blob: 4b59f820fbe1f45d7a62a028702b0fcc418826f3 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2004 Tyan Corp <yhlu@tyan.com>
* Copyright (C) 2005-2008 coresystems GmbH
* Copyright (C) 2008,2009 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <stdio.h>
#include <sys/types.h>
#ifndef __LIBPAYLOAD__
#include <fcntl.h>
#include <sys/stat.h>
#endif
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <getopt.h>
#if HAVE_UTSNAME == 1
#include <sys/utsname.h>
#endif
#include <unistd.h>
#include "action_descriptor.h"
#include "flash.h"
#include "flashchips.h"
#include "layout.h"
#include "programmer.h"
#include "spi.h"
const char flashrom_version[] = FLASHROM_VERSION;
char *chip_to_probe = NULL;
/* Set if any erase/write operation is to be done. This will be used to
* decide if final verification is needed. */
static int content_has_changed = 0;
/* error handling stuff */
enum error_action access_denied_action = error_ignore;
int ignore_error(int err) {
int rc = 0;
switch(err) {
case ACCESS_DENIED:
if (access_denied_action == error_ignore)
rc = 1;
break;
default:
break;
}
return rc;
}
static enum programmer programmer = PROGRAMMER_INVALID;
static char *programmer_param = NULL;
/* Supported buses for the current programmer. */
enum chipbustype buses_supported;
/*
* Programmers supporting multiple buses can have differing size limits on
* each bus. Store the limits for each bus in a common struct.
*/
struct decode_sizes max_rom_decode;
/* If nonzero, used as the start address of bottom-aligned flash. */
unsigned long flashbase;
/* Is writing allowed with this programmer? */
int programmer_may_write;
const struct programmer_entry programmer_table[] = {
#if CONFIG_INTERNAL == 1
{
.name = "internal",
.init = internal_init,
.map_flash_region = physmap,
.unmap_flash_region = physunmap,
.delay = internal_delay,
/*
* "Internal" implies in-system programming on a live system, so
* handle with paranoia to catch errors early. If something goes
* wrong then hopefully the system will still be recoverable.
*/
.paranoid = 1,
},
#endif
#if CONFIG_DUMMY == 1
{
.name = "dummy",
.init = dummy_init,
.map_flash_region = dummy_map,
.unmap_flash_region = dummy_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NIC3COM == 1
{
.name = "nic3com",
.init = nic3com_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NICREALTEK == 1
{
/* This programmer works for Realtek RTL8139 and SMC 1211. */
.name = "nicrealtek",
//.name = "nicsmc1211",
.init = nicrealtek_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NICNATSEMI == 1
{
.name = "nicnatsemi",
.init = nicnatsemi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_GFXNVIDIA == 1
{
.name = "gfxnvidia",
.init = gfxnvidia_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_DRKAISER == 1
{
.name = "drkaiser",
.init = drkaiser_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_SATASII == 1
{
.name = "satasii",
.init = satasii_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_ATAHPT == 1
{
.name = "atahpt",
.init = atahpt_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_FT2232_SPI == 1
{
.name = "ft2232_spi",
.init = ft2232_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_SERPROG == 1
{
.name = "serprog",
.init = serprog_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = serprog_delay,
},
#endif
#if CONFIG_BUSPIRATE_SPI == 1
{
.name = "buspirate_spi",
.init = buspirate_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_RAIDEN_DEBUG_SPI == 1
{
.name = "raiden_debug_spi",
.init = raiden_debug_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_DEDIPROG == 1
{
.name = "dediprog",
.init = dediprog_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_RAYER_SPI == 1
{
.name = "rayer_spi",
.init = rayer_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NICINTEL == 1
{
.name = "nicintel",
.init = nicintel_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_NICINTEL_SPI == 1
{
.name = "nicintel_spi",
.init = nicintel_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_OGP_SPI == 1
{
.name = "ogp_spi",
.init = ogp_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_SATAMV == 1
{
.name = "satamv",
.init = satamv_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_LINUX_MTD == 1
{
.name = "linux_mtd",
.init = linux_mtd_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
#if CONFIG_LINUX_SPI == 1
{
.name = "linux_spi",
.init = linux_spi_init,
.map_flash_region = fallback_map,
.unmap_flash_region = fallback_unmap,
.delay = internal_delay,
},
#endif
{0}, /* This entry corresponds to PROGRAMMER_INVALID. */
};
#define CHIP_RESTORE_MAXFN 4
static int chip_restore_fn_count = 0;
struct chip_restore_func_data {
CHIP_RESTORE_CALLBACK;
struct flashctx *flash;
uint8_t status;
} static chip_restore_fn[CHIP_RESTORE_MAXFN];
#define SHUTDOWN_MAXFN 32
static int shutdown_fn_count = 0;
struct shutdown_func_data {
int (*func) (void *data);
void *data;
} static shutdown_fn[SHUTDOWN_MAXFN];
/* Initialize to 0 to make sure nobody registers a shutdown function before
* programmer init.
*/
static int may_register_shutdown = 0;
static int check_block_eraser(const struct flashctx *flash, int k, int log);
/* Register a function to be executed on programmer shutdown.
* The advantage over atexit() is that you can supply a void pointer which will
* be used as parameter to the registered function upon programmer shutdown.
* This pointer can point to arbitrary data used by said function, e.g. undo
* information for GPIO settings etc. If unneeded, set data=NULL.
* Please note that the first (void *data) belongs to the function signature of
* the function passed as first parameter.
*/
int register_shutdown(int (*function) (void *data), void *data)
{
if (shutdown_fn_count >= SHUTDOWN_MAXFN) {
msg_perr("Tried to register more than %i shutdown functions.\n",
SHUTDOWN_MAXFN);
return 1;
}
if (!may_register_shutdown) {
msg_perr("Tried to register a shutdown function before "
"programmer init.\n");
return 1;
}
shutdown_fn[shutdown_fn_count].func = function;
shutdown_fn[shutdown_fn_count].data = data;
shutdown_fn_count++;
return 0;
}
//int register_chip_restore(int (*function) (void *data), void *data)
int register_chip_restore(CHIP_RESTORE_CALLBACK,
struct flashctx *flash, uint8_t status)
{
if (chip_restore_fn_count >= CHIP_RESTORE_MAXFN) {
msg_perr("Tried to register more than %i chip restore"
" functions.\n", CHIP_RESTORE_MAXFN);
return 1;
}
chip_restore_fn[chip_restore_fn_count].func = func; /* from macro */
chip_restore_fn[chip_restore_fn_count].flash = flash;
chip_restore_fn[chip_restore_fn_count].status = status;
chip_restore_fn_count++;
return 0;
}
int programmer_init(enum programmer prog, char *param)
{
int ret;
if (prog >= PROGRAMMER_INVALID) {
msg_perr("Invalid programmer specified!\n");
return -1;
}
programmer = prog;
/* Initialize all programmer specific data. */
/* Default to unlimited decode sizes. */
max_rom_decode = (const struct decode_sizes) {
.parallel = 0xffffffff,
.lpc = 0xffffffff,
.fwh = 0xffffffff,
.spi = 0xffffffff,
};
buses_supported = BUS_NONE;
/* Default to top aligned flash at 4 GB. */
flashbase = 0;
/* Registering shutdown functions is now allowed. */
may_register_shutdown = 1;
/* Default to allowing writes. Broken programmers set this to 0. */
programmer_may_write = 1;
programmer_param = param;
msg_pdbg("Initializing %s programmer\n",
programmer_table[programmer].name);
ret = programmer_table[programmer].init();
return ret;
}
int chip_restore()
{
int rc = 0;
while (chip_restore_fn_count > 0) {
int i = --chip_restore_fn_count;
rc |= chip_restore_fn[i].func(chip_restore_fn[i].flash,
chip_restore_fn[i].status);
}
return rc;
}
int programmer_shutdown(void)
{
int ret = 0;
/* Registering shutdown functions is no longer allowed. */
may_register_shutdown = 0;
while (shutdown_fn_count > 0) {
int i = --shutdown_fn_count;
ret |= shutdown_fn[i].func(shutdown_fn[i].data);
}
return ret;
}
void *programmer_map_flash_region(const char *descr, unsigned long phys_addr,
size_t len)
{
return programmer_table[programmer].map_flash_region(descr,
phys_addr, len);
}
void programmer_unmap_flash_region(void *virt_addr, size_t len)
{
programmer_table[programmer].unmap_flash_region(virt_addr, len);
}
void chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr)
{
par_master->chip_writeb(flash, val, addr);
}
void chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr)
{
par_master->chip_writew(flash, val, addr);
}
void chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr)
{
par_master->chip_writel(flash, val, addr);
}
void chip_writen(const struct flashctx *flash, uint8_t *buf, chipaddr addr, size_t len)
{
par_master->chip_writen(flash, buf, addr, len);
}
uint8_t chip_readb(const struct flashctx *flash, const chipaddr addr)
{
return par_master->chip_readb(flash, addr);
}
uint16_t chip_readw(const struct flashctx *flash, const chipaddr addr)
{
return par_master->chip_readw(flash, addr);
}
uint32_t chip_readl(const struct flashctx *flash, const chipaddr addr)
{
return par_master->chip_readl(flash, addr);
}
void chip_readn(const struct flashctx *flash, uint8_t *buf, chipaddr addr, size_t len)
{
par_master->chip_readn(flash, buf, addr, len);
}
void programmer_delay(int usecs)
{
programmer_table[programmer].delay(usecs);
}
void map_flash_registers(struct flashctx *flash)
{
size_t size = flash->chip->total_size * 1024;
/* Flash registers live 4 MByte below the flash. */
/* FIXME: This is incorrect for nonstandard flashbase. */
flash->virtual_registers = (chipaddr)programmer_map_flash_region("flash chip registers", (0xFFFFFFFF - 0x400000 - size + 1), size);
}
int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start, int unsigned len)
{
chip_readn(flash, buf, flash->virtual_memory + start, len);
return 0;
}
/* This is a somewhat hacked function similar in some ways to strtok(). It will
* look for needle with a subsequent '=' in haystack, return a copy of needle.
*/
char *extract_param(char **haystack, const char *needle, const char *delim)
{
char *param_pos, *opt_pos;
char *opt = NULL;
int optlen;
int needlelen;
needlelen = strlen(needle);
if (!needlelen) {
msg_gerr("%s: empty needle! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
return NULL;
}
/* No programmer parameters given. */
if (*haystack == NULL)
return NULL;
param_pos = strstr(*haystack, needle);
do {
if (!param_pos)
return NULL;
/* Needle followed by '='? */
if (param_pos[needlelen] == '=') {
/* Beginning of the string? */
if (param_pos == *haystack)
break;
/* After a delimiter? */
if (strchr(delim, *(param_pos - 1)))
break;
}
/* Continue searching. */
param_pos++;
param_pos = strstr(param_pos, needle);
} while (1);
if (param_pos) {
/* Get the string after needle and '='. */
opt_pos = param_pos + needlelen + 1;
optlen = strcspn(opt_pos, delim);
/* Return an empty string if the parameter was empty. */
opt = malloc(optlen + 1);
if (!opt) {
msg_gerr("Out of memory!\n");
exit(1);
}
strncpy(opt, opt_pos, optlen);
opt[optlen] = '\0';
}
return opt;
}
char *extract_programmer_param(const char *param_name)
{
return extract_param(&programmer_param, param_name, ",");
}
/* Returns the number of well-defined erasers for a chip. */
static unsigned int count_usable_erasers(const struct flashctx *flash)
{
unsigned int usable_erasefunctions = 0;
int k;
for (k = 0; k < NUM_ERASEFUNCTIONS; k++) {
if (!check_block_eraser(flash, k, 0))
usable_erasefunctions++;
}
return usable_erasefunctions;
}
/* start is an offset to the base address of the flash chip */
int check_erased_range(struct flashctx *flash, unsigned int start, unsigned int len)
{
int ret;
uint8_t *cmpbuf = malloc(len);
if (!cmpbuf) {
msg_gerr("Could not allocate memory!\n");
exit(1);
}
memset(cmpbuf, flash_erase_value(flash), len);
ret = verify_range(flash, cmpbuf, start, len, "ERASE");
free(cmpbuf);
return ret;
}
static int compare_chunk(uint8_t *readbuf, uint8_t *cmpbuf, unsigned int start,
unsigned int len, const char *message)
{
int failcount = 0, i;
for (i = 0; i < len; i++) {
if (cmpbuf[i] != readbuf[i]) {
if (!failcount) {
msg_cerr("%s FAILED at 0x%08x! "
"Expected=0x%02x, Read=0x%02x,",
message, start + i,
cmpbuf[i], readbuf[i]);
}
failcount++;
}
}
return failcount;
}
/*
* @cmpbuf buffer to compare against, cmpbuf[0] is expected to match the
* flash content at location start
* @start offset to the base address of the flash chip
* @len length of the verified area
* @message string to print in the "FAILED" message
* @return 0 for success, -1 for failure
*/
int verify_range(struct flashctx *flash, uint8_t *cmpbuf, unsigned int start, unsigned int len,
const char *message)
{
uint8_t *readbuf = malloc(len);
int ret = 0, failcount = 0;
if (!len)
goto out_free;
if (!flash->chip->read) {
msg_cerr("ERROR: flashrom has no read function for this flash chip.\n");
return 1;
}
if (!readbuf) {
msg_gerr("Could not allocate memory!\n");
exit(1);
}
if (start + len > flash->chip->total_size * 1024) {
msg_gerr("Error: %s called with start 0x%x + len 0x%x >"
" total_size 0x%x\n", __func__, start, len,
flash->chip->total_size * 1024);
ret = -1;
goto out_free;
}
if (!message)
message = "VERIFY";
msg_gdbg("%#06x..%#06x ", start, start + len -1);
if (programmer_table[programmer].paranoid) {
unsigned int i, chunksize;
/* limit chunksize in order to catch errors early */
for (i = 0, chunksize = 0; i < len; i += chunksize) {
int tmp;
chunksize = min(flash->chip->page_size, len - i);
tmp = flash->chip->read(flash, readbuf + i, start + i, chunksize);
if (tmp) {
ret = tmp;
if (ignore_error(tmp))
continue;
else
goto out_free;
}
/*
* Check write access permission and do not compare chunks
* where flashrom does not have write access to the region.
*/
if (flash->chip->check_access) {
tmp = flash->chip->check_access(flash, start + i, chunksize, 0);
if (tmp && ignore_error(tmp))
continue;
}
failcount = compare_chunk(readbuf + i, cmpbuf + i, start + i,
chunksize, message);
if (failcount)
break;
}
} else {
int tmp;
/* read as much as we can to reduce transaction overhead */
tmp = flash->chip->read(flash, readbuf, start, len);
if (tmp && !ignore_error(tmp)) {
ret = tmp;
goto out_free;
}
failcount = compare_chunk(readbuf, cmpbuf, start, len, message);
}
if (failcount) {
msg_cerr(" failed byte count from 0x%08x-0x%08x: 0x%x\n",
start, start + len - 1, failcount);
ret = -1;
}
out_free:
free(readbuf);
return ret;
}
/* Helper function for need_erase() that focuses on granularities of gran bytes. */
static int need_erase_gran_bytes(const uint8_t *have, const uint8_t *want, unsigned int len,
unsigned int gran)
{
unsigned int i, j, limit;
for (j = 0; j < len / gran; j++) {
limit = min (gran, len - j * gran);
/* Are 'have' and 'want' identical? */
if (!memcmp(have + j * gran, want + j * gran, limit))
continue;
/* have needs to be in erased state. */
for (i = 0; i < limit; i++)
if (have[j * gran + i] != 0xff)
return 1;
}
return 0;
}
/*
* Check if the buffer @have can be programmed to the content of @want without
* erasing. This is only possible if all chunks of size @gran are either kept
* as-is or changed from an all-ones state to any other state.
*
* The following write granularities (enum @gran) are known:
* - 1 bit. Each bit can be cleared individually.
* - 1 byte. A byte can be written once. Further writes to an already written
* byte cause the contents to be either undefined or to stay unchanged.
* - 128 bytes. If less than 128 bytes are written, the rest will be
* erased. Each write to a 128-byte region will trigger an automatic erase
* before anything is written. Very uncommon behaviour and unsupported by
* this function.
* - 256 bytes. If less than 256 bytes are written, the contents of the
* unwritten bytes are undefined.
* Warning: This function assumes that @have and @want point to naturally
* aligned regions.
*
* @have buffer with current content
* @want buffer with desired content
* @len length of the checked area
* @gran write granularity (enum, not count)
* @return 0 if no erase is needed, 1 otherwise
*/
static int need_erase(struct flashctx *flash, uint8_t *have, uint8_t *want,
unsigned int len, enum write_granularity gran)
{
int result = 0;
unsigned int i;
switch (gran) {
case write_gran_1bit:
for (i = 0; i < len; i++)
if ((have[i] & want[i]) != want[i]) {
result = 1;
break;
}
break;
case write_gran_1byte:
for (i = 0; i < len; i++)
if ((have[i] != want[i]) && (have[i] != 0xff)) {
result = 1;
break;
}
break;
case write_gran_128bytes:
result = need_erase_gran_bytes(have, want, len, 128);
break;
case write_gran_256bytes:
result = need_erase_gran_bytes(have, want, len, 256);
break;
case write_gran_264bytes:
result = need_erase_gran_bytes(have, want, len, 264);
break;
case write_gran_512bytes:
result = need_erase_gran_bytes(have, want, len, 512);
break;
case write_gran_528bytes:
result = need_erase_gran_bytes(have, want, len, 528);
break;
case write_gran_1024bytes:
result = need_erase_gran_bytes(have, want, len, 1024);
break;
case write_gran_1056bytes:
result = need_erase_gran_bytes(have, want, len, 1056);
break;
case write_gran_1byte_implicit_erase:
/* Do not erase, handle content changes from anything->0xff by writing 0xff. */
result = 0;
break;
default:
msg_cerr("%s: Unsupported granularity! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
}
return result;
}
/**
* Check if the buffer @have needs to be programmed to get the content of @want.
* If yes, return 1 and fill in first_start with the start address of the
* write operation and first_len with the length of the first to-be-written
* chunk. If not, return 0 and leave first_start and first_len undefined.
*
* Warning: This function assumes that @have and @want point to naturally
* aligned regions.
*
* @have buffer with current content
* @want buffer with desired content
* @len length of the checked area
* @gran write granularity (enum, not count)
* @first_start offset of the first byte which needs to be written (passed in
* value is increased by the offset of the first needed write
* relative to have/want or unchanged if no write is needed)
* @return length of the first contiguous area which needs to be written
* 0 if no write is needed
*
* FIXME: This function needs a parameter which tells it about coalescing
* in relation to the max write length of the programmer and the max write
* length of the chip.
*/
static unsigned int get_next_write(uint8_t *have, uint8_t *want, unsigned int len,
unsigned int *first_start,
enum write_granularity gran)
{
int need_write = 0;
unsigned int rel_start = 0, first_len = 0;
unsigned int i, limit, stride;
switch (gran) {
case write_gran_1bit:
case write_gran_1byte:
case write_gran_1byte_implicit_erase:
stride = 1;
break;
case write_gran_128bytes:
stride = 128;
break;
case write_gran_256bytes:
stride = 256;
break;
case write_gran_264bytes:
stride = 264;
break;
case write_gran_512bytes:
stride = 512;
break;
case write_gran_528bytes:
stride = 528;
break;
case write_gran_1024bytes:
stride = 1024;
break;
case write_gran_1056bytes:
stride = 1056;
break;
default:
msg_cerr("%s: Unsupported granularity! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
/* Claim that no write was needed. A write with unknown
* granularity is too dangerous to try.
*/
return 0;
}
for (i = 0; i < len / stride; i++) {
limit = min(stride, len - i * stride);
/* Are 'have' and 'want' identical? */
if (memcmp(have + i * stride, want + i * stride, limit)) {
if (!need_write) {
/* First location where have and want differ. */
need_write = 1;
rel_start = i * stride;
}
} else {
if (need_write) {
/* First location where have and want
* do not differ anymore.
*/
break;
}
}
}
if (need_write)
first_len = min(i * stride - rel_start, len);
*first_start += rel_start;
return first_len;
}
/* This function generates various test patterns useful for testing controller
* and chip communication as well as chip behaviour.
*
* If a byte can be written multiple times, each time keeping 0-bits at 0
* and changing 1-bits to 0 if the new value for that bit is 0, the effect
* is essentially an AND operation. That's also the reason why this function
* provides the result of AND between various patterns.
*
* Below is a list of patterns (and their block length).
* Pattern 0 is 05 15 25 35 45 55 65 75 85 95 a5 b5 c5 d5 e5 f5 (16 Bytes)
* Pattern 1 is 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa (16 Bytes)
* Pattern 2 is 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f (16 Bytes)
* Pattern 3 is a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af (16 Bytes)
* Pattern 4 is 00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 (16 Bytes)
* Pattern 5 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f (16 Bytes)
* Pattern 6 is 00 (1 Byte)
* Pattern 7 is ff (1 Byte)
* Patterns 0-7 have a big-endian block number in the last 2 bytes of each 256
* byte block.
*
* Pattern 8 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11... (256 B)
* Pattern 9 is ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 ef ee... (256 B)
* Pattern 10 is 00 00 00 01 00 02 00 03 00 04... (128 kB big-endian counter)
* Pattern 11 is ff ff ff fe ff fd ff fc ff fb... (128 kB big-endian downwards)
* Pattern 12 is 00 (1 Byte)
* Pattern 13 is ff (1 Byte)
* Patterns 8-13 have no block number.
*
* Patterns 0-3 are created to detect and efficiently diagnose communication
* slips like missed bits or bytes and their repetitive nature gives good visual
* cues to the person inspecting the results. In addition, the following holds:
* AND Pattern 0/1 == Pattern 4
* AND Pattern 2/3 == Pattern 5
* AND Pattern 0/1/2/3 == AND Pattern 4/5 == Pattern 6
* A weakness of pattern 0-5 is the inability to detect swaps/copies between
* any two 16-byte blocks except for the last 16-byte block in a 256-byte bloc.
* They work perfectly for detecting any swaps/aliasing of blocks >= 256 bytes.
* 0x5 and 0xa were picked because they are 0101 and 1010 binary.
* Patterns 8-9 are best for detecting swaps/aliasing of blocks < 256 bytes.
* Besides that, they provide for bit testing of the last two bytes of every
* 256 byte block which contains the block number for patterns 0-6.
* Patterns 10-11 are special purpose for detecting subblock aliasing with
* block sizes >256 bytes (some Dataflash chips etc.)
* AND Pattern 8/9 == Pattern 12
* AND Pattern 10/11 == Pattern 12
* Pattern 13 is the completely erased state.
* None of the patterns can detect aliasing at boundaries which are a multiple
* of 16 MBytes (but such chips do not exist anyway for Parallel/LPC/FWH/SPI).
*/
int generate_testpattern(uint8_t *buf, uint32_t size, int variant)
{
int i;
if (!buf) {
msg_gerr("Invalid buffer!\n");
return 1;
}
switch (variant) {
case 0:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4 | 0x5;
break;
case 1:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4 | 0xa;
break;
case 2:
for (i = 0; i < size; i++)
buf[i] = 0x50 | (i & 0xf);
break;
case 3:
for (i = 0; i < size; i++)
buf[i] = 0xa0 | (i & 0xf);
break;
case 4:
for (i = 0; i < size; i++)
buf[i] = (i & 0xf) << 4;
break;
case 5:
for (i = 0; i < size; i++)
buf[i] = i & 0xf;
break;
case 6:
memset(buf, 0x00, size);
break;
case 7:
memset(buf, 0xff, size);
break;
case 8:
for (i = 0; i < size; i++)
buf[i] = i & 0xff;
break;
case 9:
for (i = 0; i < size; i++)
buf[i] = ~(i & 0xff);
break;
case 10:
for (i = 0; i < size % 2; i++) {
buf[i * 2] = (i >> 8) & 0xff;
buf[i * 2 + 1] = i & 0xff;
}
if (size & 0x1)
buf[i * 2] = (i >> 8) & 0xff;
break;
case 11:
for (i = 0; i < size % 2; i++) {
buf[i * 2] = ~((i >> 8) & 0xff);
buf[i * 2 + 1] = ~(i & 0xff);
}
if (size & 0x1)
buf[i * 2] = ~((i >> 8) & 0xff);
break;
case 12:
memset(buf, 0x00, size);
break;
case 13:
memset(buf, 0xff, size);
break;
}
if ((variant >= 0) && (variant <= 7)) {
/* Write block number in the last two bytes of each 256-byte
* block, big endian for easier reading of the hexdump.
* Note that this wraps around for chips larger than 2^24 bytes
* (16 MB).
*/
for (i = 0; i < size / 256; i++) {
buf[i * 256 + 254] = (i >> 8) & 0xff;
buf[i * 256 + 255] = i & 0xff;
}
}
return 0;
}
int check_max_decode(enum chipbustype buses, uint32_t size)
{
int limitexceeded = 0;
if ((buses & BUS_PARALLEL) && (max_rom_decode.parallel < size)) {
limitexceeded++;
msg_pdbg("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.parallel / 1024, "Parallel");
}
if ((buses & BUS_LPC) && (max_rom_decode.lpc < size)) {
limitexceeded++;
msg_pdbg("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.lpc / 1024, "LPC");
}
if ((buses & BUS_FWH) && (max_rom_decode.fwh < size)) {
limitexceeded++;
msg_pdbg("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.fwh / 1024, "FWH");
}
if ((buses & BUS_SPI) && (max_rom_decode.spi < size)) {
limitexceeded++;
msg_pdbg("Chip size %u kB is bigger than supported "
"size %u kB of chipset/board/programmer "
"for %s interface, "
"probe/read/erase/write may fail. ", size / 1024,
max_rom_decode.spi / 1024, "SPI");
}
if (!limitexceeded)
return 0;
/* Sometimes chip and programmer have more than one bus in common,
* and the limit is not exceeded on all buses. Tell the user.
*/
if (bitcount(buses) > limitexceeded)
/* FIXME: This message is designed towards CLI users. */
msg_pdbg("There is at least one common chip/programmer "
"interface which can support a chip of this size. "
"You can try --force at your own risk.\n");
return 1;
}
/*
* Return a string corresponding to the bustype parameter.
* Memory is obtained with malloc() and must be freed with free() by the caller.
*/
char *flashbuses_to_text(enum chipbustype bustype)
{
char *ret = calloc(1, 1);
/*
* FIXME: Once all chipsets and flash chips have been updated, NONSPI
* will cease to exist and should be eliminated here as well.
*/
if (bustype == BUS_NONSPI) {
ret = strcat_realloc(ret, "Non-SPI, ");
} else {
if (bustype & BUS_PARALLEL)
ret = strcat_realloc(ret, "Parallel, ");
if (bustype & BUS_LPC)
ret = strcat_realloc(ret, "LPC, ");
if (bustype & BUS_FWH)
ret = strcat_realloc(ret, "FWH, ");
if (bustype & BUS_SPI)
ret = strcat_realloc(ret, "SPI, ");
if (bustype & BUS_PROG)
ret = strcat_realloc(ret, "Programmer-specific, ");
if (bustype == BUS_NONE)
ret = strcat_realloc(ret, "None, ");
}
/* Kill last comma. */
ret[strlen(ret) - 2] = '\0';
ret = realloc(ret, strlen(ret) + 1);
return ret;
}
int probe_flash(struct registered_master *mst, int startchip,
struct flashctx *flash, int force)
{
const struct flashchip *chip, *flash_list;
unsigned long base = 0;
char location[64];
uint32_t size;
enum chipbustype buses_common;
char *tmp;
/* Based on the host controller interface that a platform
* needs to use (hwseq or swseq),
* set the flashchips list here.
*/
switch (ich_generation) {
case CHIPSET_100_SERIES_SUNRISE_POINT:
case CHIPSET_APL:
flash_list = flashchips_hwseq;
break;
default:
flash_list = flashchips;
break;
}
for (chip = flash_list + startchip; chip && chip->name; chip++) {
if (chip_to_probe && strcmp(chip->name, chip_to_probe) != 0)
continue;
buses_common = buses_supported & chip->bustype;
if (!buses_common) {
msg_gspew("Probing for %s %s, %d kB: skipped. ",
chip->vendor, chip->name, chip->total_size);
tmp = flashbuses_to_text(buses_supported);
msg_gspew("Host bus type %s ", tmp);
free(tmp);
tmp = flashbuses_to_text(chip->bustype);
msg_gspew("and chip bus type %s are incompatible.",
tmp);
free(tmp);
msg_gspew("\n");
continue;
}
/* Only probe for SPI25 chips by default. */
if (chip->bustype == BUS_SPI && !chip_to_probe && chip->spi_cmd_set != SPI25)
continue;
msg_gdbg("Probing for %s %s, %d kB: ",
chip->vendor, chip->name, chip->total_size);
if (!chip->probe && !force) {
msg_gdbg("failed! flashrom has no probe function for "
"this flash chip.\n");
continue;
}
size = chip->total_size * 1024;
check_max_decode(buses_common, size);
/* Start filling in the dynamic data. */
flash->chip = calloc(1, sizeof(struct flashchip));
if (!flash->chip) {
msg_gerr("Out of memory!\n");
exit(1);
}
memcpy(flash->chip, chip, sizeof(struct flashchip));
flash->mst = mst;
base = flashbase ? flashbase : (0xffffffff - size + 1);
flash->virtual_memory = (chipaddr)programmer_map_flash_region("flash chip", base, size);
if (force)
break;
if (flash->chip->probe(flash) != 1)
goto notfound;
/* If this is the first chip found, accept it.
* If this is not the first chip found, accept it only if it is
* a non-generic match.
* We could either make chipcount global or provide it as
* parameter, or we assume that startchip==0 means this call to
* probe_flash() is the first one and thus no chip has been
* found before.
*/
if (startchip == 0 || flash->chip->model_id != GENERIC_DEVICE_ID)
break;
notfound:
programmer_unmap_flash_region((void *)flash->virtual_memory, size);
free(flash->chip);
flash->chip = NULL;
}
if (!chip || !chip->name)
return -1;
#if CONFIG_INTERNAL == 1
if (programmer_table[programmer].map_flash_region == physmap)
snprintf(location, sizeof(location), "at physical address 0x%lx", base);
else
#endif
snprintf(location, sizeof(location), "on %s", programmer_table[programmer].name);
tmp = flashbuses_to_text(chip->bustype);
msg_cdbg("%s %s flash chip \"%s\" (%d kB, %s) %s.\n",
force ? "Assuming" : "Found", flash->chip->vendor,
flash->chip->name, flash->chip->total_size, tmp,
location);
free(tmp);
/* Flash registers will not be mapped if the chip was forced. Lock info
* may be stored in registers, so avoid lock info printing.
*/
if (!force)
if (flash->chip->printlock)
flash->chip->printlock(flash);
/* Return position of matching chip. */
return chip - flash_list;
}
static int verify_flash(struct flashctx *flash,
struct action_descriptor *descriptor,
int verify_it)
{
int ret;
unsigned int total_size = flash->chip->total_size * 1024;
uint8_t *buf = descriptor->newcontents;
msg_cinfo("Verifying flash... ");
if (verify_it == VERIFY_PARTIAL) {
struct processing_unit *pu = descriptor->processing_units;
/* Verify only areas which were written. */
while (pu->num_blocks) {
ret = verify_range(flash, buf + pu->offset, pu->offset,
pu->block_size * pu->num_blocks,
NULL);
if (ret)
break;
pu++;
}
} else {
ret = verify_range(flash, buf, 0, total_size, NULL);
}
if (ret == ACCESS_DENIED) {
msg_gdbg("Could not fully verify due to access error, ");
if (access_denied_action == error_ignore) {
msg_gdbg("ignoring\n");
ret = 0;
} else {
msg_gdbg("aborting\n");
}
}
if (!ret)
msg_cinfo("VERIFIED. \n");
return ret;
}
int read_buf_from_file(unsigned char *buf, unsigned long size,
const char *filename)
{
unsigned long numbytes;
FILE *image;
struct stat image_stat;
if (!strncmp(filename, "-", sizeof("-")))
image = fdopen(STDIN_FILENO, "rb");
else
image = fopen(filename, "rb");
if (image == NULL) {
perror(filename);
return 1;
}
if (fstat(fileno(image), &image_stat) != 0) {
perror(filename);
fclose(image);
return 1;
}
if ((image_stat.st_size != size) &&
(strncmp(filename, "-", sizeof("-")))) {
msg_gerr("Error: Image size doesn't match: stat %jd bytes, "
"wanted %ld!\n", (intmax_t)image_stat.st_size, size);
fclose(image);
return 1;
}
numbytes = fread(buf, 1, size, image);
if (fclose(image)) {
perror(filename);
return 1;
}
if (numbytes != size) {
msg_gerr("Error: Failed to read complete file. Got %ld bytes, "
"wanted %ld!\n", numbytes, size);
return 1;
}
return 0;
}
int write_buf_to_file(unsigned char *buf, unsigned long size,
const char *filename)
{
unsigned long numbytes;
FILE *image;
if (!filename) {
msg_gerr("No filename specified.\n");
return 1;
}
if (!strncmp(filename, "-", sizeof("-")))
image = fdopen(STDOUT_FILENO, "wb");
else
image = fopen(filename, "wb");
if (image == NULL) {
perror(filename);
return 1;
}
numbytes = fwrite(buf, 1, size, image);
fclose(image);
if (numbytes != size) {
msg_gerr("File %s could not be written completely.\n",
filename);
return 1;
}
return 0;
}
/*
* read_flash - wrapper for flash->read() with additional high-level policy
*
* @flash flash chip
* @buf buffer to store data in
* @start start address
* @len number of bytes to read
*
* This wrapper simplifies most cases when the flash chip needs to be read
* since policy decisions such as non-fatal error handling is centralized.
*/
int read_flash(struct flashctx *flash, uint8_t *buf,
unsigned int start, unsigned int len)
{
int ret;
if (!flash || !flash->chip->read)
return -1;
msg_cdbg("%#06x-%#06x:R ", start, start + len - 1);
ret = flash->chip->read(flash, buf, start, len);
if (ret) {
if (ignore_error(ret)) {
msg_gdbg("ignoring error when reading 0x%x-0x%x\n",
start, start + len - 1);
ret = 0;
} else {
msg_gdbg("failed to read 0x%x-0x%x\n",
start, start + len - 1);
}
}
return ret;
}
/*
* write_flash - wrapper for flash->write() with additional high-level policy
*
* @flash flash chip
* @buf buffer to write to flash
* @start start address in flash
* @len number of bytes to write
*
* TODO: Look up regions that are write-protected and avoid attempt to write
* to them at all.
*/
int write_flash(struct flashctx *flash, uint8_t *buf,
unsigned int start, unsigned int len)
{
if (!flash || !flash->chip->write)
return -1;
return flash->chip->write(flash, buf, start, len);
}
int read_flash_to_file(struct flashctx *flash, const char *filename)
{
unsigned long size = flash->chip->total_size * 1024;
unsigned char *buf = calloc(size, sizeof(char));
int ret = 0;
msg_cinfo("Reading flash... ");
if (!buf) {
msg_gerr("Memory allocation failed!\n");
msg_cinfo("FAILED.\n");
return 1;
}
/* To support partial read, fill buffer to all 0xFF at beginning to make
* debug easier. */
memset(buf, flash_erase_value(flash), size);
if (!flash->chip->read) {
msg_cerr("No read function available for this flash chip.\n");
ret = 1;
goto out_free;
}
/* First try to handle partial read case, rather than read the whole
* flash, which is slow. */
ret = handle_partial_read(flash, buf, read_flash, 1);
if (ret < 0) {
msg_cerr("Partial read operation failed!\n");
ret = 1;
goto out_free;
} else if (ret > 0) {
int num_regions = get_num_include_args();
if (ret != num_regions) {
msg_cerr("Requested %d regions, but only read %d\n",
num_regions, ret);
ret = 1;
goto out_free;
}
ret = 0;
} else {
if (read_flash(flash, buf, 0, size)) {
msg_cerr("Read operation failed!\n");
ret = 1;
goto out_free;
}
}
if (filename)
ret = write_buf_to_file(buf, size, filename);
out_free:
free(buf);
if (ret)
msg_cerr("FAILED.");
else
msg_cdbg("done.");
return ret;
}
/* This function shares a lot of its structure with erase_and_write_flash() and
* walk_eraseregions().
* Even if an error is found, the function will keep going and check the rest.
*/
static int selfcheck_eraseblocks(const struct flashchip *chip)
{
int i, j, k;
int ret = 0;
for (k = 0; k < NUM_ERASEFUNCTIONS; k++) {
unsigned int done = 0;
struct block_eraser eraser = chip->block_erasers[k];
for (i = 0; i < NUM_ERASEREGIONS; i++) {
/* Blocks with zero size are bugs in flashchips.c. */
if (eraser.eraseblocks[i].count &&
!eraser.eraseblocks[i].size) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i region %i has size 0. Please report"
" a bug at flashrom@flashrom.org\n",
chip->name, k, i);
ret = 1;
}
/* Blocks with zero count are bugs in flashchips.c. */
if (!eraser.eraseblocks[i].count &&
eraser.eraseblocks[i].size) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i region %i has count 0. Please report"
" a bug at flashrom@flashrom.org\n",
chip->name, k, i);
ret = 1;
}
done += eraser.eraseblocks[i].count *
eraser.eraseblocks[i].size;
}
/* Empty eraseblock definition with erase function. */
if (!done && eraser.block_erase)
msg_gspew("Strange: Empty eraseblock definition with "
"non-empty erase function. Not an error.\n");
if (!done)
continue;
if (done != chip->total_size * 1024) {
msg_gerr("ERROR: Flash chip %s erase function %i "
"region walking resulted in 0x%06x bytes total,"
" expected 0x%06x bytes. Please report a bug at"
" flashrom@flashrom.org\n", chip->name, k,
done, chip->total_size * 1024);
ret = 1;
}
if (!eraser.block_erase)
continue;
/* Check if there are identical erase functions for different
* layouts. That would imply "magic" erase functions. The
* easiest way to check this is with function pointers.
*/
for (j = k + 1; j < NUM_ERASEFUNCTIONS; j++) {
if (eraser.block_erase ==
chip->block_erasers[j].block_erase) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i and %i are identical. Please report"
" a bug at flashrom@flashrom.org\n",
chip->name, k, j);
ret = 1;
}
}
}
return ret;
}
static int erase_and_write_block_helper(struct flashctx *flash,
unsigned int start, unsigned int len,
uint8_t *curcontents,
uint8_t *newcontents,
int (*erasefn) (struct flashctx *flash,
unsigned int addr,
unsigned int len))
{
unsigned int starthere = 0, lenhere = 0;
int ret = 0, skip = 1, writecount = 0;
int block_was_erased = 0;
enum write_granularity gran = flash->chip->gran;
/*
* curcontents and newcontents are opaque to walk_eraseregions, and
* need to be adjusted here to keep the impression of proper
* abstraction
*/
curcontents += start;
newcontents += start;
msg_cdbg(":");
if (need_erase(flash, curcontents, newcontents, len, gran)) {
content_has_changed |= 1;
msg_cdbg(" E");
ret = erasefn(flash, start, len);
if (ret) {
if (ret == ACCESS_DENIED)
msg_cdbg(" DENIED");
else
msg_cerr(" ERASE_FAILED\n");
return ret;
}
if (programmer_table[programmer].paranoid) {
if (check_erased_range(flash, start, len)) {
msg_cerr(" ERASE_FAILED\n");
return -1;
}
}
/* Erase was successful. Adjust curcontents. */
memset(curcontents, flash_erase_value(flash), len);
skip = 0;
block_was_erased = 1;
}
/* get_next_write() sets starthere to a new value after the call. */
while ((lenhere = get_next_write(curcontents + starthere,
newcontents + starthere,
len - starthere, &starthere, gran))) {
content_has_changed |= 1;
if (!writecount++)
msg_cdbg(" W");
/* Needs the partial write function signature. */
ret = write_flash(flash, newcontents + starthere,
start + starthere, lenhere);
if (ret) {
if (ret == ACCESS_DENIED)
msg_cdbg(" DENIED");
return ret;
}
/*
* If the block needed to be erased and was erased successfully
* then we can assume that we didn't run into any write-
* protected areas. Otherwise, we need to verify each page to
* ensure it was successfully written and abort if we encounter
* any errors.
*/
if (programmer_table[programmer].paranoid && !block_was_erased) {
if (verify_range(flash, newcontents + starthere,
start + starthere, lenhere, "WRITE"))
return -1;
}
starthere += lenhere;
skip = 0;
}
if (skip)
msg_cdbg(" SKIP");
return ret;
}
/*
* Function to process processing units accumulated in the action descriptor.
*
* @flash pointer to the flash context to operate on
* @do_something helper function which can erase and program a section of the
* flash chip. It receives the flash context, offset and length
* of the area to erase/program, before and after contents (to
* decide what exactly needs to be erased and or programmed)
* and a pointer to the erase function which can operate on the
* proper granularity.
* @descriptor action descriptor including pointers to before and after
* contents and an array of processing actions to take.
*
* Returns zero on success or an error code.
*/
static int walk_eraseregions(struct flashctx *flash,
int (*do_something) (struct flashctx *flash,
unsigned int addr,
unsigned int len,
uint8_t *param1,
uint8_t *param2,
int (*erasefn) (
struct flashctx *flash,
unsigned int addr,
unsigned int len)),
struct action_descriptor *descriptor)
{
struct processing_unit *pu;
int rc = 0;
static int print_comma;
for (pu = descriptor->processing_units; pu->num_blocks; pu++) {
unsigned base = pu->offset;
unsigned top = pu->offset + pu->block_size * pu->num_blocks;
while (base < top) {
if (print_comma)
msg_cdbg(", ");
else
print_comma = 1;
msg_cdbg("0x%06x-0x%06zx", base, base + pu->block_size - 1);
rc = do_something(flash, base,
pu->block_size,
descriptor->oldcontents,
descriptor->newcontents,
flash->chip->block_erasers[pu->block_eraser_index].block_erase);
if (rc) {
if (ignore_error(rc))
rc = 0;
else
return rc;
}
base += pu->block_size;
}
}
msg_cdbg("\n");
return rc;
}
static int check_block_eraser(const struct flashctx *flash, int k, int log)
{
struct block_eraser eraser = flash->chip->block_erasers[k];
if (!eraser.block_erase && !eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("not defined. ");
return 1;
}
if (!eraser.block_erase && eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("eraseblock layout is known, but matching "
"block erase function is not implemented. ");
return 1;
}
if (eraser.block_erase && !eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("block erase function found, but "
"eraseblock layout is not defined. ");
return 1;
}
return 0;
}
int erase_and_write_flash(struct flashctx *flash,
struct action_descriptor *descriptor)
{
int ret = 1;
msg_cinfo("Erasing and writing flash chip... ");
ret = walk_eraseregions(flash, &erase_and_write_block_helper, descriptor);
if (ret) {
msg_cerr("FAILED!\n");
} else {
msg_cdbg("SUCCESS.\n");
}
return ret;
}
void nonfatal_help_message(void)
{
msg_gerr("Writing to the flash chip apparently didn't do anything.\n"
"This means we have to add special support for your board, "
"programmer or flash chip.\n"
"Please report this on IRC at irc.freenode.net (channel "
"#flashrom) or\n"
"mail flashrom@flashrom.org!\n"
"-------------------------------------------------------------"
"------------------\n"
"You may now reboot or simply leave the machine running.\n");
}
void emergency_help_message(void)
{
msg_gerr("Your flash chip is in an unknown state.\n"
"Get help on IRC at irc.freenode.net (channel #flashrom) or\n"
"mail flashrom@flashrom.org with FAILED: your board name in "
"the subject line!\n"
"-------------------------------------------------------------"
"------------------\n"
"DO NOT REBOOT OR POWEROFF!\n");
}
/* The way to go if you want a delimited list of programmers */
void list_programmers(const char *delim)
{
enum programmer p;
for (p = 0; p < PROGRAMMER_INVALID; p++) {
msg_ginfo("%s", programmer_table[p].name);
if (p < PROGRAMMER_INVALID - 1)
msg_ginfo("%s", delim);
}
msg_ginfo("\n");
}
void list_programmers_linebreak(int startcol, int cols, int paren)
{
const char *pname;
int pnamelen;
int remaining = 0, firstline = 1;
enum programmer p;
int i;
for (p = 0; p < PROGRAMMER_INVALID; p++) {
pname = programmer_table[p].name;
pnamelen = strlen(pname);
if (remaining - pnamelen - 2 < 0) {
if (firstline)
firstline = 0;
else
msg_ginfo("\n");
for (i = 0; i < startcol; i++)
msg_ginfo(" ");
remaining = cols - startcol;
} else {
msg_ginfo(" ");
remaining--;
}
if (paren && (p == 0)) {
msg_ginfo("(");
remaining--;
}
msg_ginfo("%s", pname);
remaining -= pnamelen;
if (p < PROGRAMMER_INVALID - 1) {
msg_ginfo(",");
remaining--;
} else {
if (paren)
msg_ginfo(")");
msg_ginfo("\n");
}
}
}
void print_sysinfo(void)
{
/* send to stderr for chromium os */
#if HAVE_UTSNAME == 1
struct utsname osinfo;
uname(&osinfo);
msg_gerr(" on %s %s (%s)", osinfo.sysname, osinfo.release,
osinfo.machine);
#else
msg_gerr(" on unknown machine");
#endif
}
void print_buildinfo(void)
{
msg_gdbg("flashrom was built with");
#if NEED_PCI == 1
#ifdef PCILIB_VERSION
msg_gdbg(" libpci %s,", PCILIB_VERSION);
#else
msg_gdbg(" unknown PCI library,");
#endif
#endif
#ifdef __clang__
msg_gdbg(" LLVM Clang");
#ifdef __clang_version__
msg_gdbg(" %s,", __clang_version__);
#else
msg_gdbg(" unknown version (before r102686),");
#endif
#elif defined(__GNUC__)
msg_gdbg(" GCC");
#ifdef __VERSION__
msg_gdbg(" %s,", __VERSION__);
#else
msg_gdbg(" unknown version,");
#endif
#else
msg_gdbg(" unknown compiler,");
#endif
#if defined (__FLASHROM_LITTLE_ENDIAN__)
msg_gdbg(" little endian");
#else
msg_gdbg(" big endian");
#endif
msg_gdbg("\n");
}
void print_version(void)
{
/* send to stderr for chromium os */
msg_gerr("flashrom v%s", flashrom_version);
print_sysinfo();
msg_gerr("\n");
}
void print_banner(void)
{
msg_ginfo("flashrom is free software, get the source code at "
"http://www.flashrom.org\n");
msg_ginfo("\n");
}
int selfcheck(void)
{
int ret = 0;
const struct flashchip *flash;
/* Safety check. Instead of aborting after the first error, check
* if more errors exist.
*/
if (ARRAY_SIZE(programmer_table) - 1 != PROGRAMMER_INVALID) {
msg_gerr("Programmer table miscompilation!\n");
ret = 1;
}
/* It would be favorable if we could also check for correct termination
* of the following arrays, but we don't know their sizes in here...
* For 'flashchips' we check the first element to be non-null. In the
* other cases there exist use cases where the first element can be
* null. */
if (flashchips[0].vendor == NULL) {
msg_gerr("Flashchips table miscompilation!\n");
ret = 1;
}
for (flash = flashchips; flash && flash->name; flash++)
if (selfcheck_eraseblocks(flash))
ret = 1;
return ret;
}
/* FIXME: This function signature needs to be improved once doit() has a better
* function signature.
*/
int chip_safety_check(const struct flashctx *flash, int force, int read_it, int write_it, int erase_it, int verify_it)
{
const struct flashchip *chip = flash->chip;
if (!programmer_may_write && (write_it || erase_it)) {
msg_perr("Write/erase is not working yet on your programmer in "
"its current configuration.\n");
/* --force is the wrong approach, but it's the best we can do
* until the generic programmer parameter parser is merged.
*/
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (read_it || erase_it || write_it || verify_it) {
/* Everything needs read. */
if (chip->tested.read == BAD) {
msg_cerr("Read is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (!chip->read) {
msg_cerr("flashrom has no read function for this "
"flash chip.\n");
return 1;
}
}
if (erase_it || write_it) {
/* Write needs erase. */
if (chip->tested.erase == NA) {
msg_cerr("Erase is not possible on this chip.\n");
return 1;
}
if (chip->tested.erase == BAD) {
msg_cerr("Erase is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if(count_usable_erasers(flash) == 0) {
msg_cerr("flashrom has no erase function for this "
"flash chip.\n");
return 1;
}
}
if (write_it) {
if (chip->tested.write == NA) {
msg_cerr("Write is not possible on this chip.\n");
return 1;
}
if (chip->tested.write == BAD) {
msg_cerr("Write is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (!chip->write) {
msg_cerr("flashrom has no write function for this "
"flash chip.\n");
return 1;
}
}
return 0;
}
/*
* Function to erase entire flash chip.
*
* @flashctx pointer to the flash context to use
* @oldcontents pointer to the buffer including current chip contents, to
* decide which areas do in fact need to be erased
* @size the size of the flash chip, in bytes.
*
* Returns zero on success or an error code.
*/
static int erase_chip(struct flashctx *flash, void *oldcontents,
void *newcontents, size_t size)
{
/*
* To make sure that the chip is fully erased, let's cheat and create
* a descriptor where the new contents are all erased.
*/
struct action_descriptor *fake_descriptor;
int ret = 0;
fake_descriptor = prepare_action_descriptor(flash, oldcontents,
newcontents, 1);
/* FIXME: Do we really want the scary warning if erase failed? After
* all, after erase the chip is either blank or partially blank or it
* has the old contents. A blank chip won't boot, so if the user
* wanted erase and reboots afterwards, the user knows very well that
* booting won't work.
*/
if (erase_and_write_flash(flash, fake_descriptor)) {
emergency_help_message();
ret = 1;
}
free(fake_descriptor);
return ret;
}
static int read_dest_content(struct flashctx *flash, int verify_it,
uint8_t *dest, unsigned long size)
{
if (((verify_it == VERIFY_OFF) || (verify_it == VERIFY_PARTIAL))
&& get_num_include_args()) {
/*
* If no full verification is required and not
* the entire chip is about to be programmed,
* read only the areas which might change.
*/
if (handle_partial_read(flash, dest, read_flash, 0) < 0)
return 1;
} else {
if (read_flash(flash, dest, 0, size))
return 1;
}
return 0;
}
/* This function signature is horrible. We need to design a better interface,
* but right now it allows us to split off the CLI code.
* Besides that, the function itself is a textbook example of abysmal code flow.
*/
int doit(struct flashctx *flash, int force, const char *filename, int read_it,
int write_it, int erase_it, int verify_it, int extract_it,
const char *diff_file, int do_diff)
{
uint8_t *oldcontents;
uint8_t *newcontents;
int ret = 0;
unsigned long size = flash->chip->total_size * 1024;
struct action_descriptor *descriptor = NULL;
if (chip_safety_check(flash, force, read_it, write_it, erase_it, verify_it)) {
msg_cerr("Aborting.\n");
ret = 1;
goto out_nofree;
}
/* Given the existence of read locks, we want to unlock for read,
* erase and write.
*/
if (flash->chip->unlock)
flash->chip->unlock(flash);
/* Enable/disable 4-byte addressing mode if flash chip supports it */
if ((flash->chip->feature_bits & FEATURE_4BA_SUPPORT) &&
flash->chip->four_bytes_addr_funcs.set_4ba) {
if (flash->chip->four_bytes_addr_funcs.set_4ba(flash)) {
msg_cerr("Enabling/disabling 4-byte addressing mode failed!\n");
return 1;
}
}
if (extract_it) {
ret = extract_regions(flash);
goto out_nofree;
}
/* mark entries included using -i argument as "included" if they are
found in the master rom_entries list */
if (process_include_args() < 0) {
ret = 1;
goto out_nofree;
}
if (read_it) {
ret = read_flash_to_file(flash, filename);
goto out_nofree;
}
oldcontents = malloc(size);
if (!oldcontents) {
msg_gerr("Out of memory!\n");
exit(1);
}
/* Assume worst case: All blocks are not erased. */
memset(oldcontents, flash_unerased_value(flash), size);
newcontents = malloc(size);
if (!newcontents) {
msg_gerr("Out of memory!\n");
exit(1);
}
/* Assume best case: All blocks are erased. */
memset(newcontents, flash_erase_value(flash), size);
/* Side effect of the assumptions above: Default write action is erase
* because newcontents looks like a completely erased chip, and
* oldcontents being completely unerased means we have to erase
* everything before we can write.
*/
if (write_it || verify_it) {
/*
* Note: This must be done before any files specified by -i
* arguments are processed merged into the newcontents since
* -i files take priority. See http://crbug.com/263495.
*/
if (filename) {
if (read_buf_from_file(newcontents, size, filename)) {
ret = 1;
goto out;
}
} else {
/* Content will be read from -i args, so they must
* not overlap. */
if (included_regions_overlap()) {
msg_gerr("Error: Included regions must "
"not overlap.\n");
ret = 1;
goto out;
}
}
#if 0
/*
* FIXME: show_id() causes failure if vendor:mainboard do not
* match. This may happen if codenames are in flux.
* See chrome-os-partner:10414.
*/
#if CONFIG_INTERNAL == 1
if (programmer == PROGRAMMER_INTERNAL)
show_id(newcontents, size, force);
#endif
#endif
}
if (do_diff) {
/*
* Obtain a reference image so that we can check whether
* regions need to be erased and to give better diagnostics in
* case write fails. If --fast-verify is used then only the
* regions which are included using -i will be read.
*/
if (diff_file) {
msg_cdbg("Reading old contents from file... ");
if (read_buf_from_file(oldcontents, size, diff_file)) {
ret = 1;
msg_cdbg("FAILED.\n");
goto out;
}
} else {
msg_cdbg("Reading old contents from flash chip... ");
ret = read_dest_content(flash, verify_it,
oldcontents, size);
if (ret) {
msg_cdbg("FAILED.\n");
goto out;
}
}
msg_cdbg("done.\n");
} else if (!erase_it) {
msg_pinfo("No diff performed, considering the chip erased.\n");
memset(oldcontents, flash_erase_value(flash), size);
}
/*
* Note: This must be done after reading the file specified for the
* -w/-v argument, if any, so that files specified using -i end up
* in the "newcontents" buffer before being written.
* See http://crbug.com/263495.
*/
if (handle_romentries(flash, oldcontents, newcontents, erase_it)) {
ret = 1;
msg_cerr("Error handling ROM entries.\n");
goto out;
}
if (erase_it) {
erase_chip(flash, oldcontents, newcontents, size);
goto verify;
}
descriptor = prepare_action_descriptor(flash, oldcontents,
newcontents, do_diff);
if (write_it) {
// parse the new fmap and disable soft WP if necessary
if ((ret = cros_ec_prepare(newcontents, size))) {
msg_cerr("CROS_EC prepare failed, ret=%d.\n", ret);
goto out;
}
if (erase_and_write_flash(flash, descriptor)) {
msg_cerr("Uh oh. Erase/write failed. Checking if "
"anything changed.\n");
if (!read_flash(flash, newcontents, 0, size)) {
if (!memcmp(oldcontents, newcontents, size)) {
msg_cinfo("Good. It seems nothing was "
"changed.\n");
nonfatal_help_message();
ret = 1;
goto out;
}
}
emergency_help_message();
ret = 1;
goto out;
}
ret = cros_ec_need_2nd_pass();
if (ret < 0) {
// Jump failed
msg_cerr("cros_ec_need_2nd_pass() failed. Stop.\n");
emergency_help_message();
ret = 1;
goto out;
} else if (ret > 0) {
// Need 2nd pass. Get the just written content.
msg_pdbg("CROS_EC needs 2nd pass.\n");
ret = read_dest_content(flash, verify_it,
oldcontents, size);
if (ret) {
emergency_help_message();
goto out;
}
/* Get a new descriptor. */
free(descriptor);
descriptor = prepare_action_descriptor(flash,
oldcontents,
newcontents,
do_diff);
// write 2nd pass
if (erase_and_write_flash(flash, descriptor)) {
msg_cerr("Uh oh. CROS_EC 2nd pass failed.\n");
emergency_help_message();
ret = 1;
goto out;
}
ret = 0;
}
if (cros_ec_finish() < 0) {
msg_cerr("cros_ec_finish() failed. Stop.\n");
emergency_help_message();
ret = 1;
goto out;
}
}
verify:
if (verify_it) {
if ((write_it || erase_it) && !content_has_changed) {
msg_gdbg("Nothing was erased or written, skipping "
"verification\n");
} else {
/* Work around chips which need some time to calm down. */
if (write_it && verify_it != VERIFY_PARTIAL)
programmer_delay(1000*1000);
ret = verify_flash(flash, descriptor, verify_it);
/* If we tried to write, and verification now fails, we
* might have an emergency situation.
*/
if (ret && write_it)
emergency_help_message();
}
}
out:
if (descriptor)
free(descriptor);
free(oldcontents);
free(newcontents);
out_nofree:
chip_restore(); /* must be done before programmer_shutdown() */
/*
* programmer_shutdown() call is moved to cli_classic() in chromium os
* tree. This is because some operations, such as write protection,
* requires programmer_shutdown() but does not call doit().
*/
// programmer_shutdown();
return ret;
}