blob: 276aea4087c129a63f77bb679475c678b812fad8 [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2010 NVIDIA Corporation
* Copyright (C) 2011 Google Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(__arm__)
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "flash.h"
#include "programmer.h"
#include "tegra2_spi.h"
static void *gpio_base, *clkrst_base, *apbmisc_base, *spi_base;
#define SPI_TIMEOUT 50000 /* 100ms = 50000 * 2us */
/* On Seaboard: GPIO_PI3 = Port I = 8, bit = 3 */
#define UART_DISABLE_PORT 8
#define UART_DISABLE_BIT 3
/* To restore the original value of register. */
struct tegra2_undo_register {
void *reg_addr;
uint32_t value;
};
#define register_tegra2_undo(reg) \
do { \
struct tegra2_undo_register *undo; \
undo = malloc(sizeof(struct tegra2_undo_register)); \
undo->reg_addr = (reg); \
undo->value = mmio_readl(reg); \
register_shutdown(tegra2_do_undo, undo); \
} while (0)
static void tegra2_do_undo(void *p) {
struct tegra2_undo_register *undo = (struct tegra2_undo_register*)p;
mmio_writel(undo->value, undo->reg_addr);
free(p);
}
/* Config port:bit as GPIO, not SFPIO (default) */
static void __set_config(unsigned port, unsigned bit, int type)
{
u32 u;
msg_pdbg("%s: port = %d, bit = %d, %s\n", __func__,
port, bit, type ? "GPIO" : "SFPIO");
u = mmio_readl(GPIO_CNF(port));
if (type) /* GPIO */
u |= 1 << bit;
else
u &= ~(1 << bit);
register_tegra2_undo(GPIO_CNF(port));
mmio_writel(u, GPIO_CNF(port));
}
/* Config GPIO port:bit as input or output (OE) */
static void __set_direction(unsigned port, unsigned bit, int output)
{
u32 u;
msg_pdbg("%s: port = %d, bit = %d, %s\n", __func__,
port, bit, output ? "OUT" : "IN");
u = mmio_readl(GPIO_OE(port));
if (output)
u |= 1 << bit;
else
u &= ~(1 << bit);
register_tegra2_undo(GPIO_OE(port));
mmio_writel(u, GPIO_OE(port));
}
/* set GPIO OUT port:bit as 0 or 1 */
static void __set_level(unsigned port, unsigned bit, int high)
{
u32 u;
msg_pdbg("%s: port = %d, bit %d == %d\n", __func__,
port, bit, high);
u = mmio_readl(GPIO_OUT(port));
if (high)
u |= 1 << bit;
else
u &= ~(1 << bit);
register_tegra2_undo(GPIO_OUT(port));
mmio_writel(u, GPIO_OUT(port));
}
/* set GPIO port:bit as an output, with polarity 'value' */
static int tg2_gpio_direction_output(unsigned port, unsigned bit, int value)
{
msg_pdbg("%s: port = %d, bit = %d, value = %d\n",
__func__, port, bit, value);
/* Configure as a GPIO */
__set_config(port, bit, 1);
/* Configure GPIO output value. */
__set_level(port, bit, value);
/* Configure GPIO direction as output. */
__set_direction(port, bit, 1);
return 0;
}
static void spi_cs_activate(void)
{
uint32_t *spi_cmd = (uint32_t *)spi_base;
/*
* CS is negated on Tegra, so drive a 1 to get a 0
*/
mmio_writel(mmio_readl(spi_cmd) | SPI_CMD_CS_VAL, spi_cmd);
msg_pdbg("%s: CS driven %s\n", __func__,
(mmio_readl(spi_cmd) & SPI_CMD_CS_VAL) ? "LOW" : "HIGH");
}
static void spi_cs_deactivate(void)
{
uint32_t *spi_cmd = (uint32_t *)spi_base;
/*
* CS is negated on Tegra, so drive a 0 to get a 1
*/
mmio_writel(mmio_readl(spi_cmd) & ~SPI_CMD_CS_VAL, spi_cmd);
msg_pdbg("%s: CS driven %s\n", __func__,
(mmio_readl(spi_cmd) & SPI_CMD_CS_VAL) ? "LOW" : "HIGH");
}
/* Helper function to calculate the clock cycle in this round.
* Also updates the byte count remaining to be used this round.
*
* For example, we want to write 6 bytes to SPI and then read 5 bytes back.
*
* +---+---+---+---+---+---+
* | W | W | W | W | W | W |
* +---+---+---+---+---+---+---+---+---+---+---+
* | R | R | R | R | R |
* +---+---+---+---+---+
* |<-- round 0 -->|
* |<-- round 1 -->|
* |<-- round 2 -->|
*
* So that the continuous calling this function would get:
*
* round| RET| writecnt readcnt bits to_write to_read
* -----+----+---------------------------------------------
* INIT | | 6 5
* 0 | 1 | 2 5 32 4 0
* 1 | 1 | 0 3 32 2 2
* 2 | 1 | 0 0 24 0 3
* 3 | 0 | - - - - -
*
*/
int next4Bytes(uint32_t *writecnt, uint32_t *readcnt, int *num_bits,
uint32_t *to_write, uint32_t *to_read) {
assert(writecnt);
assert(readcnt);
assert(num_bits);
assert(to_write);
assert(to_read);
*to_write = min(*writecnt, 4);
*to_read = min(*readcnt, 4 - *to_write);
*writecnt -= *to_write;
*readcnt -= *to_read;
*num_bits = (*to_write + *to_read) * 8;
if (*num_bits)
return 1; /* need to be called again. */
else
return 0; /* handled write and read requests. */
}
/*
* Tegra2 FIFO design is ... interesting. For example, you want to Tx 2 bytes:
*
* +---+---+
* writearr[]: | 0 | 1 |
* +---+---+
* \ \
* \ \
* \ \
* \ \
* \ \
* 31 +---+---+---+---+ 0
* tmp(32-bits): | X | X | 0 | 1 |
* +---+---+---+---+ LSB
*
* It is neither little or big endian. The first bit for SPI controller to
* transfer is the bit 15 in FIFO, neither bit 31 or bit 0, because the transfer
* length is 16 bits (2 bytes).
*
* Rx follows the similar rule. First bit comes at bit 0, and the whole FIFO
* left-shifts 1 bit for every bit comes in. Hence, after reading 3 bytes,
* the first coming bit will reside in bit 23.
*/
int tegra2_spi_send_command(unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
int retval = 0;
uint8_t *delayed_msg = NULL; /* for UART is disabled. */
uint32_t *spi_cmd = (uint32_t *)spi_base;
uint32_t *spi_sts = (uint32_t *)(spi_base + 0x04);
uint32_t *tx_fifo = (uint32_t *)(spi_base + 0x10);
uint32_t *rx_fifo = (uint32_t *)(spi_base + 0x20);
uint32_t status;
uint32_t to_write, to_read; /* byte counts to fill FIFO. */
uint32_t bits; /* bit count to tell SPI controller. */
mmio_writel(mmio_readl(spi_sts), spi_sts);
mmio_writel(mmio_readl(spi_cmd) | SPI_CMD_TXEN | SPI_CMD_RXEN, spi_cmd);
spi_cs_activate();
while (next4Bytes(&writecnt, &readcnt, &bits, &to_write, &to_read)) {
int i;
uint32_t tmp;
uint32_t tm; /* timeout counter */
/* prepare Tx FIFO */
for (tmp = 0, i = 0; i < to_write; ++i) {
tmp |= (*writearr++) << ((bits / 8 - 1 - i) * 8);
}
mmio_writel(tmp, tx_fifo);
/* Kick the SCLK running: Shift out TX FIFO, and receive RX. */
mmio_writel(mmio_readl(spi_cmd) & ~SPI_CMD_BIT_LENGTH_MASK,
spi_cmd);
mmio_writel(mmio_readl(spi_cmd) | (bits - 1),
spi_cmd);
mmio_writel(mmio_readl(spi_cmd) | SPI_CMD_GO, spi_cmd);
/* Wait for controller completes the task. */
for (tm = 0; tm < SPI_TIMEOUT; ++tm) {
if (((status = mmio_readl(spi_sts)) &
(SPI_STAT_BSY | SPI_STAT_RDY)) == SPI_STAT_RDY)
break;
/* We setup clock to 6MHz, so that we shall come back
* after: 1 / (6MHz) * 8 bits = 1.333us
*/
programmer_delay(2);
}
mmio_writel(mmio_readl(spi_sts) | SPI_STAT_RDY, spi_sts);
/* Since the UART is disabled here, we delay printing the
* message until spi_cs_deactivate() is called.
*/
if (tm >= SPI_TIMEOUT) {
static uint8_t err[256];
retval = -1;
snprintf(err, sizeof(err),
"%s():%d BSY&RDY timeout, status = 0x%08x\n",
__func__, __LINE__, status);
delayed_msg = err;
break;
}
/* read RX FIFO */
tmp = mmio_readl(rx_fifo);
for (i = 0; i < to_read; ++i) {
*readarr++ = (tmp >> ((to_read - 1 - i) * 8)) & 0xFF;
}
}
mmio_writel(status = mmio_readl(spi_sts), spi_sts);
spi_cs_deactivate();
if (delayed_msg) {
msg_perr("%s\n", delayed_msg);
}
return retval;
}
int tegra2_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len)
{
return spi_read_chunked(flash, buf, start, len, 256);
}
int tegra2_spi_write(struct flashchip *flash, uint8_t *buf, int start, int len)
{
return spi_write_chunked(flash, buf, start, len, 256);
}
/* Map register spaces */
int tegra2_spi_init(void)
{
u32 val;
int error = 0;
uint32_t *spi_cmd;
uint32_t *spi_sts;
gpio_base = physmap("GPIO", TEGRA2_GPIO_BASE, 4096);
clkrst_base = physmap("CLK/RST", NV_ADDRESS_MAP_PPSB_CLK_RST_BASE,
4096);
apbmisc_base = physmap("APB MISC", NV_ADDRESS_MAP_APB_MISC_BASE, 4096);
/* non-page offset */
spi_base = physmap("SPI", TEGRA2_SPI_BASE - 0x380, 4096) + 0x380;
register_shutdown(tegra2_spi_shutdown, NULL);
if (error)
return 1;
flashbase = 0; /* FIXME: to make sanity check happy. */
buses_supported = CHIP_BUSTYPE_SPI;
spi_controller = SPI_CONTROLLER_TEGRA2;
/* Init variables */
spi_cmd = (uint32_t *)spi_base;
spi_sts = (uint32_t *)(spi_base + 0x04);
register_tegra2_undo(clkrst_base + 0x08);
register_tegra2_undo(clkrst_base + 0x114);
register_tegra2_undo(clkrst_base + 0x14);
/*
* SPI reset/clocks init - reset SPI, set clocks, release from reset
*/
val = mmio_readl(clkrst_base + 0x08);
mmio_writel((val | 0x800), (clkrst_base + 0x08));
msg_pdbg("%s: ClkRst = %08x\n", __func__, val);
val = mmio_readl(clkrst_base + 0x14);
mmio_writel((val | 0x800), (clkrst_base + 0x14));
msg_pdbg("%s: ClkEnable = %08x\n", __func__, val);
/* Change default SPI clock from 12MHz to 6MHz, same as BootROM */
val = mmio_readl(clkrst_base + 0x114);
mmio_writel((val | 0x2), (clkrst_base + 0x114));
msg_pdbg("%s: ClkSrc = %08x\n", __func__, val);
val = mmio_readl(clkrst_base + 0x08);
mmio_writel((val & 0xFFFFF7FF), (clkrst_base + 0x08));
msg_pdbg("%s: ClkRst final = %08x\n", __func__, val);
/* Clear stale status here */
mmio_writel(SPI_STAT_RDY | SPI_STAT_RXF_FLUSH | SPI_STAT_TXF_FLUSH |
SPI_STAT_RXF_UNR | SPI_STAT_TXF_OVF, spi_sts);
msg_pdbg("%s: STATUS = %08x\n", __func__, mmio_readl(spi_sts));
/*
* Use sw-controlled CS, so we can clock in data after ReadID, etc.
*/
mmio_writel(mmio_readl(spi_cmd) | SPI_CMD_CS_SOFT, spi_cmd);
msg_pdbg("%s: COMMAND = %08x\n", __func__, mmio_readl(spi_cmd));
register_tegra2_undo(apbmisc_base + 0x84);
register_tegra2_undo(apbmisc_base + 0x20);
register_tegra2_undo(apbmisc_base + 0x88);
/*
* SPI pins on Tegra2 are muxed - change pinmux last due to UART issue
*/
val = mmio_readl(apbmisc_base + 0x88);
val |= 0xC0000000;
mmio_writel(val, (apbmisc_base + 0x88));
msg_pdbg("%s: PinMuxRegC = %08x\n", __func__, val);
val = mmio_readl(apbmisc_base + 0x20);
val &= 0xFFFFFFFE;
mmio_writel(val, (apbmisc_base + 0x20));
msg_pdbg("%s: TriStateReg = %08x\n", __func__, val);
/* delay 100ms so that all chars in buffer (1KB) can be flushed. */
programmer_delay(100000);
/*
* We need to dynamically change the pinmux, shared w/UART RXD/CTS!
*/
val = mmio_readl(apbmisc_base + 0x84);
val |= 0x0000000C; /* 3 = SFLASH */
mmio_writel(val, (apbmisc_base + 0x84));
msg_pdbg("%s: PinMuxRegB = %08x\n", __func__, val);
/* On Seaboard, MOSI/MISO are shared w/UART.
* Use GPIO I3 (UART_DISABLE) to tristate UART during SPI activity.
* Enable UART later (cs_deactivate) so we can use it for U-Boot comms.
*/
msg_pdbg("%s: DISABLING UART!\n", __func__);
tg2_gpio_direction_output(UART_DISABLE_PORT, UART_DISABLE_BIT, 1);
return 0;
}
/* Unmap register spaces */
void tegra2_spi_shutdown(void *not_used)
{
physunmap(gpio_base, 4096);
physunmap(clkrst_base, 4096);
physunmap(apbmisc_base, 4096);
physunmap(spi_base - 0x380, 4096);
}
#endif