;; VSX patterns. ;; Copyright (C) 2009-2014 Free Software Foundation, Inc. ;; Contributed by Michael Meissner meissner@linux.vnet.ibm.com

;; This file is part of GCC.

;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version.

;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details.

;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; Iterator for both scalar and vector floating point types supported by VSX (define_mode_iterator VSX_B [DF V4SF V2DF])

;; Iterator for the 2 64-bit vector types (define_mode_iterator VSX_D [V2DF V2DI])

;; Iterator for the 2 64-bit vector types + 128-bit types that are loaded with ;; lxvd2x to properly handle swapping words on little endian (define_mode_iterator VSX_LE [V2DF V2DI V1TI (TI “VECTOR_MEM_VSX_P (TImode)”)])

;; Iterator for the 2 32-bit vector types (define_mode_iterator VSX_W [V4SF V4SI])

;; Iterator for the DF types (define_mode_iterator VSX_DF [V2DF DF])

;; Iterator for vector floating point types supported by VSX (define_mode_iterator VSX_F [V4SF V2DF])

;; Iterator for logical types supported by VSX (define_mode_iterator VSX_L [V16QI V8HI V4SI V2DI V4SF V2DF V1TI TI])

;; Iterator for memory move. Handle TImode specially to allow ;; it to use gprs as well as vsx registers. (define_mode_iterator VSX_M [V16QI V8HI V4SI V2DI V4SF V2DF V1TI])

(define_mode_iterator VSX_M2 [V16QI V8HI V4SI V2DI V4SF V2DF V1TI (TI “TARGET_VSX_TIMODE”)])

;; Map into the appropriate load/store name based on the type (define_mode_attr VSm [(V16QI “vw4”) (V8HI “vw4”) (V4SI “vw4”) (V4SF “vw4”) (V2DF “vd2”) (V2DI “vd2”) (DF “d”) (V1TI “vd2”) (TI “vd2”)])

;; Map into the appropriate suffix based on the type (define_mode_attr VSs [(V16QI “sp”) (V8HI “sp”) (V4SI “sp”) (V4SF “sp”) (V2DF “dp”) (V2DI “dp”) (DF “dp”) (SF “sp”) (V1TI “dp”) (TI “dp”)])

;; Map the register class used (define_mode_attr VSr [(V16QI “v”) (V8HI “v”) (V4SI “v”) (V4SF “wf”) (V2DI “wd”) (V2DF “wd”) (DI “wi”) (DF “ws”) (SF “ww”) (V1TI “v”) (TI “wt”)])

;; Map the register class used for float<->int conversions (floating point side) ;; VSr2 is the preferred register class, VSr3 is any register class that will ;; hold the data (define_mode_attr VSr2 [(V2DF “wd”) (V4SF “wf”) (DF “ws”) (SF “ww”) (DI “wi”)])

(define_mode_attr VSr3 [(V2DF “wa”) (V4SF “wa”) (DF “ws”) (SF “ww”) (DI “wi”)])

;; Map the register class for sp<->dp float conversions, destination (define_mode_attr VSr4 [(SF “ws”) (DF “f”) (V2DF “wd”) (V4SF “v”)])

;; Map the register class for sp<->dp float conversions, source (define_mode_attr VSr5 [(SF “ws”) (DF “f”) (V2DF “v”) (V4SF “wd”)])

;; The VSX register class that a type can occupy, even if it is not the ;; preferred register class (VSr is the preferred register class that will get ;; allocated first). (define_mode_attr VSa [(V16QI “wa”) (V8HI “wa”) (V4SI “wa”) (V4SF “wa”) (V2DI “wa”) (V2DF “wa”) (DI “wi”) (DF “ws”) (SF “ww”) (V1TI “wa”) (TI “wt”)])

;; Same size integer type for floating point data (define_mode_attr VSi [(V4SF “v4si”) (V2DF “v2di”) (DF “di”)])

(define_mode_attr VSI [(V4SF “V4SI”) (V2DF “V2DI”) (DF “DI”)])

;; Word size for same size conversion (define_mode_attr VSc [(V4SF “w”) (V2DF “d”) (DF “d”)])

;; Map into either s or v, depending on whether this is a scalar or vector ;; operation (define_mode_attr VSv [(V16QI “v”) (V8HI “v”) (V4SI “v”) (V4SF “v”) (V2DI “v”) (V2DF “v”) (V1TI “v”) (DF “s”)])

;; Appropriate type for add ops (and other simple FP ops) (define_mode_attr VStype_simple [(V2DF “vecdouble”) (V4SF “vecfloat”) (DF “fp”)])

(define_mode_attr VSfptype_simple [(V2DF “fp_addsub_d”) (V4SF “fp_addsub_s”) (DF “fp_addsub_d”)])

;; Appropriate type for multiply ops (define_mode_attr VStype_mul [(V2DF “vecdouble”) (V4SF “vecfloat”) (DF “dmul”)])

(define_mode_attr VSfptype_mul [(V2DF “fp_mul_d”) (V4SF “fp_mul_s”) (DF “fp_mul_d”)])

;; Appropriate type for divide ops. (define_mode_attr VStype_div [(V2DF “vecdiv”) (V4SF “vecfdiv”) (DF “ddiv”)])

(define_mode_attr VSfptype_div [(V2DF “fp_div_d”) (V4SF “fp_div_s”) (DF “fp_div_d”)])

;; Appropriate type for sqrt ops. For now, just lump the vector sqrt with ;; the scalar sqrt (define_mode_attr VStype_sqrt [(V2DF “dsqrt”) (V4SF “ssqrt”) (DF “dsqrt”)])

(define_mode_attr VSfptype_sqrt [(V2DF “fp_sqrt_d”) (V4SF “fp_sqrt_s”) (DF “fp_sqrt_d”)])

;; Iterator and modes for sp<->dp conversions ;; Because scalar SF values are represented internally as double, use the ;; V4SF type to represent this than SF. (define_mode_iterator VSX_SPDP [DF V4SF V2DF])

(define_mode_attr VS_spdp_res [(DF “V4SF”) (V4SF “V2DF”) (V2DF “V4SF”)])

(define_mode_attr VS_spdp_insn [(DF “xscvdpsp”) (V4SF “xvcvspdp”) (V2DF “xvcvdpsp”)])

(define_mode_attr VS_spdp_type [(DF “fp”) (V4SF “vecdouble”) (V2DF “vecdouble”)])

;; Map the scalar mode for a vector type (define_mode_attr VS_scalar [(V1TI “TI”) (V2DF “DF”) (V2DI “DI”) (V4SF “SF”) (V4SI “SI”) (V8HI “HI”) (V16QI “QI”)])

;; Map to a double-sized vector mode (define_mode_attr VS_double [(V4SI “V8SI”) (V4SF “V8SF”) (V2DI “V4DI”) (V2DF “V4DF”) (V1TI “V2TI”)])

;; Map register class for 64-bit element in 128-bit vector for direct moves ;; to/from gprs (define_mode_attr VS_64dm [(V2DF “wk”) (V2DI “wj”)])

;; Map register class for 64-bit element in 128-bit vector for normal register ;; to register moves (define_mode_attr VS_64reg [(V2DF “ws”) (V2DI “wi”)])

;; Constants for creating unspecs (define_c_enum “unspec” [UNSPEC_VSX_CONCAT UNSPEC_VSX_CVDPSXWS UNSPEC_VSX_CVDPUXWS UNSPEC_VSX_CVSPDP UNSPEC_VSX_CVSPDPN UNSPEC_VSX_CVDPSPN UNSPEC_VSX_CVSXWDP UNSPEC_VSX_CVUXWDP UNSPEC_VSX_CVSXDSP UNSPEC_VSX_CVUXDSP UNSPEC_VSX_CVSPSXDS UNSPEC_VSX_CVSPUXDS UNSPEC_VSX_TDIV UNSPEC_VSX_TSQRT UNSPEC_VSX_SET UNSPEC_VSX_ROUND_I UNSPEC_VSX_ROUND_IC UNSPEC_VSX_SLDWI UNSPEC_VSX_XXSPLTW ])

;; VSX moves

;; The patterns for LE permuted loads and stores come before the general ;; VSX moves so they match first. (define_insn_and_split “*vsx_le_perm_load_” [(set (match_operand:VSX_LE 0 “vsx_register_operand” “=”) (match_operand:VSX_LE 1 “memory_operand” “Z”))] “!BYTES_BIG_ENDIAN && TARGET_VSX” “#” “!BYTES_BIG_ENDIAN && TARGET_VSX” [(set (match_dup 2) (vec_select: (match_dup 1) (parallel [(const_int 1) (const_int 0)]))) (set (match_dup 0) (vec_select: (match_dup 2) (parallel [(const_int 1) (const_int 0)])))] " { operands[2] = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (operands[0]) : operands[0]; } " [(set_attr “type” “vecload”) (set_attr “length” “8”)])

(define_insn_and_split “*vsx_le_perm_load_” [(set (match_operand:VSX_W 0 “vsx_register_operand” “=”) (match_operand:VSX_W 1 “memory_operand” “Z”))] “!BYTES_BIG_ENDIAN && TARGET_VSX” “#” “!BYTES_BIG_ENDIAN && TARGET_VSX” [(set (match_dup 2) (vec_select: (match_dup 1) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)]))) (set (match_dup 0) (vec_select: (match_dup 2) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)])))] " { operands[2] = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (operands[0]) : operands[0]; } " [(set_attr “type” “vecload”) (set_attr “length” “8”)])

(define_insn_and_split “*vsx_le_perm_load_v8hi” [(set (match_operand:V8HI 0 “vsx_register_operand” “=wa”) (match_operand:V8HI 1 “memory_operand” “Z”))] “!BYTES_BIG_ENDIAN && TARGET_VSX” “#” “!BYTES_BIG_ENDIAN && TARGET_VSX” [(set (match_dup 2) (vec_select:V8HI (match_dup 1) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)]))) (set (match_dup 0) (vec_select:V8HI (match_dup 2) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)])))] " { operands[2] = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (operands[0]) : operands[0]; } " [(set_attr “type” “vecload”) (set_attr “length” “8”)])

(define_insn_and_split “*vsx_le_perm_load_v16qi” [(set (match_operand:V16QI 0 “vsx_register_operand” “=wa”) (match_operand:V16QI 1 “memory_operand” “Z”))] “!BYTES_BIG_ENDIAN && TARGET_VSX” “#” “!BYTES_BIG_ENDIAN && TARGET_VSX” [(set (match_dup 2) (vec_select:V16QI (match_dup 1) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)]))) (set (match_dup 0) (vec_select:V16QI (match_dup 2) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)])))] " { operands[2] = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (operands[0]) : operands[0]; } " [(set_attr “type” “vecload”) (set_attr “length” “8”)])

(define_insn “*vsx_le_perm_store_” [(set (match_operand:VSX_LE 0 “memory_operand” “=Z”) (match_operand:VSX_LE 1 “vsx_register_operand” “+”))] “!BYTES_BIG_ENDIAN && TARGET_VSX” “#” [(set_attr “type” “vecstore”) (set_attr “length” “12”)])

(define_split [(set (match_operand:VSX_LE 0 “memory_operand” "") (match_operand:VSX_LE 1 “vsx_register_operand” ""))] “!BYTES_BIG_ENDIAN && TARGET_VSX && !reload_completed” [(set (match_dup 2) (vec_select: (match_dup 1) (parallel [(const_int 1) (const_int 0)]))) (set (match_dup 0) (vec_select: (match_dup 2) (parallel [(const_int 1) (const_int 0)])))] { operands[2] = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (operands[1]) : operands[1]; })

;; The post-reload split requires that we re-permute the source ;; register in case it is still live. (define_split [(set (match_operand:VSX_LE 0 “memory_operand” "") (match_operand:VSX_LE 1 “vsx_register_operand” ""))] “!BYTES_BIG_ENDIAN && TARGET_VSX && reload_completed” [(set (match_dup 1) (vec_select: (match_dup 1) (parallel [(const_int 1) (const_int 0)]))) (set (match_dup 0) (vec_select: (match_dup 1) (parallel [(const_int 1) (const_int 0)]))) (set (match_dup 1) (vec_select: (match_dup 1) (parallel [(const_int 1) (const_int 0)])))] "")

(define_insn “*vsx_le_perm_store_” [(set (match_operand:VSX_W 0 “memory_operand” “=Z”) (match_operand:VSX_W 1 “vsx_register_operand” “+”))] “!BYTES_BIG_ENDIAN && TARGET_VSX” “#” [(set_attr “type” “vecstore”) (set_attr “length” “12”)])

(define_split [(set (match_operand:VSX_W 0 “memory_operand” "") (match_operand:VSX_W 1 “vsx_register_operand” ""))] “!BYTES_BIG_ENDIAN && TARGET_VSX && !reload_completed” [(set (match_dup 2) (vec_select: (match_dup 1) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)]))) (set (match_dup 0) (vec_select: (match_dup 2) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)])))] { operands[2] = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (operands[1]) : operands[1]; })

;; The post-reload split requires that we re-permute the source ;; register in case it is still live. (define_split [(set (match_operand:VSX_W 0 “memory_operand” "") (match_operand:VSX_W 1 “vsx_register_operand” ""))] “!BYTES_BIG_ENDIAN && TARGET_VSX && reload_completed” [(set (match_dup 1) (vec_select: (match_dup 1) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)]))) (set (match_dup 0) (vec_select: (match_dup 1) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)]))) (set (match_dup 1) (vec_select: (match_dup 1) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)])))] "")

(define_insn “*vsx_le_perm_store_v8hi” [(set (match_operand:V8HI 0 “memory_operand” “=Z”) (match_operand:V8HI 1 “vsx_register_operand” “+wa”))] “!BYTES_BIG_ENDIAN && TARGET_VSX” “#” [(set_attr “type” “vecstore”) (set_attr “length” “12”)])

(define_split [(set (match_operand:V8HI 0 “memory_operand” "") (match_operand:V8HI 1 “vsx_register_operand” ""))] “!BYTES_BIG_ENDIAN && TARGET_VSX && !reload_completed” [(set (match_dup 2) (vec_select:V8HI (match_dup 1) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)]))) (set (match_dup 0) (vec_select:V8HI (match_dup 2) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)])))] { operands[2] = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (operands[1]) : operands[1]; })

;; The post-reload split requires that we re-permute the source ;; register in case it is still live. (define_split [(set (match_operand:V8HI 0 “memory_operand” "") (match_operand:V8HI 1 “vsx_register_operand” ""))] “!BYTES_BIG_ENDIAN && TARGET_VSX && reload_completed” [(set (match_dup 1) (vec_select:V8HI (match_dup 1) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)]))) (set (match_dup 0) (vec_select:V8HI (match_dup 1) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)]))) (set (match_dup 1) (vec_select:V8HI (match_dup 1) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)])))] "")

(define_insn “*vsx_le_perm_store_v16qi” [(set (match_operand:V16QI 0 “memory_operand” “=Z”) (match_operand:V16QI 1 “vsx_register_operand” “+wa”))] “!BYTES_BIG_ENDIAN && TARGET_VSX” “#” [(set_attr “type” “vecstore”) (set_attr “length” “12”)])

(define_split [(set (match_operand:V16QI 0 “memory_operand” "") (match_operand:V16QI 1 “vsx_register_operand” ""))] “!BYTES_BIG_ENDIAN && TARGET_VSX && !reload_completed” [(set (match_dup 2) (vec_select:V16QI (match_dup 1) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)]))) (set (match_dup 0) (vec_select:V16QI (match_dup 2) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)])))] { operands[2] = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (operands[1]) : operands[1]; })

;; The post-reload split requires that we re-permute the source ;; register in case it is still live. (define_split [(set (match_operand:V16QI 0 “memory_operand” "") (match_operand:V16QI 1 “vsx_register_operand” ""))] “!BYTES_BIG_ENDIAN && TARGET_VSX && reload_completed” [(set (match_dup 1) (vec_select:V16QI (match_dup 1) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)]))) (set (match_dup 0) (vec_select:V16QI (match_dup 1) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)]))) (set (match_dup 1) (vec_select:V16QI (match_dup 1) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)])))] "")

(define_insn “*vsx_mov” [(set (match_operand:VSX_M 0 “nonimmediate_operand” “=Z,,,?Z,?,?,wQ,?&r,??Y,??r,??r,,?,*r,v,wZ, v”) (match_operand:VSX_M 1 “input_operand” “,Z,,,Z,,r,wQ,r,Y,r,j,j,j,W,v,wZ”))] “VECTOR_MEM_VSX_P (mode) && (register_operand (operands[0], mode) || register_operand (operands[1], mode))” { return rs6000_output_move_128bit (operands); } [(set_attr “type” “vecstore,vecload,vecsimple,vecstore,vecload,vecsimple,load,store,store,load, ,vecsimple,vecsimple,, *,vecstore,vecload”) (set_attr “length” “4,4,4,4,4,4,12,12,12,12,16,4,4,*,16,4,4”)])

;; Unlike other VSX moves, allow the GPRs even for reloading, since a normal ;; use of TImode is for unions. However for plain data movement, slightly ;; favor the vector loads (define_insn “*vsx_movti_64bit” [(set (match_operand:TI 0 “nonimmediate_operand” “=Z,wa,wa,wa,v,v,wZ,wQ,&r,Y,r,r,?r”) (match_operand:TI 1 “input_operand” “wa,Z,wa,O,W,wZ,v,r,wQ,r,Y,r,n”))] “TARGET_POWERPC64 && VECTOR_MEM_VSX_P (TImode) && (register_operand (operands[0], TImode) || register_operand (operands[1], TImode))” { return rs6000_output_move_128bit (operands); } [(set_attr “type” “vecstore,vecload,vecsimple,vecsimple,vecsimple,vecstore,vecload,store,load,store,load,,”) (set_attr “length” “4,4,4,4,16,4,4,8,8,8,8,8,8”)])

(define_insn “*vsx_movti_32bit” [(set (match_operand:TI 0 “nonimmediate_operand” “=Z,wa,wa,wa,v, v,wZ,Q,Y,????r,????r,????r,r”) (match_operand:TI 1 “input_operand” “wa, Z,wa, O,W,wZ, v,r,r, Q, Y, r,n”))] “! TARGET_POWERPC64 && VECTOR_MEM_VSX_P (TImode) && (register_operand (operands[0], TImode) || register_operand (operands[1], TImode))” { switch (which_alternative) { case 0: return “stxvd2x %x1,%y0”;

case 1:
  return "lxvd2x %x0,%y1";

case 2:
  return "xxlor %x0,%x1,%x1";

case 3:
  return "xxlxor %x0,%x0,%x0";

case 4:
  return output_vec_const_move (operands);

case 5:
  return "stvx %1,%y0";

case 6:
  return "lvx %0,%y1";

case 7:
  if (TARGET_STRING)
    return \"stswi %1,%P0,16\";

case 8:
  return \"#\";

case 9:
  /* If the address is not used in the output, we can use lsi.  Otherwise,
 fall through to generating four loads.  */
  if (TARGET_STRING
      && ! reg_overlap_mentioned_p (operands[0], operands[1]))
return \"lswi %0,%P1,16\";
  /* ... fall through ...  */

case 10:
case 11:
case 12:
  return \"#\";
default:
  gcc_unreachable ();
}

} [(set_attr “type” “vecstore,vecload,vecsimple,vecsimple,vecsimple,vecstore,vecload,store_ux,store_ux,load_ux,load_ux, *, *”) (set_attr “length” " 4, 4, 4, 4, 8, 4, 4, 16, 16, 16, 16,16,16") (set (attr “cell_micro”) (if_then_else (match_test “TARGET_STRING”) (const_string “always”) (const_string “conditional”)))])

;; Explicit load/store expanders for the builtin functions (define_expand “vsx_load_” [(set (match_operand:VSX_M 0 “vsx_register_operand” "") (match_operand:VSX_M 1 “memory_operand” ""))] “VECTOR_MEM_VSX_P (mode)” "")

(define_expand “vsx_store_” [(set (match_operand:VSX_M 0 “memory_operand” "") (match_operand:VSX_M 1 “vsx_register_operand” ""))] “VECTOR_MEM_VSX_P (mode)” "")

;; VSX vector floating point arithmetic instructions. The VSX scalar ;; instructions are now combined with the insn for the traditional floating ;; point unit. (define_insn “*vsx_add3” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (plus:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvadd %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “*vsx_sub3” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (minus:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvsub %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “*vsx_mul3” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (mult:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvmul %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_mul>”)])

(define_insn “*vsx_div3” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (div:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvdiv %x0,%x1,%x2” [(set_attr “type” “<VStype_div>”) (set_attr “fp_type” “<VSfptype_div>”)])

;; tdiv instruction returning the FG flag (define_expand “vsx_tdiv3_fg” [(set (match_dup 3) (unspec:CCFP [(match_operand:VSX_B 1 “vsx_register_operand” "") (match_operand:VSX_B 2 “vsx_register_operand” "")] UNSPEC_VSX_TDIV)) (set (match_operand:SI 0 “gpc_reg_operand” "") (gt:SI (match_dup 3) (const_int 0)))] “VECTOR_UNIT_VSX_P (mode)” { operands[3] = gen_reg_rtx (CCFPmode); })

;; tdiv instruction returning the FE flag (define_expand “vsx_tdiv3_fe” [(set (match_dup 3) (unspec:CCFP [(match_operand:VSX_B 1 “vsx_register_operand” "") (match_operand:VSX_B 2 “vsx_register_operand” "")] UNSPEC_VSX_TDIV)) (set (match_operand:SI 0 “gpc_reg_operand” "") (eq:SI (match_dup 3) (const_int 0)))] “VECTOR_UNIT_VSX_P (mode)” { operands[3] = gen_reg_rtx (CCFPmode); })

(define_insn “*vsx_tdiv3_internal” [(set (match_operand:CCFP 0 “cc_reg_operand” “=x,x”) (unspec:CCFP [(match_operand:VSX_B 1 “vsx_register_operand” “,”) (match_operand:VSX_B 2 “vsx_register_operand” “,”)] UNSPEC_VSX_TDIV))] “VECTOR_UNIT_VSX_P (mode)” “xtdiv %0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_fre2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (unspec:VSX_F [(match_operand:VSX_F 1 “vsx_register_operand” “,”)] UNSPEC_FRES))] “VECTOR_UNIT_VSX_P (mode)” “xvre %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “*vsx_neg2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (neg:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvneg %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “*vsx_abs2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (abs:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvabs %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_nabs2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (neg:VSX_F (abs:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”))))] “VECTOR_UNIT_VSX_P (mode)” “xvnabs %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_smax3” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (smax:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvmax %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “*vsx_smin3” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (smin:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvmin %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “*vsx_sqrt2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (sqrt:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvsqrt %x0,%x1” [(set_attr “type” “<VStype_sqrt>”) (set_attr “fp_type” “<VSfptype_sqrt>”)])

(define_insn “*vsx_rsqrte2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (unspec:VSX_F [(match_operand:VSX_F 1 “vsx_register_operand” “,”)] UNSPEC_RSQRT))] “VECTOR_UNIT_VSX_P (mode)” “xvrsqrte %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

;; tsqrt returning the fg flag (define_expand “vsx_tsqrt2_fg” [(set (match_dup 3) (unspec:CCFP [(match_operand:VSX_B 1 “vsx_register_operand” "")] UNSPEC_VSX_TSQRT)) (set (match_operand:SI 0 “gpc_reg_operand” "") (gt:SI (match_dup 3) (const_int 0)))] “VECTOR_UNIT_VSX_P (mode)” { operands[3] = gen_reg_rtx (CCFPmode); })

;; tsqrt returning the fe flag (define_expand “vsx_tsqrt2_fe” [(set (match_dup 3) (unspec:CCFP [(match_operand:VSX_B 1 “vsx_register_operand” "")] UNSPEC_VSX_TSQRT)) (set (match_operand:SI 0 “gpc_reg_operand” "") (eq:SI (match_dup 3) (const_int 0)))] “VECTOR_UNIT_VSX_P (mode)” { operands[3] = gen_reg_rtx (CCFPmode); })

(define_insn “*vsx_tsqrt2_internal” [(set (match_operand:CCFP 0 “cc_reg_operand” “=x,x”) (unspec:CCFP [(match_operand:VSX_B 1 “vsx_register_operand” “,”)] UNSPEC_VSX_TSQRT))] “VECTOR_UNIT_VSX_P (mode)” “xtsqrt %0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

;; Fused vector multiply/add instructions. Support the classical Altivec ;; versions of fma, which allows the target to be a separate register from the ;; 3 inputs. Under VSX, the target must be either the addend or the first ;; multiply.

(define_insn “*vsx_fmav4sf4” [(set (match_operand:V4SF 0 “vsx_register_operand” “=ws,ws,?wa,?wa,v”) (fma:V4SF (match_operand:V4SF 1 “vsx_register_operand” “%ws,ws,wa,wa,v”) (match_operand:V4SF 2 “vsx_register_operand” “ws,0,wa,0,v”) (match_operand:V4SF 3 “vsx_register_operand” “0,ws,0,wa,v”)))] “VECTOR_UNIT_VSX_P (V4SFmode)” “@ xvmaddasp %x0,%x1,%x2 xvmaddmsp %x0,%x1,%x3 xvmaddasp %x0,%x1,%x2 xvmaddmsp %x0,%x1,%x3 vmaddfp %0,%1,%2,%3” [(set_attr “type” “vecfloat”)])

(define_insn “*vsx_fmav2df4” [(set (match_operand:V2DF 0 “vsx_register_operand” “=ws,ws,?wa,?wa”) (fma:V2DF (match_operand:V2DF 1 “vsx_register_operand” “%ws,ws,wa,wa”) (match_operand:V2DF 2 “vsx_register_operand” “ws,0,wa,0”) (match_operand:V2DF 3 “vsx_register_operand” “0,ws,0,wa”)))] “VECTOR_UNIT_VSX_P (V2DFmode)” “@ xvmaddadp %x0,%x1,%x2 xvmaddmdp %x0,%x1,%x3 xvmaddadp %x0,%x1,%x2 xvmaddmdp %x0,%x1,%x3” [(set_attr “type” “vecdouble”)])

(define_insn “*vsx_fms4” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,,?,?”) (fma:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “%,,,”) (match_operand:VSX_F 2 “vsx_register_operand” “,0,,0”) (neg:VSX_F (match_operand:VSX_F 3 “vsx_register_operand” “0,,0,”))))] “VECTOR_UNIT_VSX_P (mode)” “@ xvmsuba %x0,%x1,%x2 xvmsubm %x0,%x1,%x3 xvmsuba %x0,%x1,%x2 xvmsubm %x0,%x1,%x3” [(set_attr “type” “<VStype_mul>”)])

(define_insn “*vsx_nfma4” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,,?,?”) (neg:VSX_F (fma:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,,,”) (match_operand:VSX_F 2 “vsx_register_operand” “,0,,0”) (match_operand:VSX_F 3 “vsx_register_operand” “0,,0,”))))] “VECTOR_UNIT_VSX_P (mode)” “@ xvnmadda %x0,%x1,%x2 xvnmaddm %x0,%x1,%x3 xvnmadda %x0,%x1,%x2 xvnmaddm %x0,%x1,%x3” [(set_attr “type” “<VStype_mul>”) (set_attr “fp_type” “<VSfptype_mul>”)])

(define_insn “*vsx_nfmsv4sf4” [(set (match_operand:V4SF 0 “vsx_register_operand” “=wf,wf,?wa,?wa,v”) (neg:V4SF (fma:V4SF (match_operand:V4SF 1 “vsx_register_operand” “%wf,wf,wa,wa,v”) (match_operand:V4SF 2 “vsx_register_operand” “wf,0,wa,0,v”) (neg:V4SF (match_operand:V4SF 3 “vsx_register_operand” “0,wf,0,wa,v”)))))] “VECTOR_UNIT_VSX_P (V4SFmode)” “@ xvnmsubasp %x0,%x1,%x2 xvnmsubmsp %x0,%x1,%x3 xvnmsubasp %x0,%x1,%x2 xvnmsubmsp %x0,%x1,%x3 vnmsubfp %0,%1,%2,%3” [(set_attr “type” “vecfloat”)])

(define_insn “*vsx_nfmsv2df4” [(set (match_operand:V2DF 0 “vsx_register_operand” “=wd,wd,?wa,?wa”) (neg:V2DF (fma:V2DF (match_operand:V2DF 1 “vsx_register_operand” “%wd,wd,wa,wa”) (match_operand:V2DF 2 “vsx_register_operand” “wd,0,wa,0”) (neg:V2DF (match_operand:V2DF 3 “vsx_register_operand” “0,wd,0,wa”)))))] “VECTOR_UNIT_VSX_P (V2DFmode)” “@ xvnmsubadp %x0,%x1,%x2 xvnmsubmdp %x0,%x1,%x3 xvnmsubadp %x0,%x1,%x2 xvnmsubmdp %x0,%x1,%x3” [(set_attr “type” “vecdouble”)])

;; Vector conditional expressions (no scalar version for these instructions) (define_insn “vsx_eq” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (eq:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvcmpeq %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_gt” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (gt:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvcmpgt %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “*vsx_ge” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (ge:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvcmpge %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

;; Compare vectors producing a vector result and a predicate, setting CR6 to ;; indicate a combined status (define_insn “*vsx_eq__p” [(set (reg:CC 74) (unspec:CC [(eq:CC (match_operand:VSX_F 1 “vsx_register_operand” “,?”) (match_operand:VSX_F 2 “vsx_register_operand” “,?”))] UNSPEC_PREDICATE)) (set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (eq:VSX_F (match_dup 1) (match_dup 2)))] “VECTOR_UNIT_VSX_P (mode)” “xvcmpeq. %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”)])

(define_insn “*vsx_gt__p” [(set (reg:CC 74) (unspec:CC [(gt:CC (match_operand:VSX_F 1 “vsx_register_operand” “,?”) (match_operand:VSX_F 2 “vsx_register_operand” “,?”))] UNSPEC_PREDICATE)) (set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (gt:VSX_F (match_dup 1) (match_dup 2)))] “VECTOR_UNIT_VSX_P (mode)” “xvcmpgt. %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”)])

(define_insn “*vsx_ge__p” [(set (reg:CC 74) (unspec:CC [(ge:CC (match_operand:VSX_F 1 “vsx_register_operand” “,?”) (match_operand:VSX_F 2 “vsx_register_operand” “,?”))] UNSPEC_PREDICATE)) (set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (ge:VSX_F (match_dup 1) (match_dup 2)))] “VECTOR_UNIT_VSX_P (mode)” “xvcmpge. %x0,%x1,%x2” [(set_attr “type” “<VStype_simple>”)])

;; Vector select (define_insn “*vsx_xxsel” [(set (match_operand:VSX_L 0 “vsx_register_operand” “=,?”) (if_then_else:VSX_L (ne:CC (match_operand:VSX_L 1 “vsx_register_operand” “,”) (match_operand:VSX_L 4 “zero_constant” "")) (match_operand:VSX_L 2 “vsx_register_operand” “,”) (match_operand:VSX_L 3 “vsx_register_operand” “,”)))] “VECTOR_MEM_VSX_P (mode)” “xxsel %x0,%x3,%x2,%x1” [(set_attr “type” “vecperm”)])

(define_insn “*vsx_xxsel_uns” [(set (match_operand:VSX_L 0 “vsx_register_operand” “=,?”) (if_then_else:VSX_L (ne:CCUNS (match_operand:VSX_L 1 “vsx_register_operand” “,”) (match_operand:VSX_L 4 “zero_constant” "")) (match_operand:VSX_L 2 “vsx_register_operand” “,”) (match_operand:VSX_L 3 “vsx_register_operand” “,”)))] “VECTOR_MEM_VSX_P (mode)” “xxsel %x0,%x3,%x2,%x1” [(set_attr “type” “vecperm”)])

;; Copy sign (define_insn “vsx_copysign3” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (unspec:VSX_F [(match_operand:VSX_F 1 “vsx_register_operand” “,”) (match_operand:VSX_F 2 “vsx_register_operand” “,”)] UNSPEC_COPYSIGN))] “VECTOR_UNIT_VSX_P (mode)” “xvcpsgn %x0,%x2,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

;; For the conversions, limit the register class for the integer value to be ;; the fprs because we don‘t want to add the altivec registers to movdi/movsi. ;; For the unsigned tests, there isn’t a generic double -> unsigned conversion ;; in rs6000.md so don‘t test VECTOR_UNIT_VSX_P, just test against VSX. ;; Don’t use vsx_register_operand here, use gpc_reg_operand to match rs6000.md. (define_insn “vsx_float2” [(set (match_operand:VSX_B 0 “gpc_reg_operand” “=,?”) (float:VSX_B (match_operand: 1 “gpc_reg_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xcvsx %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_floatuns2” [(set (match_operand:VSX_B 0 “gpc_reg_operand” “=,?”) (unsigned_float:VSX_B (match_operand: 1 “gpc_reg_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xcvux %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_fix_trunc2” [(set (match_operand: 0 “gpc_reg_operand” “=,?”) (fix: (match_operand:VSX_B 1 “gpc_reg_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xcvsxs %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_fixuns_trunc2” [(set (match_operand: 0 “gpc_reg_operand” “=,?”) (unsigned_fix: (match_operand:VSX_B 1 “gpc_reg_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xcvuxs %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

;; Math rounding functions (define_insn “vsx_xri” [(set (match_operand:VSX_B 0 “vsx_register_operand” “=,?”) (unspec:VSX_B [(match_operand:VSX_B 1 “vsx_register_operand” “,”)] UNSPEC_VSX_ROUND_I))] “VECTOR_UNIT_VSX_P (mode)” “xri %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_xric” [(set (match_operand:VSX_B 0 “vsx_register_operand” “=,?”) (unspec:VSX_B [(match_operand:VSX_B 1 “vsx_register_operand” “,”)] UNSPEC_VSX_ROUND_IC))] “VECTOR_UNIT_VSX_P (mode)” “xric %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_btrunc2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (fix:VSX_F (match_operand:VSX_F 1 “vsx_register_operand” “,”)))] “VECTOR_UNIT_VSX_P (mode)” “xvriz %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “*vsx_b2trunc2” [(set (match_operand:VSX_B 0 “vsx_register_operand” “=,?”) (unspec:VSX_B [(match_operand:VSX_B 1 “vsx_register_operand” “,”)] UNSPEC_FRIZ))] “VECTOR_UNIT_VSX_P (mode)” “xriz %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_floor2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (unspec:VSX_F [(match_operand:VSX_F 1 “vsx_register_operand” “,”)] UNSPEC_FRIM))] “VECTOR_UNIT_VSX_P (mode)” “xvrim %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

(define_insn “vsx_ceil2” [(set (match_operand:VSX_F 0 “vsx_register_operand” “=,?”) (unspec:VSX_F [(match_operand:VSX_F 1 “vsx_register_operand” “,”)] UNSPEC_FRIP))] “VECTOR_UNIT_VSX_P (mode)” “xvrip %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

;; VSX convert to/from double vector

;; Convert between single and double precision ;; Don't use xscvspdp and xscvdpsp for scalar conversions, since the normal ;; scalar single precision instructions internally use the double format. ;; Prefer the altivec registers, since we likely will need to do a vperm (define_insn “vsx_<VS_spdp_insn>” [(set (match_operand:<VS_spdp_res> 0 “vsx_register_operand” “=,?”) (unspec:<VS_spdp_res> [(match_operand:VSX_SPDP 1 “vsx_register_operand” “,”)] UNSPEC_VSX_CVSPDP))] “VECTOR_UNIT_VSX_P (mode)” “<VS_spdp_insn> %x0,%x1” [(set_attr “type” “<VS_spdp_type>”)])

;; xscvspdp, represent the scalar SF type as V4SF (define_insn “vsx_xscvspdp” [(set (match_operand:DF 0 “vsx_register_operand” “=ws”) (unspec:DF [(match_operand:V4SF 1 “vsx_register_operand” “wa”)] UNSPEC_VSX_CVSPDP))] “VECTOR_UNIT_VSX_P (V4SFmode)” “xscvspdp %x0,%x1” [(set_attr “type” “fp”)])

;; xscvdpsp used for splat'ing a scalar to V4SF, knowing that the internal SF ;; format of scalars is actually DF. (define_insn “vsx_xscvdpsp_scalar” [(set (match_operand:V4SF 0 “vsx_register_operand” “=wa”) (unspec:V4SF [(match_operand:SF 1 “vsx_register_operand” “f”)] UNSPEC_VSX_CVSPDP))] “VECTOR_UNIT_VSX_P (V4SFmode)” “xscvdpsp %x0,%x1” [(set_attr “type” “fp”)])

;; Same as vsx_xscvspdp, but use SF as the type (define_insn “vsx_xscvspdp_scalar2” [(set (match_operand:SF 0 “vsx_register_operand” “=f”) (unspec:SF [(match_operand:V4SF 1 “vsx_register_operand” “wa”)] UNSPEC_VSX_CVSPDP))] “VECTOR_UNIT_VSX_P (V4SFmode)” “xscvspdp %x0,%x1” [(set_attr “type” “fp”)])

;; ISA 2.07 xscvdpspn/xscvspdpn that does not raise an error on signalling NaNs (define_insn “vsx_xscvdpspn” [(set (match_operand:V4SF 0 “vsx_register_operand” “=ww,?ww”) (unspec:V4SF [(match_operand:DF 1 “vsx_register_operand” “wd,wa”)] UNSPEC_VSX_CVDPSPN))] “TARGET_XSCVDPSPN” “xscvdpspn %x0,%x1” [(set_attr “type” “fp”)])

(define_insn “vsx_xscvspdpn” [(set (match_operand:DF 0 “vsx_register_operand” “=ws,?ws”) (unspec:DF [(match_operand:V4SF 1 “vsx_register_operand” “wf,wa”)] UNSPEC_VSX_CVSPDPN))] “TARGET_XSCVSPDPN” “xscvspdpn %x0,%x1” [(set_attr “type” “fp”)])

(define_insn “vsx_xscvdpspn_scalar” [(set (match_operand:V4SF 0 “vsx_register_operand” “=wf,?wa”) (unspec:V4SF [(match_operand:SF 1 “vsx_register_operand” “ww,ww”)] UNSPEC_VSX_CVDPSPN))] “TARGET_XSCVDPSPN” “xscvdpspn %x0,%x1” [(set_attr “type” “fp”)])

;; Used by direct move to move a SFmode value from GPR to VSX register (define_insn “vsx_xscvspdpn_directmove” [(set (match_operand:SF 0 “vsx_register_operand” “=wa”) (unspec:SF [(match_operand:DI 1 “vsx_register_operand” “wa”)] UNSPEC_VSX_CVSPDPN))] “TARGET_XSCVSPDPN” “xscvspdpn %x0,%x1” [(set_attr “type” “fp”)])

;; Convert from 64-bit to 32-bit types ;; Note, favor the Altivec registers since the usual use of these instructions ;; is in vector converts and we need to use the Altivec vperm instruction.

(define_insn “vsx_xvcvdpsxws” [(set (match_operand:V4SI 0 “vsx_register_operand” “=v,?wa”) (unspec:V4SI [(match_operand:V2DF 1 “vsx_register_operand” “wd,wa”)] UNSPEC_VSX_CVDPSXWS))] “VECTOR_UNIT_VSX_P (V2DFmode)” “xvcvdpsxws %x0,%x1” [(set_attr “type” “vecdouble”)])

(define_insn “vsx_xvcvdpuxws” [(set (match_operand:V4SI 0 “vsx_register_operand” “=v,?wa”) (unspec:V4SI [(match_operand:V2DF 1 “vsx_register_operand” “wd,wa”)] UNSPEC_VSX_CVDPUXWS))] “VECTOR_UNIT_VSX_P (V2DFmode)” “xvcvdpuxws %x0,%x1” [(set_attr “type” “vecdouble”)])

(define_insn “vsx_xvcvsxdsp” [(set (match_operand:V4SI 0 “vsx_register_operand” “=wd,?wa”) (unspec:V4SI [(match_operand:V2DF 1 “vsx_register_operand” “wf,wa”)] UNSPEC_VSX_CVSXDSP))] “VECTOR_UNIT_VSX_P (V2DFmode)” “xvcvsxdsp %x0,%x1” [(set_attr “type” “vecfloat”)])

(define_insn “vsx_xvcvuxdsp” [(set (match_operand:V4SI 0 “vsx_register_operand” “=wd,?wa”) (unspec:V4SI [(match_operand:V2DF 1 “vsx_register_operand” “wf,wa”)] UNSPEC_VSX_CVUXDSP))] “VECTOR_UNIT_VSX_P (V2DFmode)” “xvcvuxwdp %x0,%x1” [(set_attr “type” “vecdouble”)])

;; Convert from 32-bit to 64-bit types (define_insn “vsx_xvcvsxwdp” [(set (match_operand:V2DF 0 “vsx_register_operand” “=wd,?wa”) (unspec:V2DF [(match_operand:V4SI 1 “vsx_register_operand” “wf,wa”)] UNSPEC_VSX_CVSXWDP))] “VECTOR_UNIT_VSX_P (V2DFmode)” “xvcvsxwdp %x0,%x1” [(set_attr “type” “vecdouble”)])

(define_insn “vsx_xvcvuxwdp” [(set (match_operand:V2DF 0 “vsx_register_operand” “=wd,?wa”) (unspec:V2DF [(match_operand:V4SI 1 “vsx_register_operand” “wf,wa”)] UNSPEC_VSX_CVUXWDP))] “VECTOR_UNIT_VSX_P (V2DFmode)” “xvcvuxwdp %x0,%x1” [(set_attr “type” “vecdouble”)])

(define_insn “vsx_xvcvspsxds” [(set (match_operand:V2DI 0 “vsx_register_operand” “=v,?wa”) (unspec:V2DI [(match_operand:V4SF 1 “vsx_register_operand” “wd,wa”)] UNSPEC_VSX_CVSPSXDS))] “VECTOR_UNIT_VSX_P (V2DFmode)” “xvcvspsxds %x0,%x1” [(set_attr “type” “vecdouble”)])

(define_insn “vsx_xvcvspuxds” [(set (match_operand:V2DI 0 “vsx_register_operand” “=v,?wa”) (unspec:V2DI [(match_operand:V4SF 1 “vsx_register_operand” “wd,wa”)] UNSPEC_VSX_CVSPUXDS))] “VECTOR_UNIT_VSX_P (V2DFmode)” “xvcvspuxds %x0,%x1” [(set_attr “type” “vecdouble”)])

;; Only optimize (float (fix x)) -> frz if we are in fast-math mode, since ;; since the xsrdpiz instruction does not truncate the value if the floating ;; point value is < LONG_MIN or > LONG_MAX. (define_insn “*vsx_float_fix_2” [(set (match_operand:VSX_DF 0 “vsx_register_operand” “=,?”) (float:VSX_DF (fix: (match_operand:VSX_DF 1 “vsx_register_operand” “,?”))))] “TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT && VECTOR_UNIT_VSX_P (mode) && flag_unsafe_math_optimizations && !flag_trapping_math && TARGET_FRIZ” “xriz %x0,%x1” [(set_attr “type” “<VStype_simple>”) (set_attr “fp_type” “<VSfptype_simple>”)])

;; Permute operations

;; Build a V2DF/V2DI vector from two scalars (define_insn “vsx_concat_” [(set (match_operand:VSX_D 0 “vsx_register_operand” “=,?”) (vec_concat:VSX_D (match_operand:<VS_scalar> 1 “vsx_register_operand” “ws,”) (match_operand:<VS_scalar> 2 “vsx_register_operand” “ws,”)))] “VECTOR_MEM_VSX_P (mode)” { if (BYTES_BIG_ENDIAN) return “xxpermdi %x0,%x1,%x2,0”; else return “xxpermdi %x0,%x2,%x1,0”; } [(set_attr “type” “vecperm”)])

;; Special purpose concat using xxpermdi to glue two single precision values ;; together, relying on the fact that internally scalar floats are represented ;; as doubles. This is used to initialize a V4SF vector with 4 floats (define_insn “vsx_concat_v2sf” [(set (match_operand:V2DF 0 “vsx_register_operand” “=wd,?wa”) (unspec:V2DF [(match_operand:SF 1 “vsx_register_operand” “f,f”) (match_operand:SF 2 “vsx_register_operand” “f,f”)] UNSPEC_VSX_CONCAT))] “VECTOR_MEM_VSX_P (V2DFmode)” { if (BYTES_BIG_ENDIAN) return “xxpermdi %x0,%x1,%x2,0”; else return “xxpermdi %x0,%x2,%x1,0”; } [(set_attr “type” “vecperm”)])

;; xxpermdi for little endian loads and stores. We need several of ;; these since the form of the PARALLEL differs by mode. (define_insn “*vsx_xxpermdi2_le_” [(set (match_operand:VSX_LE 0 “vsx_register_operand” “=”) (vec_select:VSX_LE (match_operand:VSX_LE 1 “vsx_register_operand” “”) (parallel [(const_int 1) (const_int 0)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (mode)” “xxpermdi %x0,%x1,%x1,2” [(set_attr “type” “vecperm”)])

(define_insn “*vsx_xxpermdi4_le_” [(set (match_operand:VSX_W 0 “vsx_register_operand” “=”) (vec_select:VSX_W (match_operand:VSX_W 1 “vsx_register_operand” “”) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (mode)” “xxpermdi %x0,%x1,%x1,2” [(set_attr “type” “vecperm”)])

(define_insn “*vsx_xxpermdi8_le_V8HI” [(set (match_operand:V8HI 0 “vsx_register_operand” “=wa”) (vec_select:V8HI (match_operand:V8HI 1 “vsx_register_operand” “wa”) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (V8HImode)” “xxpermdi %x0,%x1,%x1,2” [(set_attr “type” “vecperm”)])

(define_insn “*vsx_xxpermdi16_le_V16QI” [(set (match_operand:V16QI 0 “vsx_register_operand” “=wa”) (vec_select:V16QI (match_operand:V16QI 1 “vsx_register_operand” “wa”) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (V16QImode)” “xxpermdi %x0,%x1,%x1,2” [(set_attr “type” “vecperm”)])

;; lxvd2x for little endian loads. We need several of ;; these since the form of the PARALLEL differs by mode. (define_insn “*vsx_lxvd2x2_le_” [(set (match_operand:VSX_LE 0 “vsx_register_operand” “=”) (vec_select:VSX_LE (match_operand:VSX_LE 1 “memory_operand” “Z”) (parallel [(const_int 1) (const_int 0)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (mode)” “lxvd2x %x0,%y1” [(set_attr “type” “vecload”)])

(define_insn “*vsx_lxvd2x4_le_” [(set (match_operand:VSX_W 0 “vsx_register_operand” “=”) (vec_select:VSX_W (match_operand:VSX_W 1 “memory_operand” “Z”) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (mode)” “lxvd2x %x0,%y1” [(set_attr “type” “vecload”)])

(define_insn “*vsx_lxvd2x8_le_V8HI” [(set (match_operand:V8HI 0 “vsx_register_operand” “=wa”) (vec_select:V8HI (match_operand:V8HI 1 “memory_operand” “Z”) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (V8HImode)” “lxvd2x %x0,%y1” [(set_attr “type” “vecload”)])

(define_insn “*vsx_lxvd2x16_le_V16QI” [(set (match_operand:V16QI 0 “vsx_register_operand” “=wa”) (vec_select:V16QI (match_operand:V16QI 1 “memory_operand” “Z”) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (V16QImode)” “lxvd2x %x0,%y1” [(set_attr “type” “vecload”)])

;; stxvd2x for little endian stores. We need several of ;; these since the form of the PARALLEL differs by mode. (define_insn “*vsx_stxvd2x2_le_” [(set (match_operand:VSX_LE 0 “memory_operand” “=Z”) (vec_select:VSX_LE (match_operand:VSX_LE 1 “vsx_register_operand” “”) (parallel [(const_int 1) (const_int 0)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (mode)” “stxvd2x %x1,%y0” [(set_attr “type” “vecstore”)])

(define_insn “*vsx_stxvd2x4_le_” [(set (match_operand:VSX_W 0 “memory_operand” “=Z”) (vec_select:VSX_W (match_operand:VSX_W 1 “vsx_register_operand” “”) (parallel [(const_int 2) (const_int 3) (const_int 0) (const_int 1)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (mode)” “stxvd2x %x1,%y0” [(set_attr “type” “vecstore”)])

(define_insn “*vsx_stxvd2x8_le_V8HI” [(set (match_operand:V8HI 0 “memory_operand” “=Z”) (vec_select:V8HI (match_operand:V8HI 1 “vsx_register_operand” “wa”) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7) (const_int 0) (const_int 1) (const_int 2) (const_int 3)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (V8HImode)” “stxvd2x %x1,%y0” [(set_attr “type” “vecstore”)])

(define_insn “*vsx_stxvd2x16_le_V16QI” [(set (match_operand:V16QI 0 “memory_operand” “=Z”) (vec_select:V16QI (match_operand:V16QI 1 “vsx_register_operand” “wa”) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15) (const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)])))] “!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (V16QImode)” “stxvd2x %x1,%y0” [(set_attr “type” “vecstore”)])

;; Convert a TImode value into V1TImode (define_expand “vsx_set_v1ti” [(match_operand:V1TI 0 “nonimmediate_operand” "") (match_operand:V1TI 1 “nonimmediate_operand” "") (match_operand:TI 2 “input_operand” "") (match_operand:QI 3 “u5bit_cint_operand” "")] “VECTOR_MEM_VSX_P (V1TImode)” { if (operands[3] != const0_rtx) gcc_unreachable ();

emit_move_insn (operands[0], gen_lowpart (V1TImode, operands[1])); DONE; })

;; Set the element of a V2DI/VD2F mode (define_insn “vsx_set_” [(set (match_operand:VSX_D 0 “vsx_register_operand” “=wd,?”) (unspec:VSX_D [(match_operand:VSX_D 1 “vsx_register_operand” “wd,”) (match_operand:<VS_scalar> 2 “vsx_register_operand” “<VS_64reg>,”) (match_operand:QI 3 “u5bit_cint_operand” “i,i”)] UNSPEC_VSX_SET))] “VECTOR_MEM_VSX_P (mode)” { int idx_first = BYTES_BIG_ENDIAN ? 0 : 1; if (INTVAL (operands[3]) == idx_first) return "xxpermdi %x0,%x2,%x1,1"; else if (INTVAL (operands[3]) == 1 - idx_first) return "xxpermdi %x0,%x1,%x2,0"; else gcc_unreachable (); } [(set_attr “type” “vecperm”)])

;; Extract a DF/DI element from V2DF/V2DI (define_expand “vsx_extract_” [(set (match_operand:<VS_scalar> 0 “register_operand” "") (vec_select:<VS_scalar> (match_operand:VSX_D 1 “register_operand” "") (parallel [(match_operand:QI 2 “u5bit_cint_operand” "")])))] “VECTOR_MEM_VSX_P (mode)” "")

;; Optimize cases were we can do a simple or direct move. ;; Or see if we can avoid doing the move at all (define_insn “*vsx_extract__internal1” [(set (match_operand:<VS_scalar> 0 “register_operand” “=d,<VS_64reg>,r”) (vec_select:<VS_scalar> (match_operand:VSX_D 1 “register_operand” “d,<VS_64reg>,<VS_64dm>”) (parallel [(match_operand:QI 2 “vsx_scalar_64bit” “wD,wD,wD”)])))] “VECTOR_MEM_VSX_P (mode) && TARGET_POWERPC64 && TARGET_DIRECT_MOVE” { int op0_regno = REGNO (operands[0]); int op1_regno = REGNO (operands[1]);

if (op0_regno == op1_regno) return “nop”;

if (INT_REGNO_P (op0_regno)) return “mfvsrd %0,%x1”;

if (FP_REGNO_P (op0_regno) && FP_REGNO_P (op1_regno)) return “fmr %0,%1”;

return “xxlor %x0,%x1,%x1”; } [(set_attr “type” “fp,vecsimple,mftgpr”) (set_attr “length” “4”)])

(define_insn “*vsx_extract__internal2” [(set (match_operand:<VS_scalar> 0 “vsx_register_operand” “=d,<VS_64reg>,<VS_64reg>”) (vec_select:<VS_scalar> (match_operand:VSX_D 1 “vsx_register_operand” “d,wd,wd”) (parallel [(match_operand:QI 2 “u5bit_cint_operand” “wD,wD,i”)])))] “VECTOR_MEM_VSX_P (mode) && (!TARGET_POWERPC64 || !TARGET_DIRECT_MOVE || INTVAL (operands[2]) != VECTOR_ELEMENT_SCALAR_64BIT)” { int fldDM; gcc_assert (UINTVAL (operands[2]) <= 1);

if (INTVAL (operands[2]) == VECTOR_ELEMENT_SCALAR_64BIT) { int op0_regno = REGNO (operands[0]); int op1_regno = REGNO (operands[1]);

  if (op0_regno == op1_regno)
return "nop";

  if (FP_REGNO_P (op0_regno) && FP_REGNO_P (op1_regno))
return "fmr %0,%1";

  return "xxlor %x0,%x1,%x1";
}

fldDM = INTVAL (operands[2]) << 1; if (!BYTES_BIG_ENDIAN) fldDM = 3 - fldDM; operands[3] = GEN_INT (fldDM); return “xxpermdi %x0,%x1,%x1,%3”; } [(set_attr “type” “fp,vecsimple,vecperm”) (set_attr “length” “4”)])

;; Optimize extracting a single scalar element from memory if the scalar is in ;; the correct location to use a single load. (define_insn “*vsx_extract__load” [(set (match_operand:<VS_scalar> 0 “register_operand” “=d,wv,wr”) (vec_select:<VS_scalar> (match_operand:VSX_D 1 “memory_operand” “m,Z,m”) (parallel [(match_operand:QI 2 “vsx_scalar_64bit” “wD,wD,wD”)])))] “VECTOR_MEM_VSX_P (mode)” “@ lfd%U1%X1 %0,%1 lxsd%U1x %x0,%y1 ld%U1%X1 %0,%1” [(set_attr_alternative “type” [(if_then_else (match_test “update_indexed_address_mem (operands[1], VOIDmode)”) (const_string “fpload_ux”) (if_then_else (match_test “update_address_mem (operands[1], VOIDmode)”) (const_string “fpload_u”) (const_string “fpload”))) (const_string “fpload”) (if_then_else (match_test “update_indexed_address_mem (operands[1], VOIDmode)”) (const_string “load_ux”) (if_then_else (match_test “update_address_mem (operands[1], VOIDmode)”) (const_string “load_u”) (const_string “load”)))]) (set_attr “length” “4”)])

;; Optimize storing a single scalar element that is the right location to ;; memory (define_insn “*vsx_extract__store” [(set (match_operand:<VS_scalar> 0 “memory_operand” “=m,Z,?Z”) (vec_select:<VS_scalar> (match_operand:VSX_D 1 “register_operand” “d,wd,”) (parallel [(match_operand:QI 2 “vsx_scalar_64bit” “wD,wD,wD”)])))] “VECTOR_MEM_VSX_P (mode)” “@ stfd%U0%X0 %1,%0 stxsd%U0x %x1,%y0 stxsd%U0x %x1,%y0” [(set_attr_alternative “type” [(if_then_else (match_test “update_indexed_address_mem (operands[0], VOIDmode)”) (const_string “fpstore_ux”) (if_then_else (match_test “update_address_mem (operands[0], VOIDmode)”) (const_string “fpstore_u”) (const_string “fpstore”))) (const_string “fpstore”) (const_string “fpstore”)]) (set_attr “length” “4”)])

;; Extract a SF element from V4SF (define_insn_and_split “vsx_extract_v4sf” [(set (match_operand:SF 0 “vsx_register_operand” “=f,f”) (vec_select:SF (match_operand:V4SF 1 “vsx_register_operand” “,”) (parallel [(match_operand:QI 2 “u5bit_cint_operand” “O,i”)]))) (clobber (match_scratch:V4SF 3 “=X,0”))] “VECTOR_UNIT_VSX_P (V4SFmode)” “@ xscvspdp %x0,%x1 #” "" [(const_int 0)] " { rtx op0 = operands[0]; rtx op1 = operands[1]; rtx op2 = operands[2]; rtx op3 = operands[3]; rtx tmp; HOST_WIDE_INT ele = BYTES_BIG_ENDIAN ? INTVAL (op2) : 3 - INTVAL (op2);

if (ele == 0) tmp = op1; else { if (GET_CODE (op3) == SCRATCH) op3 = gen_reg_rtx (V4SFmode); emit_insn (gen_vsx_xxsldwi_v4sf (op3, op1, op1, GEN_INT (ele))); tmp = op3; } emit_insn (gen_vsx_xscvspdp_scalar2 (op0, tmp)); DONE; }" [(set_attr “length” “4,8”) (set_attr “type” “fp”)])

;; Expand the builtin form of xxpermdi to canonical rtl. (define_expand “vsx_xxpermdi_” [(match_operand:VSX_L 0 “vsx_register_operand” "") (match_operand:VSX_L 1 “vsx_register_operand” "") (match_operand:VSX_L 2 “vsx_register_operand” "") (match_operand:QI 3 “u5bit_cint_operand” "")] “VECTOR_MEM_VSX_P (mode)” { rtx target = operands[0]; rtx op0 = operands[1]; rtx op1 = operands[2]; int mask = INTVAL (operands[3]); rtx perm0 = GEN_INT ((mask >> 1) & 1); rtx perm1 = GEN_INT ((mask & 1) + 2); rtx (*gen) (rtx, rtx, rtx, rtx, rtx);

if (mode == V2DFmode) gen = gen_vsx_xxpermdi2_v2df_1; else { gen = gen_vsx_xxpermdi2_v2di_1; if (mode != V2DImode) { target = gen_lowpart (V2DImode, target); op0 = gen_lowpart (V2DImode, op0); op1 = gen_lowpart (V2DImode, op1); } } /* In little endian mode, vsx_xxpermdi2__1 will perform a transformation we don't want; it is necessary for rs6000_expand_vec_perm_const_1 but not for this use. So we prepare for that by reversing the transformation here. */ if (BYTES_BIG_ENDIAN) emit_insn (gen (target, op0, op1, perm0, perm1)); else { rtx p0 = GEN_INT (3 - INTVAL (perm1)); rtx p1 = GEN_INT (3 - INTVAL (perm0)); emit_insn (gen (target, op1, op0, p0, p1)); } DONE; })

(define_insn “vsx_xxpermdi2__1” [(set (match_operand:VSX_D 0 “vsx_register_operand” “=wd”) (vec_select:VSX_D (vec_concat:<VS_double> (match_operand:VSX_D 1 “vsx_register_operand” “wd”) (match_operand:VSX_D 2 “vsx_register_operand” “wd”)) (parallel [(match_operand 3 “const_0_to_1_operand” "") (match_operand 4 “const_2_to_3_operand” "")])))] “VECTOR_MEM_VSX_P (mode)” { int op3, op4, mask;

/* For little endian, swap operands and invert/swap selectors to get the correct xxpermdi. The operand swap sets up the inputs as a little endian array. The selectors are swapped because they are defined to use big endian ordering. The selectors are inverted to get the correct doublewords for little endian ordering. */ if (BYTES_BIG_ENDIAN) { op3 = INTVAL (operands[3]); op4 = INTVAL (operands[4]); } else { op3 = 3 - INTVAL (operands[4]); op4 = 3 - INTVAL (operands[3]); }

mask = (op3 << 1) | (op4 - 2); operands[3] = GEN_INT (mask);

if (BYTES_BIG_ENDIAN) return “xxpermdi %x0,%x1,%x2,%3”; else return “xxpermdi %x0,%x2,%x1,%3”; } [(set_attr “type” “vecperm”)])

(define_expand “vec_perm_const” [(match_operand:VSX_D 0 “vsx_register_operand” "") (match_operand:VSX_D 1 “vsx_register_operand” "") (match_operand:VSX_D 2 “vsx_register_operand” "") (match_operand:V2DI 3 "" "")] “VECTOR_MEM_VSX_P (mode)” { if (rs6000_expand_vec_perm_const (operands)) DONE; else FAIL; })

;; Expanders for builtins (define_expand “vsx_mergel_” [(use (match_operand:VSX_D 0 “vsx_register_operand” "")) (use (match_operand:VSX_D 1 “vsx_register_operand” "")) (use (match_operand:VSX_D 2 “vsx_register_operand” ""))] “VECTOR_MEM_VSX_P (mode)” { rtvec v; rtx x;

/* Special handling for LE with -maltivec=be. */ if (!BYTES_BIG_ENDIAN && VECTOR_ELT_ORDER_BIG) { v = gen_rtvec (2, GEN_INT (0), GEN_INT (2)); x = gen_rtx_VEC_CONCAT (<VS_double>mode, operands[2], operands[1]); } else { v = gen_rtvec (2, GEN_INT (1), GEN_INT (3)); x = gen_rtx_VEC_CONCAT (<VS_double>mode, operands[1], operands[2]); }

x = gen_rtx_VEC_SELECT (mode, x, gen_rtx_PARALLEL (VOIDmode, v)); emit_insn (gen_rtx_SET (VOIDmode, operands[0], x)); DONE; })

(define_expand “vsx_mergeh_” [(use (match_operand:VSX_D 0 “vsx_register_operand” "")) (use (match_operand:VSX_D 1 “vsx_register_operand” "")) (use (match_operand:VSX_D 2 “vsx_register_operand” ""))] “VECTOR_MEM_VSX_P (mode)” { rtvec v; rtx x;

/* Special handling for LE with -maltivec=be. */ if (!BYTES_BIG_ENDIAN && VECTOR_ELT_ORDER_BIG) { v = gen_rtvec (2, GEN_INT (1), GEN_INT (3)); x = gen_rtx_VEC_CONCAT (<VS_double>mode, operands[2], operands[1]); } else { v = gen_rtvec (2, GEN_INT (0), GEN_INT (2)); x = gen_rtx_VEC_CONCAT (<VS_double>mode, operands[1], operands[2]); }

x = gen_rtx_VEC_SELECT (mode, x, gen_rtx_PARALLEL (VOIDmode, v)); emit_insn (gen_rtx_SET (VOIDmode, operands[0], x)); DONE; })

;; V2DF/V2DI splat (define_insn “vsx_splat_” [(set (match_operand:VSX_D 0 “vsx_register_operand” “=wd,wd,wd,?,?,?”) (vec_duplicate:VSX_D (match_operand:<VS_scalar> 1 “splat_input_operand” “<VS_64reg>,f,Z,,,Z”)))] “VECTOR_MEM_VSX_P (mode)” “@ xxpermdi %x0,%x1,%x1,0 xxpermdi %x0,%x1,%x1,0 lxvdsx %x0,%y1 xxpermdi %x0,%x1,%x1,0 xxpermdi %x0,%x1,%x1,0 lxvdsx %x0,%y1” [(set_attr “type” “vecperm,vecperm,vecload,vecperm,vecperm,vecload”)])

;; V4SF/V4SI splat (define_insn “vsx_xxspltw_” [(set (match_operand:VSX_W 0 “vsx_register_operand” “=wf,?”) (vec_duplicate:VSX_W (vec_select:<VS_scalar> (match_operand:VSX_W 1 “vsx_register_operand” “wf,”) (parallel [(match_operand:QI 2 “u5bit_cint_operand” “i,i”)]))))] “VECTOR_MEM_VSX_P (mode)” { if (!BYTES_BIG_ENDIAN) operands[2] = GEN_INT (3 - INTVAL (operands[2]));

return “xxspltw %x0,%x1,%2”; } [(set_attr “type” “vecperm”)])

(define_insn “vsx_xxspltw__direct” [(set (match_operand:VSX_W 0 “vsx_register_operand” “=wf,?”) (unspec:VSX_W [(match_operand:VSX_W 1 “vsx_register_operand” “wf,”) (match_operand:QI 2 “u5bit_cint_operand” “i,i”)] UNSPEC_VSX_XXSPLTW))] “VECTOR_MEM_VSX_P (mode)” “xxspltw %x0,%x1,%2” [(set_attr “type” “vecperm”)])

;; V4SF/V4SI interleave (define_insn “vsx_xxmrghw_” [(set (match_operand:VSX_W 0 “vsx_register_operand” “=wf,?”) (vec_select:VSX_W (vec_concat:<VS_double> (match_operand:VSX_W 1 “vsx_register_operand” “wf,”) (match_operand:VSX_W 2 “vsx_register_operand” “wf,”)) (parallel [(const_int 0) (const_int 4) (const_int 1) (const_int 5)])))] “VECTOR_MEM_VSX_P (mode)” { if (BYTES_BIG_ENDIAN) return “xxmrghw %x0,%x1,%x2”; else return “xxmrglw %x0,%x2,%x1”; } [(set_attr “type” “vecperm”)])

(define_insn “vsx_xxmrglw_” [(set (match_operand:VSX_W 0 “vsx_register_operand” “=wf,?”) (vec_select:VSX_W (vec_concat:<VS_double> (match_operand:VSX_W 1 “vsx_register_operand” “wf,”) (match_operand:VSX_W 2 “vsx_register_operand” “wf,?”)) (parallel [(const_int 2) (const_int 6) (const_int 3) (const_int 7)])))] “VECTOR_MEM_VSX_P (mode)” { if (BYTES_BIG_ENDIAN) return “xxmrglw %x0,%x1,%x2”; else return “xxmrghw %x0,%x2,%x1”; } [(set_attr “type” “vecperm”)])

;; Shift left double by word immediate (define_insn “vsx_xxsldwi_” [(set (match_operand:VSX_L 0 “vsx_register_operand” “=”) (unspec:VSX_L [(match_operand:VSX_L 1 “vsx_register_operand” “”) (match_operand:VSX_L 2 “vsx_register_operand” “”) (match_operand:QI 3 “u5bit_cint_operand” “i”)] UNSPEC_VSX_SLDWI))] “VECTOR_MEM_VSX_P (mode)” “xxsldwi %x0,%x1,%x2,%3” [(set_attr “type” “vecperm”)])

;; Vector reduction insns and splitters

(define_insn_and_split “*vsx_reduc_<VEC_reduc_name>_v2df” [(set (match_operand:V2DF 0 “vfloat_operand” “=&wd,&?wa,wd,?wa”) (VEC_reduc:V2DF (vec_concat:V2DF (vec_select:DF (match_operand:V2DF 1 “vfloat_operand” “wd,wa,wd,wa”) (parallel [(const_int 1)])) (vec_select:DF (match_dup 1) (parallel [(const_int 0)]))) (match_dup 1))) (clobber (match_scratch:V2DF 2 “=0,0,&wd,&wa”))] “VECTOR_UNIT_VSX_P (V2DFmode)” “#” "" [(const_int 0)] " { rtx tmp = (GET_CODE (operands[2]) == SCRATCH) ? gen_reg_rtx (V2DFmode) : operands[2]; emit_insn (gen_vsx_xxsldwi_v2df (tmp, operands[1], operands[1], const2_rtx)); emit_insn (gen_<VEC_reduc_rtx>v2df3 (operands[0], tmp, operands[1])); DONE; }" [(set_attr “length” “8”) (set_attr “type” “veccomplex”)])

(define_insn_and_split “*vsx_reduc_<VEC_reduc_name>_v4sf” [(set (match_operand:V4SF 0 “vfloat_operand” “=wf,?wa”) (VEC_reduc:V4SF (unspec:V4SF [(const_int 0)] UNSPEC_REDUC) (match_operand:V4SF 1 “vfloat_operand” “wf,wa”))) (clobber (match_scratch:V4SF 2 “=&wf,&wa”)) (clobber (match_scratch:V4SF 3 “=&wf,&wa”))] “VECTOR_UNIT_VSX_P (V4SFmode)” “#” "" [(const_int 0)] " { rtx op0 = operands[0]; rtx op1 = operands[1]; rtx tmp2, tmp3, tmp4;

if (can_create_pseudo_p ()) { tmp2 = gen_reg_rtx (V4SFmode); tmp3 = gen_reg_rtx (V4SFmode); tmp4 = gen_reg_rtx (V4SFmode); } else { tmp2 = operands[2]; tmp3 = operands[3]; tmp4 = tmp2; }

emit_insn (gen_vsx_xxsldwi_v4sf (tmp2, op1, op1, const2_rtx)); emit_insn (gen_<VEC_reduc_rtx>v4sf3 (tmp3, tmp2, op1)); emit_insn (gen_vsx_xxsldwi_v4sf (tmp4, tmp3, tmp3, GEN_INT (3))); emit_insn (gen_<VEC_reduc_rtx>v4sf3 (op0, tmp4, tmp3)); DONE; }" [(set_attr “length” “16”) (set_attr “type” “veccomplex”)])

;; Combiner patterns with the vector reduction patterns that knows we can get ;; to the top element of the V2DF array without doing an extract.

(define_insn_and_split “*vsx_reduc_<VEC_reduc_name>_v2df_scalar” [(set (match_operand:DF 0 “vfloat_operand” “=&ws,&?wa,ws,?wa”) (vec_select:DF (VEC_reduc:V2DF (vec_concat:V2DF (vec_select:DF (match_operand:V2DF 1 “vfloat_operand” “wd,wa,wd,wa”) (parallel [(const_int 1)])) (vec_select:DF (match_dup 1) (parallel [(const_int 0)]))) (match_dup 1)) (parallel [(const_int 1)]))) (clobber (match_scratch:DF 2 “=0,0,&wd,&wa”))] “VECTOR_UNIT_VSX_P (V2DFmode)” “#” "" [(const_int 0)] " { rtx hi = gen_highpart (DFmode, operands[1]); rtx lo = (GET_CODE (operands[2]) == SCRATCH) ? gen_reg_rtx (DFmode) : operands[2];

emit_insn (gen_vsx_extract_v2df (lo, operands[1], const1_rtx)); emit_insn (gen_<VEC_reduc_rtx>df3 (operands[0], hi, lo)); DONE; }" [(set_attr “length” “8”) (set_attr “type” “veccomplex”)])

(define_insn_and_split “*vsx_reduc_<VEC_reduc_name>_v4sf_scalar” [(set (match_operand:SF 0 “vfloat_operand” “=f,?f”) (vec_select:SF (VEC_reduc:V4SF (unspec:V4SF [(const_int 0)] UNSPEC_REDUC) (match_operand:V4SF 1 “vfloat_operand” “wf,wa”)) (parallel [(const_int 3)]))) (clobber (match_scratch:V4SF 2 “=&wf,&wa”)) (clobber (match_scratch:V4SF 3 “=&wf,&wa”)) (clobber (match_scratch:V4SF 4 “=0,0”))] “VECTOR_UNIT_VSX_P (V4SFmode)” “#” "" [(const_int 0)] " { rtx op0 = operands[0]; rtx op1 = operands[1]; rtx tmp2, tmp3, tmp4, tmp5;

if (can_create_pseudo_p ()) { tmp2 = gen_reg_rtx (V4SFmode); tmp3 = gen_reg_rtx (V4SFmode); tmp4 = gen_reg_rtx (V4SFmode); tmp5 = gen_reg_rtx (V4SFmode); } else { tmp2 = operands[2]; tmp3 = operands[3]; tmp4 = tmp2; tmp5 = operands[4]; }

emit_insn (gen_vsx_xxsldwi_v4sf (tmp2, op1, op1, const2_rtx)); emit_insn (gen_<VEC_reduc_rtx>v4sf3 (tmp3, tmp2, op1)); emit_insn (gen_vsx_xxsldwi_v4sf (tmp4, tmp3, tmp3, GEN_INT (3))); emit_insn (gen_<VEC_reduc_rtx>v4sf3 (tmp5, tmp4, tmp3)); emit_insn (gen_vsx_xscvspdp_scalar2 (op0, tmp5)); DONE; }" [(set_attr “length” “20”) (set_attr “type” “veccomplex”)])

;; Power8 Vector fusion. The fused ops must be physically adjacent. (define_peephole [(set (match_operand:P 0 “base_reg_operand” "") (match_operand:P 1 “short_cint_operand” "")) (set (match_operand:VSX_M2 2 “vsx_register_operand” "") (mem:VSX_M2 (plus:P (match_dup 0) (match_operand:P 3 “int_reg_operand” ""))))] “TARGET_VSX && TARGET_P8_FUSION” “li %0,%1\t\t\t# vector load fusion;lx<VSX_M2:VSm>x %x2,%0,%3”
[(set_attr “length” “8”) (set_attr “type” “vecload”)])

(define_peephole [(set (match_operand:P 0 “base_reg_operand” "") (match_operand:P 1 “short_cint_operand” "")) (set (match_operand:VSX_M2 2 “vsx_register_operand” "") (mem:VSX_M2 (plus:P (match_operand:P 3 “int_reg_operand” "") (match_dup 0))))] “TARGET_VSX && TARGET_P8_FUSION” “li %0,%1\t\t\t# vector load fusion;lx<VSX_M2:VSm>x %x2,%0,%3”
[(set_attr “length” “8”) (set_attr “type” “vecload”)])