blob: 489c9c6f315f23238da1995cea8ceb6a5ff93fed [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2010, 2011 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <stdlib.h>
#include <string.h>
#include "flash.h"
#include "programmer.h"
struct pci_access *pacc;
enum pci_bartype {
TYPE_MEMBAR,
TYPE_IOBAR,
TYPE_ROMBAR,
TYPE_UNKNOWN
};
uintptr_t pcidev_readbar(struct pci_dev *dev, int bar)
{
uint64_t addr;
uint32_t upperaddr;
uint8_t headertype;
uint16_t supported_cycles;
enum pci_bartype bartype = TYPE_UNKNOWN;
headertype = pci_read_byte(dev, PCI_HEADER_TYPE) & 0x7f;
msg_pspew("PCI header type 0x%02x\n", headertype);
/* Don't use dev->base_addr[x] (as value for 'bar'), won't work on older libpci. */
addr = pci_read_long(dev, bar);
/* Sanity checks. */
switch (headertype) {
case PCI_HEADER_TYPE_NORMAL:
switch (bar) {
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_1:
case PCI_BASE_ADDRESS_2:
case PCI_BASE_ADDRESS_3:
case PCI_BASE_ADDRESS_4:
case PCI_BASE_ADDRESS_5:
if ((addr & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO)
bartype = TYPE_IOBAR;
else
bartype = TYPE_MEMBAR;
break;
case PCI_ROM_ADDRESS:
bartype = TYPE_ROMBAR;
break;
}
break;
case PCI_HEADER_TYPE_BRIDGE:
switch (bar) {
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_1:
if ((addr & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO)
bartype = TYPE_IOBAR;
else
bartype = TYPE_MEMBAR;
break;
case PCI_ROM_ADDRESS1:
bartype = TYPE_ROMBAR;
break;
}
break;
case PCI_HEADER_TYPE_CARDBUS:
break;
default:
msg_perr("Unknown PCI header type 0x%02x, BAR type cannot be determined reliably.\n",
headertype);
break;
}
supported_cycles = pci_read_word(dev, PCI_COMMAND);
msg_pdbg("Requested BAR is of type ");
switch (bartype) {
case TYPE_MEMBAR:
msg_pdbg("MEM");
if (!(supported_cycles & PCI_COMMAND_MEMORY)) {
msg_perr("MEM BAR access requested, but device has MEM space accesses disabled.\n");
/* TODO: Abort here? */
}
msg_pdbg(", %sbit, %sprefetchable\n",
((addr & 0x6) == 0x0) ? "32" : (((addr & 0x6) == 0x4) ? "64" : "reserved"),
(addr & 0x8) ? "" : "not ");
if ((addr & 0x6) == 0x4) {
/* The spec says that a 64-bit register consumes
* two subsequent dword locations.
*/
upperaddr = pci_read_long(dev, bar + 4);
if (upperaddr != 0x00000000) {
/* Fun! A real 64-bit resource. */
if (sizeof(uintptr_t) != sizeof(uint64_t)) {
msg_perr("BAR unreachable!");
/* TODO: Really abort here? If multiple PCI devices match,
* we might never tell the user about the other devices.
*/
return 0;
}
addr |= (uint64_t)upperaddr << 32;
}
}
addr &= PCI_BASE_ADDRESS_MEM_MASK;
break;
case TYPE_IOBAR:
msg_pdbg("I/O\n");
#if __FLASHROM_HAVE_OUTB__
if (!(supported_cycles & PCI_COMMAND_IO)) {
msg_perr("I/O BAR access requested, but device has I/O space accesses disabled.\n");
/* TODO: Abort here? */
}
#else
msg_perr("I/O BAR access requested, but flashrom does not support I/O BAR access on this "
"platform (yet).\n");
#endif
addr &= PCI_BASE_ADDRESS_IO_MASK;
break;
case TYPE_ROMBAR:
msg_pdbg("ROM\n");
/* Not sure if this check is needed. */
if (!(supported_cycles & PCI_COMMAND_MEMORY)) {
msg_perr("MEM BAR access requested, but device has MEM space accesses disabled.\n");
/* TODO: Abort here? */
}
addr &= PCI_ROM_ADDRESS_MASK;
break;
case TYPE_UNKNOWN:
msg_perr("BAR type unknown, please report a bug at flashrom@flashrom.org\n");
}
return (uintptr_t)addr;
}
uintptr_t pcidev_validate(struct pci_dev *dev, int bar,
const struct dev_entry *devs)
{
int i;
for (i = 0; devs[i].device_name != NULL; i++) {
if (dev->device_id != devs[i].device_id)
continue;
msg_pinfo("Found \"%s %s\" (%04x:%04x, BDF %02x:%02x.%x).\n",
devs[i].vendor_name, devs[i].device_name,
dev->vendor_id, dev->device_id, dev->bus, dev->dev,
dev->func);
if (devs[i].status == NT) {
msg_pinfo("===\nThis PCI device is UNTESTED. Please "
"report the 'flashrom -p xxxx' output \n"
"to flashrom@flashrom.org if it works "
"for you. Please add the name of your\n"
"PCI device to the subject. Thank you for "
"your help!\n===\n");
}
return pcidev_readbar(dev, bar);
}
return 0;
}
static int pcidev_shutdown(void *data)
{
if (pacc == NULL) {
msg_perr("%s: Tried to cleanup an invalid PCI context!\n"
"Please report a bug at flashrom@flashrom.org\n", __func__);
return 1;
}
pci_cleanup(pacc);
return 0;
}
int pci_init_common(void)
{
if (pacc != NULL) {
msg_perr("%s: Tried to allocate a new PCI context, but there is still an old one!\n"
"Please report a bug at flashrom@flashrom.org\n", __func__);
return 1;
}
pacc = pci_alloc(); /* Get the pci_access structure */
pci_init(pacc); /* Initialize the PCI library */
if (register_shutdown(pcidev_shutdown, NULL))
return 1;
pci_scan_bus(pacc); /* We want to get the list of devices */
return 0;
}
struct pci_dev *pcidev_init(const struct dev_entry *devs, int bar)
{
struct pci_dev *dev;
struct pci_filter filter;
char *pcidev_bdf;
char *msg = NULL;
int found = 0;
uintptr_t addr = 0;
if (pci_init_common() != 0)
return NULL;
pci_filter_init(pacc, &filter);
/* Filter by bb:dd.f (if supplied by the user). */
pcidev_bdf = extract_programmer_param("pci");
if (pcidev_bdf != NULL) {
if ((msg = pci_filter_parse_slot(&filter, pcidev_bdf))) {
msg_perr("Error: %s\n", msg);
exit(1);
}
}
free(pcidev_bdf);
for (dev = pacc->devices; dev; dev = dev->next) {
if (pci_filter_match(&filter, dev)) {
/* FIXME: We should count all matching devices, not
* just those with a valid BAR.
*/
if ((addr = pcidev_validate(dev, bar, devs)) != 0) {
found++;
}
}
}
/* Only continue if exactly one supported PCI dev has been found. */
if (found == 0) {
msg_perr("Error: No supported PCI device found.\n");
exit(1);
} else if (found > 1) {
msg_perr("Error: Multiple supported PCI devices found. Use 'flashrom -p xxxx:pci=bb:dd.f' \n"
"to explicitly select the card with the given BDF (PCI bus, device, function).\n");
exit(1);
}
return dev;
}
void print_supported_pcidevs(const struct dev_entry *devs)
{
int i;
msg_pinfo("PCI devices:\n");
for (i = 0; devs[i].vendor_name != NULL; i++) {
msg_pinfo("%s %s [%04x:%04x]%s\n", devs[i].vendor_name,
devs[i].device_name, devs[i].vendor_id,
devs[i].device_id,
(devs[i].status == NT) ? " (untested)" : "");
}
}
enum pci_write_type {
pci_write_type_byte,
pci_write_type_word,
pci_write_type_long,
};
struct undo_pci_write_data {
struct pci_dev dev;
int reg;
enum pci_write_type type;
union {
uint8_t bytedata;
uint16_t worddata;
uint32_t longdata;
};
};
int undo_pci_write(void *p)
{
struct undo_pci_write_data *data = p;
msg_pdbg("Restoring PCI config space for %02x:%02x:%01x reg 0x%02x\n",
data->dev.bus, data->dev.dev, data->dev.func, data->reg);
switch (data->type) {
case pci_write_type_byte:
pci_write_byte(&data->dev, data->reg, data->bytedata);
break;
case pci_write_type_word:
pci_write_word(&data->dev, data->reg, data->worddata);
break;
case pci_write_type_long:
pci_write_long(&data->dev, data->reg, data->longdata);
break;
}
/* p was allocated in register_undo_pci_write. */
free(p);
return 0;
}
#define register_undo_pci_write(a, b, c) \
{ \
struct undo_pci_write_data *undo_pci_write_data; \
undo_pci_write_data = malloc(sizeof(struct undo_pci_write_data)); \
if (!undo_pci_write_data) { \
msg_gerr("Out of memory!\n"); \
exit(1); \
} \
undo_pci_write_data->dev = *a; \
undo_pci_write_data->reg = b; \
undo_pci_write_data->type = pci_write_type_##c; \
undo_pci_write_data->c##data = pci_read_##c(dev, reg); \
register_shutdown(undo_pci_write, undo_pci_write_data); \
}
#define register_undo_pci_write_byte(a, b) register_undo_pci_write(a, b, byte)
#define register_undo_pci_write_word(a, b) register_undo_pci_write(a, b, word)
#define register_undo_pci_write_long(a, b) register_undo_pci_write(a, b, long)
int rpci_write_byte(struct pci_dev *dev, int reg, uint8_t data)
{
register_undo_pci_write_byte(dev, reg);
return pci_write_byte(dev, reg, data);
}
int rpci_write_word(struct pci_dev *dev, int reg, uint16_t data)
{
register_undo_pci_write_word(dev, reg);
return pci_write_word(dev, reg, data);
}
int rpci_write_long(struct pci_dev *dev, int reg, uint32_t data)
{
register_undo_pci_write_long(dev, reg);
return pci_write_long(dev, reg, data);
}