
* Errors are detected before the received data is read back into
* the array so it won't make sense to print it then. */
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) {
int i;
msg_pspew("The data was:\n");
for (i = 0; i < count; i++){
msg_pspew("%3d: 0x%02x\n", i, data[i]);
}
}
}
return result;
}
static struct hwseq_data {
uint32_t size_comp0;
uint32_t size_comp1;
} hwseq_data;
/* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */
static void ich_hwseq_set_addr(uint32_t addr)
{
uint32_t addr_old = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
REGWRITE32(ICH9_REG_FADDR, (addr & 0x01FFFFFF) | addr_old);
}
/* Sets FADDR.FLA to 'addr' and returns the erase block size in bytes
* of the block containing this address. May return nonsense if the address is
* not valid. The erase block size for a specific address depends on the flash
* partition layout as specified by FPB and the partition properties as defined
* by UVSCC and LVSCC respectively. An alternative to implement this method
* would be by querying FPB and the respective VSCC register directly.
*/
static uint32_t ich_hwseq_get_erase_block_size(unsigned int addr)
{
uint8_t enc_berase;
static const uint32_t dec_berase[4] = {
256,
4 * 1024,
8 * 1024,
64 * 1024
};
ich_hwseq_set_addr(addr);
enc_berase = (REGREAD16(ICH9_REG_HSFS) & HSFS_BERASE) >>
HSFS_BERASE_OFF;
return dec_berase[enc_berase];
}
/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
Resets all error flags in HSFS.
Returns 0 if the cycle completes successfully without errors within
timeout us, 1 on errors. */
static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
unsigned int len)
{
uint16_t hsfs;
uint32_t addr;
timeout /= 8; /* scale timeout duration to counter */
while ((((hsfs = REGREAD16(ICH9_REG_HSFS)) &
(HSFS_FDONE | HSFS_FCERR)) == 0) &&
--timeout) {
programmer_delay(8);
}
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
if (!timeout) {
addr = REGREAD32(ICH9_REG_FADDR) & 0x01FFFFFF;
msg_perr("Timeout error between offset 0x%08x and "
"0x%08x (= 0x%08x + %d)!\n",
addr, addr + len - 1, addr, len - 1);
prettyprint_ich9_reg_hsfs(hsfs);
prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC));
return 1;
}
if (hsfs & HSFS_FCERR) {
addr = REGREAD32(ICH9_REG_FADDR) & 0x01FFFFFF;
msg_perr("Transaction error between offset 0x%08x and "
"0x%08x (= 0x%08x + %d)!\n",
addr, addr + len - 1, addr, len - 1);
prettyprint_ich9_reg_hsfs(hsfs);
prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC));
return 1;
}
return 0;
}
int ich_hwseq_probe(struct flashctx *flash)
{
uint32_t total_size, boundary;
uint32_t erase_size_low, size_low, erase_size_high, size_high;
struct block_eraser *eraser;
total_size = hwseq_data.size_comp0 + hwseq_data.size_comp1;
msg_cdbg("Found %d attached SPI flash chip",
(hwseq_data.size_comp1 != 0) ? 2 : 1);
if (hwseq_data.size_comp1 != 0)
msg_cdbg("s with a combined");
else
msg_cdbg(" with a");
msg_cdbg(" density of %d kB.\n", total_size / 1024);
flash->chip->total_size = total_size / 1024;
eraser = &(flash->chip->block_erasers[0]);
boundary = (REGREAD32(ICH9_REG_FPB) & FPB_FPBA) << 12;
size_high = total_size - boundary;
erase_size_high = ich_hwseq_get_erase_block_size(boundary);
if (boundary == 0) {
msg_cdbg("There is only one partition containing the whole "
"address space (0x%06x - 0x%06x).\n", 0, size_high-1);
eraser->eraseblocks[0].size = erase_size_high;
eraser->eraseblocks[0].count = size_high / erase_size_high;
msg_cdbg("There are %d erase blocks with %d B each.\n",
size_high / erase_size_high, erase_size_high);
} else {
msg_cdbg("The flash address space (0x%06x - 0x%06x) is divided "
"at address 0x%06x in two partitions.\n",
0, size_high-1, boundary);
size_low = total_size - size_high;
erase_size_low = ich_hwseq_get_erase_block_size(0);
eraser->eraseblocks[0].size = erase_size_low;
eraser->eraseblocks[0].count = size_low / erase_size_low;
msg_cdbg("The first partition ranges from 0x%06x to 0x%06x.\n",
0, size_low-1);
msg_cdbg("In that range are %d erase blocks with %d B each.\n",
size_low / erase_size_low, erase_size_low);
eraser->eraseblocks[1].size = erase_size_high;
eraser->eraseblocks[1].count = size_high / erase_size_high;
msg_cdbg("The second partition ranges from 0x%06x to 0x%06x.\n",
boundary, size_high-1);
msg_cdbg("In that range are %d erase blocks with %d B each.\n",
size_high / erase_size_high, erase_size_high);
}
return 1;
}
int ich_hwseq_block_erase(struct flashctx *flash,
unsigned int addr,
unsigned int len)
{
uint32_t erase_block;
uint16_t hsfc;
uint32_t timeout = 5000 * 1000; /* 5 s for max 64 kB */
if (ich_dry_run)
return 0;
erase_block = ich_hwseq_get_erase_block_size(addr);
if (len != erase_block) {
msg_cerr("Erase block size for address 0x%06x is %d B, "
"but requested erase block size is %d B. "
"Not erasing anything.\n", addr, erase_block, len);
return -1;
}
/* Although the hardware supports this (it would erase the whole block
* containing the address) we play safe here. */
if (addr % erase_block != 0) {
msg_cerr("Erase address 0x%06x is not aligned to the erase "
"block boundary (any multiple of %d). "
"Not erasing anything.\n", addr, erase_block);
return -1;
}
if (addr + len > flash->chip->total_size * 1024) {
msg_perr("Request to erase some inaccessible memory address(es)"
" (addr=0x%x, len=%d). "
"Not erasing anything.\n", addr, len);
return -1;
}
msg_pspew("Erasing %d bytes starting at 0x%06x.\n", len, addr);
/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
hsfc = REGREAD16(ICH9_REG_HSFC);
hsfc &= ~HSFC_FCYCLE; /* clear operation */
hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */
hsfc |= HSFC_FGO; /* start */
msg_pspew("HSFC used for block erasing: ");
prettyprint_ich9_reg_hsfc(hsfc);
REGWRITE16(ICH9_REG_HSFC, hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, len))
return -1;
return 0;
}
int ich_hwseq_read(struct flashctx *flash, uint8_t *buf, unsigned int addr,
unsigned int len)
{
uint16_t hsfc;
uint16_t timeout = 100 * 60;
uint8_t block_len;
if ((addr + len) > (flash->chip->total_size * 1024)) {
msg_perr("Request to read from an inaccessible memory address "
"(addr=0x%x, len=%d).\n", addr, len);
return -1;
}
msg_pspew("Reading %d bytes starting at 0x%06x.\n", len, addr);
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
while (len > 0) {
block_len = min(len, opaque_master->max_data_read);
ich_hwseq_set_addr(addr);
hsfc = REGREAD16(ICH9_REG_HSFC);
hsfc &= ~HSFC_FCYCLE; /* set read operation */
hsfc &= ~HSFC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
hsfc |= HSFC_FGO; /* start */
REGWRITE16(ICH9_REG_HSFC, hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
return 1;
ich_read_data(buf, block_len, ICH9_REG_FDATA0);
addr += block_len;
buf += block_len;
len -= block_len;
}
return 0;
}
static int ich_hwseq_write(struct flashctx *flash, const uint8_t *buf, unsigned int addr,
unsigned int len)
{
uint16_t hsfc;
uint16_t timeout = 100 * 60;
uint8_t block_len;
if ((addr + len) > (flash->chip->total_size * 1024)) {
msg_perr("Request to write to an inaccessible memory address "
"(addr=0x%x, len=%d).\n", addr, len);
return -1;
}
msg_pspew("Writing %d bytes starting at 0x%06x.\n", len, addr);
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
while (len > 0) {
ich_hwseq_set_addr(addr);
block_len = min(len, opaque_master->max_data_write);
ich_fill_data(buf, block_len, ICH9_REG_FDATA0);
hsfc = REGREAD16(ICH9_REG_HSFC);
hsfc &= ~HSFC_FCYCLE; /* clear operation */
hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */
hsfc &= ~HSFC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
hsfc |= HSFC_FGO; /* start */
REGWRITE16(ICH9_REG_HSFC, hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
return -1;
addr += block_len;
buf += block_len;
len -= block_len;
}
return 0;
}
/* Routines for PCH */
/* Sets FLA in FADDR to (addr & 0x07FFFFFF) without touching other bits. */
static void pch100_hwseq_set_addr(uint32_t addr)
{
uint32_t addr_old = REGREAD32(PCH100_REG_FADDR) & ~0x07FFFFFF;
REGWRITE32(PCH100_REG_FADDR, (addr & 0x07FFFFFF) | addr_old);
}
/* Sets FADDR.FLA to 'addr' and returns the erase block size in bytes
* of the block containing this address. May return nonsense if the address is
* not valid. The erase block size for a specific address depends on the flash
* partition layout as specified by FPB and the partition properties as defined
* by UVSCC and LVSCC respectively. An alternative to implement this method
* would be by querying FPB and the respective VSCC register directly.
*/
static uint32_t pch100_hwseq_get_erase_block_size(unsigned int addr)
{
static const uint32_t dec_berase[4] = {
256,
4 * 1024,
8 * 1024,
64 * 1024
};
pch100_hwseq_set_addr(addr);
return dec_berase[ERASE_BLOCK_SIZE];
}
/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
Resets all error flags in HSFS.
Returns 0 if the cycle completes successfully without errors within
timeout us, 1 on errors. */
static int pch100_hwseq_wait_for_cycle_complete(unsigned int timeout,
unsigned int len)
{
uint32_t hsfs, addr;
timeout /= 8; /* scale timeout duration to counter */
while ((((hsfs = REGREAD32(PCH100_REG_HSFSC)) &
(HSFSC_FDONE | HSFSC_FCERR)) == 0) &&
--timeout) {
programmer_delay(8);
}
REGWRITE32(PCH100_REG_HSFSC, REGREAD32(PCH100_REG_HSFSC));
if (!timeout) {
addr = REGREAD32(PCH100_REG_FADDR) & 0x07FFFFFF;
msg_perr("Timeout error between offset 0x%08x and "
"0x%08x (= 0x%08x + %d)!\n",
addr, addr + len - 1, addr, len - 1);
return 1;
}
if (hsfs & HSFSC_FCERR) {
addr = REGREAD32(PCH100_REG_FADDR) & 0x07FFFFFF;
msg_perr("Transaction error between offset 0x%08x and "
"0x%08x (= 0x%08x + %d)\n",
addr, addr + len - 1, addr, len - 1);
return 1;
}
return 0;
}
static int pch_hwseq_get_flash_id(struct flashctx *flash)
{
uint32_t hsfsc, data, mfg_id, model_id;
const struct flashchip *entry;
const int len = sizeof(data);
/* make sure FDONE, FCERR, & AEL are cleared */
REGWRITE32(PCH100_REG_HSFSC, REGREAD32(PCH100_REG_HSFSC));
/* Set RDID as flash cycle and FGO */
hsfsc = REGREAD32(PCH100_REG_HSFSC);
hsfsc &= ~HSFSC_FCYCLE;
hsfsc &= ~HSFSC_FDBC;
hsfsc |= ((len - 1) << HSFSC_FDBC_OFF) & HSFSC_FDBC;
hsfsc |= (0x6 << HSFSC_FCYCLE_OFF) | HSFSC_FGO;
REGWRITE32(PCH100_REG_HSFSC, hsfsc);
/* poll for 100ms */
if (pch100_hwseq_wait_for_cycle_complete(100 * 1000, len)) {
msg_perr("Timed out waiting for RDID to complete.\n");
return 0;
}
/*
* Data will appear in reverse order:
* Byte 0: Manufacturer ID
* Byte 1: Model ID (MSB)
* Byte 2: Model ID (LSB)
*/
ich_read_data((uint8_t *)&data, len, PCH100_REG_FDATA0);
mfg_id = data & 0xff;
model_id = (data & 0xff00) | ((data >> 16) & 0xff);
entry = flash_id_to_entry(mfg_id, model_id);
if (entry == NULL) {
msg_perr("Unable to identify chip, mfg_id: 0x%02x, "
"model_id: 0x%02x\n", mfg_id, model_id);
return 0;
} else {
msg_pdbg("Chip identified: %s\n", entry->name);
/* Update informational flash chip entries only */
flash->chip->vendor = entry->vendor;
flash->chip->name = entry->name;
flash->chip->manufacture_id = entry->manufacture_id;
flash->chip->model_id = entry->model_id;
/* total_size read from flash descriptor */
flash->chip->page_size = entry->page_size;
flash->chip->feature_bits = entry->feature_bits;
flash->chip->tested = entry->tested;
flash->chip->wp = entry->wp;
}
return 1;
}
int pch100_hwseq_probe(struct flashctx *flash)
{
uint32_t total_size, boundary = 0; /*There are no partitions in flash*/
uint32_t erase_size_high, size_high;
struct block_eraser *eraser;
if (pch_hwseq_get_flash_id(flash) != 1) {
msg_perr("Unable to read flash chip ID\n");
return 0;
}
total_size = hwseq_data.size_comp0 + hwseq_data.size_comp1;
msg_cdbg("Found %d attached SPI flash chip",
(hwseq_data.size_comp1 != 0) ? 2 : 1);
if (hwseq_data.size_comp1 != 0)
msg_cdbg("s with a combined");
else
msg_cdbg(" with a");
msg_cdbg(" density of %d kB.\n", total_size / 1024);
flash->chip->total_size = total_size / 1024;
eraser = &(flash->chip->block_erasers[0]);
size_high = total_size - boundary;
erase_size_high = pch100_hwseq_get_erase_block_size(boundary);
eraser->eraseblocks[0].size = erase_size_high;
eraser->eraseblocks[0].count = size_high / erase_size_high;
msg_cdbg("There are %d erase blocks with %d B each.\n",
size_high / erase_size_high, erase_size_high);
return 1;
}
int pch100_hwseq_block_erase(struct flashctx *flash,
unsigned int addr,
unsigned int len)
{
uint32_t erase_block;
uint32_t hsfc;
uint32_t timeout = 5000 * 1000; /* 5 s for max 64 kB */
int result;
int op_type;
if (ich_dry_run)
return 0;
erase_block = pch100_hwseq_get_erase_block_size(addr);
if (len != erase_block) {
msg_cerr("Erase block size for address 0x%06x is %d B, "
"but requested erase block size is %d B. "
"Not erasing anything.\n", addr, erase_block, len);
return -1;
}
/* Although the hardware supports this (it would erase the whole block
* containing the address) we play safe here. */
if (addr % erase_block != 0) {
msg_cerr("Erase address 0x%06x is not aligned to the erase "
"block boundary (any multiple of %d). "
"Not erasing anything.\n", addr, erase_block);
return -1;
}
if (addr + len > flash->chip->total_size * 1024) {
msg_perr("Request to erase some inaccessible memory address(es)"
" (addr=0x%x, len=%d). "
"Not erasing anything.\n", addr, len);
return -1;
}
/* Check flash region permissions before erasing */
op_type = HWSEQ_WRITE;
result = check_fd_permissions_hwseq(op_type, addr, len);
if (result)
return result;
msg_pspew("Erasing %d bytes starting at 0x%06x.\n", len, addr);
/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
REGWRITE32(PCH100_REG_HSFSC, REGREAD32(PCH100_REG_HSFSC));
hsfc = REGREAD32(PCH100_REG_HSFSC);
hsfc &= ~HSFSC_FCYCLE; /* clear operation */
hsfc |= (0x3 << HSFSC_FCYCLE_OFF); /* set erase operation */
hsfc |= HSFSC_FGO; /* start */
msg_pspew("HSFC used for block erasing: ");
REGWRITE32(PCH100_REG_HSFSC, hsfc);
if (pch100_hwseq_wait_for_cycle_complete(timeout, len))
return -1;
return 0;
}
int pch100_hwseq_check_access(const struct flashctx *flash, unsigned int start,
unsigned int len, int read)
{
return check_fd_permissions_hwseq(read ? HWSEQ_READ : HWSEQ_WRITE, start, len);
}
int pch100_hwseq_read(struct flashctx *flash, uint8_t *buf, unsigned int addr,
unsigned int len)
{
uint32_t hsfc;
uint16_t timeout = 100 * 60;
uint8_t block_len;
int result = 0, chunk_status = 0;
int op_type;
if ((addr + len) > (flash->chip->total_size * 1024)) {
msg_perr("Request to read from an inaccessible memory address "
"(addr=0x%x, len=%d).\n", addr, len);
return -1;
}
msg_pspew("Reading %d bytes starting at 0x%06x.\n", len, addr);
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
REGWRITE32(PCH100_REG_HSFSC, REGREAD32(PCH100_REG_HSFSC));
while (len > 0) {
block_len = min(len, opaque_master->max_data_read);
/* Check flash region permissions before reading */
op_type = HWSEQ_READ;
chunk_status = check_fd_permissions_hwseq(op_type,
addr, block_len);
if (chunk_status) {
if (ignore_error(chunk_status)) {
/* fill this chunk with 0xff bytes and
* inform the caller about the error */
memset(buf, 0xff, block_len);
result = chunk_status;
} else {
return chunk_status;
}
} else {
pch100_hwseq_set_addr(addr);
hsfc = REGREAD32(PCH100_REG_HSFSC);
hsfc &= ~HSFSC_FCYCLE; /* set read operation */
hsfc &= ~HSFSC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((block_len - 1) << HSFSC_FDBC_OFF) & HSFSC_FDBC);
hsfc |= HSFSC_FGO; /* start */
REGWRITE32(PCH100_REG_HSFSC, hsfc);
if (pch100_hwseq_wait_for_cycle_complete(timeout, block_len))
return 1;
ich_read_data(buf, block_len, PCH100_REG_FDATA0);
}
addr += block_len;
buf += block_len;
len -= block_len;
}
return result;
}
uint8_t pch100_hwseq_read_status(const struct flashctx *flash)
{
uint32_t hsfc;
uint32_t timeout = 5000 * 1000;
int len = 1;
uint8_t buf;
msg_pdbg("Reading Status register\n");
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
REGWRITE32(PCH100_REG_HSFSC, REGREAD32(PCH100_REG_HSFSC));
hsfc = REGREAD32(PCH100_REG_HSFSC);
hsfc &= ~HSFSC_FCYCLE; /* set read operation */
/* read status register */
hsfc |= (0x8 << HSFSC_FCYCLE_OFF);
hsfc &= ~HSFSC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((len - 1) << HSFSC_FDBC_OFF) & HSFSC_FDBC);
hsfc |= HSFSC_FGO; /* start */
REGWRITE32(PCH100_REG_HSFSC, hsfc);
if (pch100_hwseq_wait_for_cycle_complete(timeout, len)) {
msg_perr("Reading Status register failed\n!!");
return -1;
}
ich_read_data(&buf, len, PCH100_REG_FDATA0);
return buf;
}
int pch100_hwseq_write(struct flashctx *flash, const uint8_t *buf, unsigned int addr,
unsigned int len)
{
uint32_t hsfc;
uint16_t timeout = 100 * 60;
uint8_t block_len;
int result;
int op_type;
if ((addr + len) > (flash->chip->total_size * 1024)) {
msg_perr("Request to write to an inaccessible memory address "
"(addr=0x%x, len=%d).\n", addr, len);
return -1;
}
msg_pspew("Writing %d bytes starting at 0x%06x.\n", len, addr);
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
REGWRITE32(PCH100_REG_HSFSC, REGREAD32(PCH100_REG_HSFSC));
while (len > 0) {
pch100_hwseq_set_addr(addr);
block_len = min(len, opaque_master->max_data_write);
/* Check flash region permissions before writing */
op_type = HWSEQ_WRITE;
result = check_fd_permissions_hwseq(op_type, addr, block_len);
if (result)
return result;
ich_fill_data(buf, block_len, PCH100_REG_FDATA0);
hsfc = REGREAD32(PCH100_REG_HSFSC);
hsfc &= ~HSFSC_FCYCLE; /* clear operation */
/* set write operation */
hsfc |= (0x2 << HSFSC_FCYCLE_OFF);
hsfc &= ~HSFSC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((block_len - 1) << HSFSC_FDBC_OFF) & HSFSC_FDBC);
hsfc |= HSFSC_FGO; /* start */
REGWRITE32(PCH100_REG_HSFSC, hsfc);
if (pch100_hwseq_wait_for_cycle_complete(timeout, block_len))
return -1;
addr += block_len;
buf += block_len;
len -= block_len;
}
return 0;
}
int pch100_hwseq_write_status(const struct flashctx *flash, int status)
{
uint32_t hsfc;
uint32_t timeout = 5000 * 1000;
int len = 1;
uint8_t buf = status;
msg_pdbg("Writing status register\n");
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
REGWRITE32(PCH100_REG_HSFSC, REGREAD32(PCH100_REG_HSFSC));
ich_fill_data(&buf, len, PCH100_REG_FDATA0);
hsfc = REGREAD32(PCH100_REG_HSFSC);
hsfc &= ~HSFSC_FCYCLE; /* clear operation */
/* write status register */
hsfc |= (0x7 << HSFSC_FCYCLE_OFF);
hsfc &= ~HSFSC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((len - 1) << HSFSC_FDBC_OFF) & HSFSC_FDBC);
hsfc |= HSFSC_FGO; /* start */
REGWRITE32(PCH100_REG_HSFSC, hsfc);
if (pch100_hwseq_wait_for_cycle_complete(timeout, len)) {
msg_perr("Writing Status register failed\n!!");
return -1;
}
return 0;
}
static int ich_spi_send_multicommand(const struct flashctx *flash, struct spi_command *cmds)
{
int ret = 0;
int i;
int oppos, preoppos;
for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) {
if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) {
/* Next command is valid. */
preoppos = find_preop(curopcodes, cmds->writearr[0]);
oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]);
if ((oppos == -1) && (preoppos != -1)) {
/* Current command is listed as preopcode in
* ICH struct OPCODES, but next command is not
* listed as opcode in that struct.
* Check for command sanity, then
* try to reprogram the ICH opcode list.
*/
if (find_preop(curopcodes,
(cmds + 1)->writearr[0]) != -1) {
msg_perr("%s: Two subsequent "
"preopcodes 0x%02x and 0x%02x, "
"ignoring the first.\n",
__func__, cmds->writearr[0],
(cmds + 1)->writearr[0]);
continue;
}
/* If the chipset is locked down, we'll fail
* during execution of the next command anyway.
* No need to bother with fixups.
*/
if (!ichspi_lock) {
oppos = reprogram_opcode_on_the_fly((cmds + 1)->writearr[0], (cmds + 1)->writecnt, (cmds + 1)->readcnt);
if (oppos == -1)
continue;
curopcodes->opcode[oppos].atomic = preoppos + 1;
continue;
}
}
if ((oppos != -1) && (preoppos != -1)) {
/* Current command is listed as preopcode in
* ICH struct OPCODES and next command is listed
* as opcode in that struct. Match them up.
*/
curopcodes->opcode[oppos].atomic = preoppos + 1;
continue;
}
/* If none of the above if-statements about oppos or
* preoppos matched, this is a normal opcode.
*/
}
ret = ich_spi_send_command(flash, cmds->writecnt, cmds->readcnt,
cmds->writearr, cmds->readarr);
/* Reset the type of all opcodes to non-atomic. */
for (i = 0; i < 8; i++)
curopcodes->opcode[i].atomic = 0;
}
return ret;
}
#define ICH_BMWAG(x) ((x >> 24) & 0xff)
#define ICH_BMRAG(x) ((x >> 16) & 0xff)
#define ICH_BRWA(x) ((x >> 8) & 0xff)
#define ICH_BRRA(x) ((x >> 0) & 0xff)
static void do_ich9_spi_frap(uint32_t frap, int i)
{
int rwperms = (((ICH_BRWA(frap) >> i) & 1) << 1) |
(((ICH_BRRA(frap) >> i) & 1) << 0);
int offset = ICH9_REG_FREG0 + i * 4;
uint32_t freg = mmio_readl(ich_spibar + offset);
msg_pdbg("0x%02X: 0x%08x (FREG%i: %s)\n",
offset, freg, i, fd_regions[i].name);
fd_regions[i].base = ICH_FREG_BASE(freg);
fd_regions[i].limit = ICH_FREG_LIMIT(freg) | 0x0fff;
/*
* Get Region 0 - 7 Permission bits, region 8 and above don't have
* bits to indicate permissions in Flash Region Access Permissions
* register.
*/
if ( i >= EMBEDDED_CONTROLLER_REGION ) {
/*
* Use Flash Descriptor Observe register to determine if
* the EC region can be written by the BIOS master.
*/
rwperms = FD_REGION_READ_WRITE;
if (i == EMBEDDED_CONTROLLER_REGION &&
ich_generation >= CHIPSET_100_SERIES_SUNRISE_POINT) {
struct ich_descriptors desc = {{ 0 }};
/* Region is RW if flash descriptor override is set */
freg = mmio_readl(ich_spibar + PCH100_REG_HSFSC);
if ((freg & HSFSC_FDV) && !(freg & HSFSC_FDOPSS))
rwperms = FD_REGION_READ_WRITE;
else if (read_ich_descriptors_via_fdo(ich_spibar, &desc,
ich_generation) == ICH_RET_OK) {
if (desc.master.pch100.BIOS_EC_r &&
desc.master.pch100.BIOS_EC_w)
rwperms = FD_REGION_READ_WRITE;
else if (desc.master.pch100.BIOS_EC_r &&
!desc.master.pch100.BIOS_EC_w)
rwperms = FD_REGION_READ_ONLY;
else if (!desc.master.pch100.BIOS_EC_r &&
desc.master.pch100.BIOS_EC_w)
rwperms = FD_REGION_WRITE_ONLY;
else
rwperms = FD_REGION_LOCKED;
}
}
}
fd_regions[i].permission = &fd_region_permissions[rwperms];
if (fd_regions[i].base > fd_regions[i].limit) {
/* this FREG is disabled */
msg_pdbg("%s region is unused.\n", region_names[i]);
return;
}
msg_pdbg("0x%08x-0x%08x is %s\n", fd_regions[i].base,
fd_regions[i].limit, fd_regions[i].permission->name);
}
/* In contrast to FRAP and the master section of the descriptor the bits
* in the PR registers have an inverted meaning. The bits in FRAP
* indicate read and write access _grant_. Here they indicate read
* and write _protection_ respectively. If both bits are 0 the address
* bits are ignored.
*/
#define ICH_PR_PERMS(pr) (((~((pr) >> PR_RP_OFF) & 1) << 0) | \
((~((pr) >> PR_WP_OFF) & 1) << 1))
static void prettyprint_ich9_reg_pr(int i, int chipset)
{
uint8_t off;
switch (chipset) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_APL:
off = PCH100_REG_FPR0 + (i * 4);
break;
default:
off = ICH9_REG_PR0 + (i * 4);
break;
}
uint32_t pr = mmio_readl(ich_spibar + off);
int rwperms = ICH_PR_PERMS(pr);
msg_pdbg2("0x%02X: 0x%08x (PR%u", off, pr, i);
if (rwperms != 0x3)
msg_pdbg2(")\n0x%08x-0x%08x is %s\n", ICH_FREG_BASE(pr),
ICH_FREG_LIMIT(pr) | 0x0fff, access_names[rwperms]);
else
msg_pdbg2(", unused)\n");
}
/* Set/Clear the read and write protection enable bits of PR register @i
* according to @read_prot and @write_prot. */
static void ich9_set_pr(int i, int read_prot, int write_prot, int chipset)
{
void *addr;
switch (chipset) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_APL:
addr = ich_spibar + PCH100_REG_FPR0 + (i * 4);
break;
default:
addr = ich_spibar + ICH9_REG_PR0 + (i * 4);
break;
}
uint32_t old = mmio_readl(addr);
uint32_t new;
msg_gspew("PR%u is 0x%08x", i, old);
new = old & ~((1 << PR_RP_OFF) | (1 << PR_WP_OFF));
if (read_prot)
new |= (1 << PR_RP_OFF);
if (write_prot)
new |= (1 << PR_WP_OFF);
if (old == new) {
msg_gspew(" already.\n");
return;
}
msg_gspew(", trying to set it to 0x%08x ", new);
rmmio_writel(new, addr);
msg_gspew("resulted in 0x%08x.\n", mmio_readl(addr));
}
static const struct spi_master spi_master_ich7 = {
.type = SPI_CONTROLLER_ICH7,
.max_data_read = 64,
.max_data_write = 64,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
};
static const struct spi_master spi_master_ich9 = {
.type = SPI_CONTROLLER_ICH9,
.max_data_read = 64,
.max_data_write = 64,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
};
static struct opaque_master opaque_master_pch100_hwseq = {
.max_data_read = 64,
.max_data_write = 64,
.probe = pch100_hwseq_probe,
.read = pch100_hwseq_read,
.write = pch100_hwseq_write,
.read_status = pch100_hwseq_read_status,
.write_status = pch100_hwseq_write_status,
.erase = pch100_hwseq_block_erase,
.check_access = pch100_hwseq_check_access,
};
static struct opaque_master opaque_master_ich_hwseq = {
.max_data_read = 64,
.max_data_write = 64,
.probe = ich_hwseq_probe,
.read = ich_hwseq_read,
.write = ich_hwseq_write,
.erase = ich_hwseq_block_erase,
};
int ich_init_spi(struct pci_dev *dev, uint32_t base, void *rcrb,
enum ich_chipset ich_gen)
{
int i;
uint8_t old, new;
uint16_t spibar_offset, tmp2;
uint32_t tmp;
char *arg;
int desc_valid = 0;
struct ich_descriptors desc = {{ 0 }};
enum ich_spi_mode {
ich_auto,
ich_hwseq,
ich_swseq
} ich_spi_mode = ich_auto;
ich_generation = ich_gen;
msg_pdbg("ich_ generation %d\n", ich_generation);
switch (ich_generation) {
case CHIPSET_BAYTRAIL:
spibar_offset = 0;
break;
case CHIPSET_ICH_UNKNOWN:
return ERROR_FATAL;
case CHIPSET_ICH7:
case CHIPSET_ICH8:
spibar_offset = 0x3020;
break;
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_APL:
spibar_offset = 0x0;
break;
case CHIPSET_ICH9:
default: /* Future version might behave the same */
spibar_offset = 0x3800;
break;
}
/* SPIBAR is at RCRB+0x3020 for ICH[78] and RCRB+0x3800 for ICH9. */
msg_pdbg("SPIBAR = 0x%x + 0x%04x\n", base, spibar_offset);
/* Assign Virtual Address */
ich_spibar = rcrb + spibar_offset;
switch (ich_generation) {
case CHIPSET_ICH7:
msg_pdbg("0x00: 0x%04x (SPIS)\n",
mmio_readw(ich_spibar + 0));
msg_pdbg("0x02: 0x%04x (SPIC)\n",
mmio_readw(ich_spibar + 2));
msg_pdbg("0x04: 0x%08x (SPIA)\n",
mmio_readl(ich_spibar + 4));
for (i = 0; i < 8; i++) {
int offs;
offs = 8 + (i * 8);
msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs,
mmio_readl(ich_spibar + offs), i);
msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
mmio_readl(ich_spibar + offs + 4), i);
}
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
msg_pdbg("0x50: 0x%08x (BBAR)\n",
ichspi_bbar);
msg_pdbg("0x54: 0x%04x (PREOP)\n",
mmio_readw(ich_spibar + 0x54));
msg_pdbg("0x56: 0x%04x (OPTYPE)\n",
mmio_readw(ich_spibar + 0x56));
msg_pdbg("0x58: 0x%08x (OPMENU)\n",
mmio_readl(ich_spibar + 0x58));
msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n",
mmio_readl(ich_spibar + 0x5c));
for (i = 0; i < 3; i++) {
int offs;
offs = 0x60 + (i * 4);
msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs,
mmio_readl(ich_spibar + offs), i);
}
if (mmio_readw(ich_spibar) & (1 << 15)) {
msg_pdbg("WARNING: SPI Configuration Lockdown activated.\n");
ichspi_lock = 1;
}
ich_init_opcodes();
ich_set_bbar(0);
register_spi_master(&spi_master_ich7);
break;
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_APL:
arg = extract_programmer_param("ich_spi_mode");
if (arg && !strcmp(arg, "hwseq")) {
ich_spi_mode = ich_hwseq;
msg_pspew("user selected hwseq\n");
} else if (arg && !strcmp(arg, "swseq")) {
/* Swseq not supported in SP */
msg_perr("swseq not supported\n");
free(arg);
return ERROR_FATAL;
} else if (arg && !strcmp(arg, "auto")) {
msg_pspew("user selected auto\n");
/* default mode in SP */
ich_spi_mode = ich_hwseq;
} else if (arg && !strlen(arg)) {
msg_perr("Missing argument for ich_spi_mode.\n");
free(arg);
return ERROR_FATAL;
} else if (arg) {
msg_perr("Unknown argument for ich_spi_mode: %s\n",
arg);
free(arg);
return ERROR_FATAL;
} else {
/* default mode in SP */
ich_spi_mode = ich_hwseq;
}
free(arg);
tmp = mmio_readl(ich_spibar + PCH100_REG_HSFSC);
msg_pdbg("0x04: 0x%08x (HSFSC)\n", tmp);
if (tmp & HSFSC_FLOCKDN) {
msg_perr("WARNING: SPI Configuration "
"Lockdown activated.\n");
ichspi_lock = 1;
}
if (tmp & HSFSC_FDV)
desc_valid = 1;
if (!(tmp & HSFSC_FDOPSS) && desc_valid)
msg_perr("The Flash Descriptor Security Override "
"Strap-Pin is set. Restrictions implied\n"
"by the FRAP and FREG registers are NOT in "
"effect. Please note that Protected\n"
"Range (PR) restrictions still apply.\n");
if (desc_valid) {
if (ich_generation == CHIPSET_APL)
num_fd_regions = APL_GLK_NUM_FD_REGIONS;
else if (ich_generation == CHIPSET_100_SERIES_SUNRISE_POINT)
num_fd_regions = SUNRISEPOINT_NUM_FD_REGIONS;
else
num_fd_regions = DEFAULT_NUM_FD_REGIONS;
}
tmp = mmio_readl(ich_spibar + PCH100_REG_FADDR);
msg_pdbg("0x08: 0x%08x (FADDR)\n", tmp);
if (desc_valid) {
tmp = mmio_readl(ich_spibar + ICH9_REG_FRAP);
msg_cdbg("0x50: 0x%08x (FRAP)\n", tmp);
msg_cdbg("BMWAG 0x%02x, ", ICH_BMWAG(tmp));
msg_cdbg("BMRAG 0x%02x, ", ICH_BMRAG(tmp));
msg_cdbg("BRWA 0x%02x, ", ICH_BRWA(tmp));
msg_cdbg("BRRA 0x%02x\n", ICH_BRRA(tmp));
/* Decode and print FREGx and FRAP registers */
for (i = 0; i < num_fd_regions; i++)
do_ich9_spi_frap(tmp, i);
}
/* try to disable PR locks before printing them */
if (!ichspi_lock)
for (i = 0; i < num_fd_regions; i++)
ich9_set_pr(i, 0, 0, ich_generation);
for (i = 0; i < num_fd_regions; i++)
prettyprint_ich9_reg_pr(i, ich_generation);
if (desc_valid) {
if (read_ich_descriptors_via_fdo(ich_spibar, &desc,
ich_generation) == ICH_RET_OK)
prettyprint_ich_descriptors(ich_generation,
&desc);
} else {
msg_perr("Hardware sequencing was requested "
"but the flash descriptor is not "
"valid. Aborting.\n");
return ERROR_FATAL;
}
hwseq_data.size_comp0 = getFCBA_component_density(&desc, 0);
hwseq_data.size_comp1 = getFCBA_component_density(&desc, 1);
register_opaque_master(&opaque_master_pch100_hwseq);
break;
case CHIPSET_ICH8:
default: /* Future version might behave the same */
arg = extract_programmer_param("ich_spi_mode");
if (arg && !strcmp(arg, "hwseq")) {
ich_spi_mode = ich_hwseq;
msg_pspew("user selected hwseq\n");
} else if (arg && !strcmp(arg, "swseq")) {
ich_spi_mode = ich_swseq;
msg_pspew("user selected swseq\n");
} else if (arg && !strcmp(arg, "auto")) {
msg_pspew("user selected auto\n");
ich_spi_mode = ich_auto;
} else if (arg && !strlen(arg)) {
msg_perr("Missing argument for ich_spi_mode.\n");
free(arg);
return ERROR_FATAL;
} else if (arg) {
msg_perr("Unknown argument for ich_spi_mode: %s\n",
arg);
free(arg);
return ERROR_FATAL;
}
free(arg);
tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFS);
msg_pdbg("0x04: 0x%04x (HSFS)\n", tmp2);
prettyprint_ich9_reg_hsfs(tmp2);
if (tmp2 & HSFS_FLOCKDN) {
msg_pdbg("WARNING: SPI Configuration Lockdown activated.\n");
ichspi_lock = 1;
}
if (tmp2 & HSFS_FDV)
desc_valid = 1;
if (!(tmp2 & HSFS_FDOPSS) && desc_valid)
msg_perr("The Flash Descriptor Security Override "
"Strap-Pin is set. Restrictions implied\n"
"by the FRAP and FREG registers are NOT in "
"effect. Please note that Protected\n"
"Range (PR) restrictions still apply.\n");
ich_init_opcodes();
if (desc_valid) {
num_fd_regions = DEFAULT_NUM_FD_REGIONS;
tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFC);
msg_pdbg("0x06: 0x%04x (HSFC)\n", tmp2);
prettyprint_ich9_reg_hsfc(tmp2);
}
tmp = mmio_readl(ich_spibar + ICH9_REG_FADDR);
msg_pdbg("0x08: 0x%08x (FADDR)\n", tmp);
if (desc_valid) {
tmp = mmio_readl(ich_spibar + ICH9_REG_FRAP);
msg_pdbg("0x50: 0x%08x (FRAP)\n", tmp);
msg_pdbg("BMWAG 0x%02x, ", ICH_BMWAG(tmp));
msg_pdbg("BMRAG 0x%02x, ", ICH_BMRAG(tmp));
msg_pdbg("BRWA 0x%02x, ", ICH_BRWA(tmp));
msg_pdbg("BRRA 0x%02x\n", ICH_BRRA(tmp));
/* Decode and print FREGx and FRAP registers */
for (i = 0; i < num_fd_regions; i++)
do_ich9_spi_frap(tmp, i);
}
/* try to disable PR locks before printing them */
if (!ichspi_lock)
for (i = 0; i < num_fd_regions; i++)
ich9_set_pr(i, 0, 0, ich_generation);
for (i = 0; i < num_fd_regions; i++)
prettyprint_ich9_reg_pr(i, ich_generation);
tmp = mmio_readl(ich_spibar + ICH9_REG_SSFS);
msg_pdbg("0x90: 0x%02x (SSFS)\n", tmp & 0xff);
prettyprint_ich9_reg_ssfs(tmp);
if (tmp & SSFS_FCERR) {
msg_pdbg("Clearing SSFS.FCERR\n");
mmio_writeb(SSFS_FCERR, ich_spibar + ICH9_REG_SSFS);
}
msg_pdbg("0x91: 0x%06x (SSFC)\n", tmp >> 8);
prettyprint_ich9_reg_ssfc(tmp);
msg_pdbg("0x94: 0x%04x (PREOP)\n",
mmio_readw(ich_spibar + ICH9_REG_PREOP));
msg_pdbg("0x96: 0x%04x (OPTYPE)\n",
mmio_readw(ich_spibar + ICH9_REG_OPTYPE));
msg_pdbg("0x98: 0x%08x (OPMENU)\n",
mmio_readl(ich_spibar + ICH9_REG_OPMENU));
msg_pdbg("0x9C: 0x%08x (OPMENU+4)\n",
mmio_readl(ich_spibar + ICH9_REG_OPMENU + 4));
if (ich_generation == CHIPSET_ICH8 && desc_valid) {
tmp = mmio_readl(ich_spibar + ICH8_REG_VSCC);
msg_pdbg("0xC1: 0x%08x (VSCC)\n", tmp);
msg_pdbg("VSCC: ");
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG);
} else {
ichspi_bbar = mmio_readl(ich_spibar + ICH9_REG_BBAR);
msg_pdbg("0xA0: 0x%08x (BBAR)\n",
ichspi_bbar);
if (desc_valid) {
tmp = mmio_readl(ich_spibar + ICH9_REG_LVSCC);
msg_pdbg("0xC4: 0x%08x (LVSCC)\n", tmp);
msg_pdbg("LVSCC: ");
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG);
tmp = mmio_readl(ich_spibar + ICH9_REG_UVSCC);
msg_pdbg("0xC8: 0x%08x (UVSCC)\n", tmp);
msg_pdbg("UVSCC: ");
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG);
tmp = mmio_readl(ich_spibar + ICH9_REG_FPB);
msg_pdbg("0xD0: 0x%08x (FPB)\n", tmp);
}
ich_set_bbar(0);
}
msg_pdbg("\n");
if (desc_valid) {
if (read_ich_descriptors_via_fdo(ich_spibar, &desc,
ich_generation) == ICH_RET_OK)
prettyprint_ich_descriptors(ich_generation,
&desc);
/* If the descriptor is valid and indicates multiple
* flash devices we need to use hwseq to be able to
* access the second flash device.
*/
if (ich_spi_mode == ich_auto && desc.content.NC != 0) {
msg_pinfo("Enabling hardware sequencing due to "
"multiple flash chips detected.\n");
ich_spi_mode = ich_hwseq;
}
}
if (ich_spi_mode == ich_auto && ichspi_lock &&
ich_missing_opcodes()) {
msg_pinfo("Enabling hardware sequencing because "
"some important opcode is locked.\n");
ich_spi_mode = ich_hwseq;
}
if (ich_spi_mode == ich_hwseq) {
if (!desc_valid) {
msg_perr("Hardware sequencing was requested "
"but the flash descriptor is not "
"valid. Aborting.\n");
return ERROR_FATAL;
}
hwseq_data.size_comp0 = getFCBA_component_density(&desc, 0);
hwseq_data.size_comp1 = getFCBA_component_density(&desc, 1);
register_opaque_master(&opaque_master_ich_hwseq);
} else {
register_spi_master(&spi_master_ich9);
}
break;
}
switch (ich_generation) {
case CHIPSET_BAYTRAIL:
break;
default:
if (ich_generation == CHIPSET_APL)
old = mmio_readb((void *)dev + 0xdc);
else
old = pci_read_byte(dev, 0xdc);
msg_pdbg("SPI Read Configuration: ");
new = (old >> 2) & 0x3;
switch (new) {
case 0:
case 1:
case 2:
msg_pdbg("prefetching %sabled, caching %sabled, ",
(new & 0x2) ? "en" : "dis",
(new & 0x1) ? "dis" : "en");
break;
default:
msg_pdbg("invalid prefetching/caching settings, ");
break;
}
}
return 0;
}
static const struct spi_master spi_master_via = {
.type = SPI_CONTROLLER_VIA,
.max_data_read = 16,
.max_data_write = 16,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
};
int via_init_spi(struct pci_dev *dev)
{
uint32_t mmio_base;
int i;
mmio_base = (pci_read_long(dev, 0xbc)) << 8;
msg_pdbg("MMIO base at = 0x%x\n", mmio_base);
ich_spibar = physmap("VT8237S MMIO registers", mmio_base, 0x70);
/* Not sure if it speaks all these bus protocols. */
internal_buses_supported = BUS_LPC | BUS_FWH;
ich_generation = CHIPSET_ICH7;
register_spi_master(&spi_master_via);
msg_pdbg("0x00: 0x%04x (SPIS)\n", mmio_readw(ich_spibar + 0));
msg_pdbg("0x02: 0x%04x (SPIC)\n", mmio_readw(ich_spibar + 2));
msg_pdbg("0x04: 0x%08x (SPIA)\n", mmio_readl(ich_spibar + 4));
for (i = 0; i < 2; i++) {
int offs;
offs = 8 + (i * 8);
msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs,
mmio_readl(ich_spibar + offs), i);
msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
mmio_readl(ich_spibar + offs + 4), i);
}
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
msg_pdbg("0x50: 0x%08x (BBAR)\n", ichspi_bbar);
msg_pdbg("0x54: 0x%04x (PREOP)\n", mmio_readw(ich_spibar + 0x54));
msg_pdbg("0x56: 0x%04x (OPTYPE)\n", mmio_readw(ich_spibar + 0x56));
msg_pdbg("0x58: 0x%08x (OPMENU)\n", mmio_readl(ich_spibar + 0x58));
msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", mmio_readl(ich_spibar + 0x5c));
for (i = 0; i < 3; i++) {
int offs;
offs = 0x60 + (i * 4);
msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs,
mmio_readl(ich_spibar + offs), i);
}
msg_pdbg("0x6c: 0x%04x (CLOCK/DEBUG)\n",
mmio_readw(ich_spibar + 0x6c));
if (mmio_readw(ich_spibar) & (1 << 15)) {
msg_pdbg("WARNING: SPI Configuration Lockdown activated.\n");
ichspi_lock = 1;
}
ich_set_bbar(0);
ich_init_opcodes();
return 0;
}
#endif