blob: 43601f96ea751d7a416dabf70d21a4e3f07727c1 [file] [log] [blame]
/* Routines required for instrumenting a program. */
/* Compile this one with gcc. */
/* Copyright (C) 1989-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "tconfig.h"
#include "tsystem.h"
#include "coretypes.h"
#include "tm.h"
#include "libgcc_tm.h"
#include "gthr.h"
#if 1
#define THREAD_PREFIX __thread
#else
#define THREAD_PREFIX
#endif
#if defined(inhibit_libc)
#define IN_LIBGCOV (-1)
#else
#define IN_LIBGCOV 1
#if defined(L_gcov)
#define GCOV_LINKAGE /* nothing */
#endif
#endif
#include "gcov-io.h"
#if defined(inhibit_libc)
/* If libc and its header files are not available, provide dummy functions. */
#ifdef L_gcov
void __gcov_init (struct gcov_info *p __attribute__ ((unused))) {}
void __gcov_flush (void) {}
#endif
#ifdef L_gcov_reset
void __gcov_reset (void) {}
#endif
#ifdef L_gcov_dump
void __gcov_dump (void) {}
#endif
#ifdef L_gcov_merge_add
void __gcov_merge_add (gcov_type *counters __attribute__ ((unused)),
unsigned n_counters __attribute__ ((unused))) {}
#endif
#ifdef L_gcov_merge_single
void __gcov_merge_single (gcov_type *counters __attribute__ ((unused)),
unsigned n_counters __attribute__ ((unused))) {}
#endif
#ifdef L_gcov_merge_delta
void __gcov_merge_delta (gcov_type *counters __attribute__ ((unused)),
unsigned n_counters __attribute__ ((unused))) {}
#endif
#else
#include <string.h>
#if GCOV_LOCKED
#include <fcntl.h>
#include <errno.h>
#include <sys/stat.h>
#endif
extern void gcov_clear (void) ATTRIBUTE_HIDDEN;
extern void gcov_exit (void) ATTRIBUTE_HIDDEN;
extern int gcov_dump_complete ATTRIBUTE_HIDDEN;
#ifdef L_gcov
#include "gcov-io.c"
/* Create a strong reference to these symbols so that they are
unconditionally pulled into the instrumented binary, even when
the only reference is a weak reference. This is necessary because
we are using weak references to handle older compilers that
pre-date these new functions. A subtlety of the linker is that
it will only resolve weak references defined within archive libraries
when there is a string reference to something else defined within
the same object file. Since these two functions are defined within
their own object files (using L_gcov_reset and L_gcov_dump), they
would not get resolved. Since there are symbols within the main L_gcov
section that are strongly referenced during -fprofile-generate builds,
these symbols will always need to be resolved. */
void (*__gcov_dummy_ref1)() = &__gcov_reset;
void (*__gcov_dummy_ref2)() = &__gcov_dump;
/* Default callback function for profile instrumentation callback. */
__attribute__((weak)) void
__coverage_callback (gcov_type funcdef_no __attribute__ ((unused)),
int edge_no __attribute__ ((unused)))
{
/* nothing */
}
/* Utility function for outputing errors. */
static int
gcov_error (const char *fmt, ...)
{
int ret;
va_list argp;
va_start (argp, fmt);
ret = vfprintf (stderr, fmt, argp);
va_end (argp);
return ret;
}
/* Emitted in coverage.c. */
/* Sampling period. */
extern gcov_unsigned_t __gcov_sampling_period;
extern gcov_unsigned_t __gcov_has_sampling;
static int gcov_sampling_period_initialized = 0;
void __gcov_set_sampling_period (unsigned int period);
unsigned int __gcov_sampling_enabled ();
/* Set sampling period to PERIOD. */
void __gcov_set_sampling_period (unsigned int period)
{
gcc_assert (__gcov_has_sampling);
__gcov_sampling_period = period;
}
unsigned int __gcov_sampling_enabled ()
{
return __gcov_has_sampling;
}
/* Profile directory prefix specified to -fprofile-generate=. */
extern char * __gcov_profile_prefix;
char *__gcov_get_profile_prefix ()
{
return __gcov_profile_prefix;
}
/* Per thread sample counter. */
THREAD_PREFIX gcov_unsigned_t __gcov_sample_counter = 0;
struct gcov_summary_buffer
{
struct gcov_summary_buffer *next;
struct gcov_summary summary;
};
static struct gcov_summary_buffer *next_sum_buffer, *sum_buffer;
static struct gcov_summary_buffer **sum_tail;
/* Chain of per-object gcov structures. */
extern struct gcov_info *__gcov_list;
/* A program checksum allows us to distinguish program data for an
object file included in multiple programs. */
static gcov_unsigned_t gcov_crc32;
/* Size of the longest file name. */
static size_t gcov_max_filename = 0;
/* Unique identifier assigned to each module (object file). */
static gcov_unsigned_t gcov_cur_module_id = 0;
/* Pointer to the direct-call counters (per call-site counters).
Initialized by the caller. */
THREAD_PREFIX gcov_type *__gcov_direct_call_counters ATTRIBUTE_HIDDEN;
/* Direct call callee address. */
THREAD_PREFIX void *__gcov_direct_call_callee ATTRIBUTE_HIDDEN;
/* Pointer to the indirect-call counters (per call-site counters).
Initialized by the caller. */
THREAD_PREFIX gcov_type *__gcov_indirect_call_topn_counters ATTRIBUTE_HIDDEN;
/* Indirect call callee address. */
THREAD_PREFIX void *__gcov_indirect_call_topn_callee ATTRIBUTE_HIDDEN;
/* Dynamic call graph build and form module groups. */
void __gcov_compute_module_groups (void) ATTRIBUTE_HIDDEN;
void __gcov_finalize_dyn_callgraph (void) ATTRIBUTE_HIDDEN;
/* Profile summary for the gdca file, used in sanity check? */
static struct gcov_summary all;
/* Profile summary for this program in current exeuction. */
static struct gcov_summary this_program;
/* Merged profile summary for this program. */
static struct gcov_summary program;
/* Record the position of summary info. */
static gcov_position_t summary_pos = 0;
/* Record the postion of eof. */
static gcov_position_t eof_pos = 0;
/* Number of chars in prefix to be stripped. */
static int gcov_prefix_strip = 0;
/* The length of path prefix. */
static size_t prefix_length = 0;
/* gi_filename is current object filename.
gi_filename_up points to the stripped filename. */
static char *gi_filename, *gi_filename_up;
static int gcov_open_by_filename (char * gi_filename);
static int gcov_exit_init (void);
static void gcov_dump_one_gcov (struct gcov_info *gi_ptr);
/* Flag when the profile has already been dumped via __gcov_dump(). */
int gcov_dump_complete = 0;
/* Make sure path component of the given FILENAME exists, create
missing directories. FILENAME must be writable.
Returns zero on success, or -1 if an error occurred. */
static int
create_file_directory (char *filename)
{
#if !defined(TARGET_POSIX_IO) && !defined(_WIN32)
(void) filename;
return -1;
#else
char *s;
s = filename;
if (HAS_DRIVE_SPEC(s))
s += 2;
if (IS_DIR_SEPARATOR(*s))
++s;
for (; *s != '\0'; s++)
if (IS_DIR_SEPARATOR(*s))
{
char sep = *s;
*s = '\0';
/* Try to make directory if it doesn't already exist. */
if (access (filename, F_OK) == -1
#ifdef TARGET_POSIX_IO
&& mkdir (filename, 0755) == -1
#else
&& mkdir (filename) == -1
#endif
/* The directory might have been made by another process. */
&& errno != EEXIST)
{
fprintf (stderr, "profiling:%s:Cannot create directory\n",
filename);
*s = sep;
return -1;
};
*s = sep;
};
return 0;
#endif
}
/* Open a file with the specified name. */
static int
gcov_open_by_filename (char * gi_filename)
{
if (!gcov_open (gi_filename))
{
/* Open failed likely due to missed directory.
Create directory and retry to open file. */
if (create_file_directory (gi_filename))
{
gcov_error ("profiling:%s:Skip\n", gi_filename);
return -1;
}
if (!gcov_open (gi_filename))
{
gcov_error ("profiling:%s:Cannot open\n", gi_filename);
return -1;
}
}
return 0;
}
/* Determine whether a counter is active. */
static inline int
gcov_counter_active (const struct gcov_info *info, unsigned int type)
{
return (info->merge[type] != 0);
}
/* Add an unsigned value to the current crc */
static gcov_unsigned_t
crc32_unsigned (gcov_unsigned_t crc32, gcov_unsigned_t value)
{
unsigned ix;
for (ix = 32; ix--; value <<= 1)
{
unsigned feedback;
feedback = (value ^ crc32) & 0x80000000 ? 0x04c11db7 : 0;
crc32 <<= 1;
crc32 ^= feedback;
}
return crc32;
}
/* Check if VERSION of the info block PTR matches libgcov one.
Return 1 on success, or zero in case of versions mismatch.
If FILENAME is not NULL, its value used for reporting purposes
instead of value from the info block. */
static int
gcov_version (struct gcov_info *ptr __attribute__ ((unused)),
gcov_unsigned_t version, const char *filename)
{
if (version != GCOV_VERSION)
{
char v[4], e[4];
GCOV_UNSIGNED2STRING (v, version);
GCOV_UNSIGNED2STRING (e, GCOV_VERSION);
if (filename)
gcov_error ("profiling:%s:Version mismatch - expected %.4s got %.4s\n",
filename, e, v);
else
gcov_error ("profiling:Version mismatch - expected %.4s got %.4s\n", e, v);
return 0;
}
return 1;
}
#define GCOV_GET_FILENAME gcov_strip_leading_dirs
/* Insert counter VALUE into HISTOGRAM. */
static void
gcov_histogram_insert(gcov_bucket_type *histogram, gcov_type value)
{
unsigned i;
i = gcov_histo_index(value);
histogram[i].num_counters++;
histogram[i].cum_value += value;
if (value < histogram[i].min_value)
histogram[i].min_value = value;
}
/* Computes a histogram of the arc counters to place in the summary SUM. */
static void
gcov_compute_histogram (struct gcov_summary *sum)
{
struct gcov_info *gi_ptr;
const struct gcov_fn_info *gfi_ptr;
const struct gcov_ctr_info *ci_ptr;
struct gcov_ctr_summary *cs_ptr;
unsigned t_ix, f_ix, ctr_info_ix, ix;
int h_ix;
/* This currently only applies to arc counters. */
t_ix = GCOV_COUNTER_ARCS;
/* First check if there are any counts recorded for this counter. */
cs_ptr = &(sum->ctrs[t_ix]);
if (!cs_ptr->num)
return;
for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++)
{
cs_ptr->histogram[h_ix].num_counters = 0;
cs_ptr->histogram[h_ix].min_value = cs_ptr->run_max;
cs_ptr->histogram[h_ix].cum_value = 0;
}
/* Walk through all the per-object structures and record each of
the count values in histogram. */
for (gi_ptr = __gcov_list; gi_ptr; gi_ptr = gi_ptr->next)
{
if (!gi_ptr->merge[t_ix])
continue;
/* Find the appropriate index into the gcov_ctr_info array
for the counter we are currently working on based on the
existence of the merge function pointer for this object. */
for (ix = 0, ctr_info_ix = 0; ix < t_ix; ix++)
{
if (gi_ptr->merge[ix])
ctr_info_ix++;
}
for (f_ix = 0; f_ix != gi_ptr->n_functions; f_ix++)
{
gfi_ptr = gi_ptr->functions[f_ix];
if (!gfi_ptr || gfi_ptr->key != gi_ptr)
continue;
ci_ptr = &gfi_ptr->ctrs[ctr_info_ix];
for (ix = 0; ix < ci_ptr->num; ix++)
gcov_histogram_insert (cs_ptr->histogram, ci_ptr->values[ix]);
}
}
}
/* Dump the coverage counts. We merge with existing counts when
possible, to avoid growing the .da files ad infinitum. We use this
program's checksum to make sure we only accumulate whole program
statistics to the correct summary. An object file might be embedded
in two separate programs, and we must keep the two program
summaries separate. */
/* Strip GCOV_PREFIX_STRIP levels of leading '/' from FILENAME and
put the result into GI_FILENAME_UP. */
static void
gcov_strip_leading_dirs (int prefix_length, int gcov_prefix_strip,
const char *filename, char *gi_filename_up)
{
/* Avoid to add multiple drive letters into combined path. */
if (prefix_length != 0 && HAS_DRIVE_SPEC(filename))
filename += 2;
/* Build relocated filename, stripping off leading
directories from the initial filename if requested. */
if (gcov_prefix_strip > 0)
{
int level = 0;
const char *s = filename;
if (IS_DIR_SEPARATOR(*s))
++s;
/* Skip selected directory levels. */
for (; (*s != '\0') && (level < gcov_prefix_strip); s++)
if (IS_DIR_SEPARATOR(*s))
{
filename = s;
level++;
}
}
/* Update complete filename with stripped original. */
if (prefix_length != 0 && !IS_DIR_SEPARATOR (*filename))
{
/* If prefix is given, add directory separator. */
strcpy (gi_filename_up, "/");
strcpy (gi_filename_up + 1, filename);
}
else
strcpy (gi_filename_up, filename);
}
/* This function allocates the space to store current file name. */
static void
gcov_alloc_filename (void)
{
/* Get file name relocation prefix. Non-absolute values are ignored. */
const char *gcov_prefix = 0;
prefix_length = 0;
gcov_prefix_strip = 0;
{
/* Check if the level of dirs to strip off specified. */
char *tmp = getenv ("GCOV_PREFIX_STRIP");
if (tmp)
{
gcov_prefix_strip = atoi (tmp);
/* Do not consider negative values. */
if (gcov_prefix_strip < 0)
gcov_prefix_strip = 0;
}
}
/* Get file name relocation prefix. Non-absolute values are ignored. */
gcov_prefix = getenv ("GCOV_PREFIX");
if (gcov_prefix)
{
prefix_length = strlen(gcov_prefix);
/* Remove an unnecessary trailing '/' */
if (IS_DIR_SEPARATOR (gcov_prefix[prefix_length - 1]))
prefix_length--;
}
else
prefix_length = 0;
/* If no prefix was specified and a prefix stip, then we assume
relative. */
if (gcov_prefix_strip != 0 && prefix_length == 0)
{
gcov_prefix = ".";
prefix_length = 1;
}
/* Allocate and initialize the filename scratch space. */
gi_filename = (char *) malloc (prefix_length + gcov_max_filename + 2);
if (prefix_length)
memcpy (gi_filename, gcov_prefix, prefix_length);
gi_filename_up = gi_filename + prefix_length;
}
/* Sort N entries in VALUE_ARRAY in descending order.
Each entry in VALUE_ARRAY has two values. The sorting
is based on the second value. */
GCOV_LINKAGE void
gcov_sort_n_vals (gcov_type *value_array, int n)
{
int j, k;
for (j = 2; j < n; j += 2)
{
gcov_type cur_ent[2];
cur_ent[0] = value_array[j];
cur_ent[1] = value_array[j + 1];
k = j - 2;
while (k >= 0 && value_array[k + 1] < cur_ent[1])
{
value_array[k + 2] = value_array[k];
value_array[k + 3] = value_array[k+1];
k -= 2;
}
value_array[k + 2] = cur_ent[0];
value_array[k + 3] = cur_ent[1];
}
}
/* Sort the profile counters for all indirect call sites. Counters
for each call site are allocated in array COUNTERS. */
static void
gcov_sort_icall_topn_counter (const struct gcov_ctr_info *counters)
{
int i;
gcov_type *values;
int n = counters->num;
gcc_assert (!(n % GCOV_ICALL_TOPN_NCOUNTS));
values = counters->values;
for (i = 0; i < n; i += GCOV_ICALL_TOPN_NCOUNTS)
{
gcov_type *value_array = &values[i + 1];
gcov_sort_n_vals (value_array, GCOV_ICALL_TOPN_NCOUNTS - 1);
}
}
/* Write imported files (auxiliary modules) for primary module GI_PTR
into file GI_FILENAME. */
static void
gcov_write_import_file (char *gi_filename, struct gcov_info *gi_ptr)
{
char *gi_imports_filename;
const char *gcov_suffix;
FILE *imports_file;
size_t prefix_length, suffix_length;
gcov_suffix = getenv ("GCOV_IMPORTS_SUFFIX");
if (!gcov_suffix || !strlen (gcov_suffix))
gcov_suffix = ".imports";
suffix_length = strlen (gcov_suffix);
prefix_length = strlen (gi_filename);
gi_imports_filename = (char *) alloca (prefix_length + suffix_length + 1);
memset (gi_imports_filename, 0, prefix_length + suffix_length + 1);
memcpy (gi_imports_filename, gi_filename, prefix_length);
memcpy (gi_imports_filename + prefix_length, gcov_suffix, suffix_length);
imports_file = fopen (gi_imports_filename, "w");
if (imports_file)
{
const struct dyn_imp_mod **imp_mods;
unsigned i, imp_len;
imp_mods = gcov_get_sorted_import_module_array (gi_ptr, &imp_len);
if (imp_mods)
{
for (i = 0; i < imp_len; i++)
{
fprintf (imports_file, "%s\n",
imp_mods[i]->imp_mod->mod_info->source_filename);
fprintf (imports_file, "%s%s\n",
imp_mods[i]->imp_mod->mod_info->da_filename, GCOV_DATA_SUFFIX);
}
free (imp_mods);
}
fclose (imports_file);
}
}
static void
gcov_dump_module_info (void)
{
struct gcov_info *gi_ptr;
__gcov_compute_module_groups ();
/* Now write out module group info. */
for (gi_ptr = __gcov_list; gi_ptr; gi_ptr = gi_ptr->next)
{
int error;
GCOV_GET_FILENAME (prefix_length, gcov_prefix_strip, gi_ptr->filename,
gi_filename_up);
error = gcov_open_by_filename (gi_filename);
if (error != 0)
continue;
/* Overwrite the zero word at the of the file. */
gcov_rewrite ();
gcov_seek (gi_ptr->eof_pos);
gcov_write_module_infos (gi_ptr);
/* Write the end marker */
gcov_write_unsigned (0);
gcov_truncate ();
if ((error = gcov_close ()))
gcov_error (error < 0 ? "profiling:%s:Overflow writing\n" :
"profiling:%s:Error writing\n",
gi_filename);
gcov_write_import_file (gi_filename, gi_ptr);
}
__gcov_finalize_dyn_callgraph ();
}
/* Dump the coverage counts. We merge with existing counts when
possible, to avoid growing the .da files ad infinitum. We use this
program's checksum to make sure we only accumulate whole program
statistics to the correct summary. An object file might be embedded
in two separate programs, and we must keep the two program
summaries separate. */
void
gcov_exit (void)
{
struct gcov_info *gi_ptr;
int dump_module_info;
/* Prevent the counters from being dumped a second time on exit when the
application already wrote out the profile using __gcov_dump(). */
if (gcov_dump_complete)
return;
dump_module_info = gcov_exit_init ();
for (gi_ptr = __gcov_list; gi_ptr; gi_ptr = gi_ptr->next)
gcov_dump_one_gcov (gi_ptr);
if (dump_module_info)
gcov_dump_module_info ();
free (gi_filename);
}
/* Reset all counters to zero. */
void
gcov_clear (void)
{
const struct gcov_info *gi_ptr;
for (gi_ptr = __gcov_list; gi_ptr; gi_ptr = gi_ptr->next)
{
unsigned f_ix;
for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
{
unsigned t_ix;
const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
if (!gfi_ptr || gfi_ptr->key != gi_ptr)
continue;
const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
{
if (!gi_ptr->merge[t_ix])
continue;
memset (ci_ptr->values, 0, sizeof (gcov_type) * ci_ptr->num);
ci_ptr++;
}
}
}
}
/* Add a new object file onto the bb chain. Invoked automatically
when running an object file's global ctors. */
void
__gcov_init (struct gcov_info *info)
{
if (!gcov_sampling_period_initialized)
{
const char* env_value_str = getenv ("GCOV_SAMPLING_PERIOD");
if (env_value_str)
{
int env_value_int = atoi(env_value_str);
if (env_value_int >= 1)
__gcov_sampling_period = env_value_int;
}
gcov_sampling_period_initialized = 1;
}
if (!info->version || !info->n_functions)
return;
if (gcov_version (info, info->version, 0))
{
const char *ptr = info->filename;
size_t filename_length = strlen (info->filename);
/* Refresh the longest file name information. */
if (filename_length > gcov_max_filename)
gcov_max_filename = filename_length;
/* Assign the module ID (starting at 1). */
info->mod_info->ident = (++gcov_cur_module_id);
gcc_assert (EXTRACT_MODULE_ID_FROM_GLOBAL_ID (GEN_FUNC_GLOBAL_ID (
info->mod_info->ident, 0))
== info->mod_info->ident);
if (!__gcov_list)
{
atexit (gcov_exit);
}
info->next = __gcov_list;
__gcov_list = info;
}
info->version = 0;
}
#ifdef __GTHREAD_MUTEX_INIT
ATTRIBUTE_HIDDEN __gthread_mutex_t __gcov_flush_mx = __GTHREAD_MUTEX_INIT;
#define init_mx_once()
#else
__gthread_mutex_t __gcov_flush_mx ATTRIBUTE_HIDDEN;
static void
init_mx (void)
{
__GTHREAD_MUTEX_INIT_FUNCTION (&__gcov_flush_mx);
}
static void
init_mx_once (void)
{
static __gthread_once_t once = __GTHREAD_ONCE_INIT;
__gthread_once (&once, init_mx);
}
#endif
/* Called before fork or exec - write out profile information gathered so
far and reset it to zero. This avoids duplication or loss of the
profile information gathered so far. */
void
__gcov_flush (void)
{
init_mx_once ();
__gthread_mutex_lock (&__gcov_flush_mx);
gcov_exit ();
gcov_clear ();
__gthread_mutex_unlock (&__gcov_flush_mx);
}
static void
gcov_sort_topn_counter_arrays (const struct gcov_info *gi_ptr)
{
unsigned int i;
int f_ix;
const struct gcov_fn_info *gfi_ptr;
const struct gcov_ctr_info *ci_ptr;
for (f_ix = 0; (unsigned)f_ix != gi_ptr->n_functions; f_ix++)
{
gfi_ptr = gi_ptr->functions[f_ix];
ci_ptr = gfi_ptr->ctrs;
for (i = 0; i < GCOV_COUNTERS; i++)
{
if (!gcov_counter_active (gi_ptr, i))
continue;
if (i == GCOV_COUNTER_ICALL_TOPNV)
{
gcov_sort_icall_topn_counter (ci_ptr);
break;
}
ci_ptr++;
}
}
}
/* Compute object summary recored in gcov_info INFO. The result is
stored in OBJ_SUM. Note that the caller is responsible for
zeroing out OBJ_SUM, otherwise the summary is accumulated. */
static void
gcov_object_summary (struct gcov_info *info, struct gcov_summary *obj_sum)
{
const struct gcov_fn_info *gfi_ptr;
const struct gcov_ctr_info *ci_ptr;
struct gcov_ctr_summary *cs_ptr;
gcov_unsigned_t c_num;
unsigned t_ix;
int f_ix;
gcov_unsigned_t crc32 = gcov_crc32;
/* Totals for this object file. */
crc32 = crc32_unsigned (crc32, info->stamp);
crc32 = crc32_unsigned (crc32, info->n_functions);
for (f_ix = 0; (unsigned) f_ix != info->n_functions; f_ix++)
{
gfi_ptr = info->functions[f_ix];
if (!gfi_ptr || gfi_ptr->key != info)
gfi_ptr = 0;
crc32 = crc32_unsigned (crc32, gfi_ptr ? gfi_ptr->cfg_checksum : 0);
crc32 = crc32_unsigned (crc32,
gfi_ptr ? gfi_ptr->lineno_checksum : 0);
if (!gfi_ptr)
continue;
ci_ptr = gfi_ptr->ctrs;
for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
{
if (!info->merge[t_ix])
continue;
cs_ptr = &(obj_sum->ctrs[t_ix]);
cs_ptr->num += ci_ptr->num;
crc32 = crc32_unsigned (crc32, ci_ptr->num);
for (c_num = 0; c_num < ci_ptr->num; c_num++)
{
cs_ptr->sum_all += ci_ptr->values[c_num];
if (cs_ptr->run_max < ci_ptr->values[c_num])
cs_ptr->run_max = ci_ptr->values[c_num];
}
ci_ptr++;
}
}
gcov_crc32 = crc32;
}
/* Merge with existing gcda file in the same directory to avoid
excessive growthe of the files. */
static int
gcov_merge_gcda_file (struct gcov_info *gi_ptr)
{
struct gcov_ctr_summary *cs_prg, *cs_tprg, *cs_all;
unsigned t_ix, f_ix = 0;
const struct gcov_fn_info *gfi_ptr;
int error = 0;
gcov_unsigned_t tag, length, version, stamp;
eof_pos = 0;
summary_pos = 0;
sum_buffer = 0;
sum_tail = &sum_buffer;
tag = gcov_read_unsigned ();
if (tag)
{
/* Merge data from file. */
if (tag != GCOV_DATA_MAGIC)
{
gcov_error ("profiling:%s:Not a gcov data file\n", gi_filename);
goto read_fatal;
}
version = gcov_read_unsigned ();
if (!gcov_version (gi_ptr, version, gi_filename))
goto read_fatal;
stamp = gcov_read_unsigned ();
if (stamp != gi_ptr->stamp)
/* Read from a different compilation. Overwrite the file. */
goto rewrite;
/* Look for program summary. */
for (f_ix = ~0u;;)
{
struct gcov_summary tmp;
eof_pos = gcov_position ();
tag = gcov_read_unsigned ();
if (tag != GCOV_TAG_PROGRAM_SUMMARY)
break;
length = gcov_read_unsigned ();
gcov_read_summary (&tmp);
if ((error = gcov_is_error ()))
goto read_error;
if (summary_pos)
{
/* Save all summaries after the one that will be
merged into below. These will need to be rewritten
as histogram merging may change the number of non-zero
histogram entries that will be emitted, and thus the
size of the merged summary. */
(*sum_tail) = (struct gcov_summary_buffer *)
malloc (sizeof(struct gcov_summary_buffer));
(*sum_tail)->summary = tmp;
(*sum_tail)->next = 0;
sum_tail = &((*sum_tail)->next);
goto next_summary;
}
if (tmp.checksum != gcov_crc32)
goto next_summary;
for (t_ix = 0; t_ix != GCOV_COUNTERS_SUMMABLE; t_ix++)
if (tmp.ctrs[t_ix].num != this_program.ctrs[t_ix].num)
goto next_summary;
program = tmp;
summary_pos = eof_pos;
next_summary:;
}
/* Merge execution counts for each function. */
for (f_ix = 0; f_ix != gi_ptr->n_functions;
f_ix++, tag = gcov_read_unsigned ())
{
const struct gcov_ctr_info *ci_ptr;
gfi_ptr = gi_ptr->functions[f_ix];
if (tag != GCOV_TAG_FUNCTION)
goto read_mismatch;
length = gcov_read_unsigned ();
if (!length)
/* This function did not appear in the other program.
We have nothing to merge. */
continue;
/* Check function. */
if (length != GCOV_TAG_FUNCTION_LENGTH)
goto read_mismatch;
gcc_assert (gfi_ptr && gfi_ptr->key == gi_ptr);
if (gcov_read_unsigned () != gfi_ptr->ident
|| gcov_read_unsigned () != gfi_ptr->lineno_checksum
|| gcov_read_unsigned () != gfi_ptr->cfg_checksum)
goto read_mismatch;
ci_ptr = gfi_ptr->ctrs;
for (t_ix = 0; t_ix < GCOV_COUNTERS; t_ix++)
{
gcov_merge_fn merge = gi_ptr->merge[t_ix];
if (!merge)
continue;
tag = gcov_read_unsigned ();
length = gcov_read_unsigned ();
if (tag != GCOV_TAG_FOR_COUNTER (t_ix)
|| length != GCOV_TAG_COUNTER_LENGTH (ci_ptr->num))
goto read_mismatch;
(*merge) (ci_ptr->values, ci_ptr->num);
ci_ptr++;
}
if ((error = gcov_is_error ()))
goto read_error;
}
if (tag && tag != GCOV_TAG_MODULE_INFO)
goto read_mismatch;
}
goto rewrite;
read_error:;
gcov_error (error < 0 ? "profiling:%s:Overflow merging\n"
: "profiling:%s:Error merging\n", gi_filename);
goto read_fatal;
goto rewrite;
read_mismatch:;
gcov_error ("profiling:%s:Merge mismatch for %s\n",
gi_filename, f_ix + 1 ? "function" : "summaries");
goto read_fatal;
read_fatal:;
gcov_close ();
return 1;
rewrite:;
gcov_rewrite ();
if (!summary_pos)
{
memset (&program, 0, sizeof (program));
summary_pos = eof_pos;
}
/* Merge the summaries. */
for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
{
cs_prg = &program.ctrs[t_ix];
cs_tprg = &this_program.ctrs[t_ix];
cs_all = &all.ctrs[t_ix];
if (gi_ptr->merge[t_ix])
{
if (!cs_prg->runs++)
cs_prg->num = cs_tprg->num;
cs_prg->sum_all += cs_tprg->sum_all;
if (cs_prg->run_max < cs_tprg->run_max)
cs_prg->run_max = cs_tprg->run_max;
cs_prg->sum_max += cs_tprg->run_max;
if (cs_prg->runs == 1)
memcpy (cs_prg->histogram, cs_tprg->histogram,
sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE);
else
gcov_histogram_merge (cs_prg->histogram, cs_tprg->histogram);
}
else if (cs_prg->runs)
goto read_mismatch;
if (!cs_all->runs && cs_prg->runs)
memcpy (cs_all, cs_prg, sizeof (*cs_all));
else if (!all.checksum
&& (!GCOV_LOCKED || cs_all->runs == cs_prg->runs)
/* Don't compare the histograms, which may have slight
variations depending on the order they were updated
due to the truncating integer divides used in the
merge. */
&& memcmp (cs_all, cs_prg,
sizeof (*cs_all) - (sizeof (gcov_bucket_type)
* GCOV_HISTOGRAM_SIZE)))
{
gcov_error ("profiling:%s:Invocation mismatch - "
"some data files may have been removed%s\n",
gi_filename, GCOV_LOCKED
? "" : " or concurrent update without locking support");
all.checksum = ~0u;
}
}
program.checksum = gcov_crc32;
return 0;
}
/* This function returns the size of gcda file to be written. Note
the size is in units of gcov_type. */
GCOV_LINKAGE unsigned
gcov_gcda_file_size (struct gcov_info *gi_ptr)
{
unsigned size;
const struct gcov_fn_info *fi_ptr;
unsigned f_ix, t_ix, h_ix, h_cnt = 0;
unsigned n_counts;
const struct gcov_ctr_info *ci_ptr;
struct gcov_summary *sum = &this_program;
const struct gcov_ctr_summary *csum;
/* GCOV_DATA_MAGIC, GCOV_VERSION and time_stamp. */
size = 3;
/* Program summary, which depends on the number of non-zero
histogram entries. */
csum = &sum->ctrs[GCOV_COUNTER_ARCS];
for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++)
{
if (csum->histogram[h_ix].num_counters > 0)
h_cnt++;
}
size += 2 + GCOV_TAG_SUMMARY_LENGTH(h_cnt);
/* size for each function. */
for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
{
fi_ptr = gi_ptr->functions[f_ix];
size += 2 /* tag_length itself */
+ GCOV_TAG_FUNCTION_LENGTH; /* ident, lineno_cksum, cfg_cksm */
ci_ptr = fi_ptr->ctrs;
for (t_ix = 0; t_ix < GCOV_COUNTERS; t_ix++)
{
if (!gcov_counter_active (gi_ptr, t_ix))
continue;
n_counts = ci_ptr->num;
size += 2 + GCOV_TAG_COUNTER_LENGTH (n_counts);
ci_ptr++;
}
}
size += 1;
return size*4;
}
/* Write profile data (including summary and module grouping information,
if available, to file. */
static void
gcov_write_gcda_file (struct gcov_info *gi_ptr)
{
const struct gcov_fn_info *gfi_ptr;
const struct gcov_ctr_info *ci_ptr;
unsigned t_ix, f_ix, n_counts, length;
int error = 0;
gcov_position_t eof_pos1 = 0;
/* Write out the data. */
gcov_seek (0);
gcov_write_tag_length (GCOV_DATA_MAGIC, GCOV_VERSION);
gcov_write_unsigned (gi_ptr->stamp);
if (summary_pos)
gcov_seek (summary_pos);
gcc_assert (!summary_pos || summary_pos == gcov_position ());
/* Generate whole program statistics. */
gcov_write_summary (GCOV_TAG_PROGRAM_SUMMARY, &program);
/* Rewrite all the summaries that were after the summary we merged
into. This is necessary as the merged summary may have a different
size due to the number of non-zero histogram entries changing after
merging. */
while (sum_buffer)
{
gcov_write_summary (GCOV_TAG_PROGRAM_SUMMARY, &sum_buffer->summary);
next_sum_buffer = sum_buffer->next;
free (sum_buffer);
sum_buffer = next_sum_buffer;
}
/* Write execution counts for each function. */
for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
{
gfi_ptr = gi_ptr->functions[f_ix];
gcc_assert (gfi_ptr && gfi_ptr->key == gi_ptr);
length = GCOV_TAG_FUNCTION_LENGTH;
gcov_write_tag_length (GCOV_TAG_FUNCTION, length);
gcov_write_unsigned (gfi_ptr->ident);
gcov_write_unsigned (gfi_ptr->lineno_checksum);
gcov_write_unsigned (gfi_ptr->cfg_checksum);
ci_ptr = gfi_ptr->ctrs;
for (t_ix = 0; t_ix < GCOV_COUNTERS; t_ix++)
{
if (!gi_ptr->merge[t_ix])
continue;
n_counts = ci_ptr->num;
gcov_write_tag_length (GCOV_TAG_FOR_COUNTER (t_ix),
GCOV_TAG_COUNTER_LENGTH (n_counts));
gcov_type *c_ptr = ci_ptr->values;
while (n_counts--)
gcov_write_counter (*c_ptr++);
ci_ptr++;
}
eof_pos1 = gcov_position ();
}
eof_pos = eof_pos1;
/* Write the end marker */
gcov_write_unsigned (0);
gi_ptr->eof_pos = eof_pos;
if ((error = gcov_close ()))
gcov_error (error < 0 ?
"profiling:%s:Overflow writing\n" :
"profiling:%s:Error writing\n",
gi_filename);
}
/* Do some preparation work before calling the actual dumping
routine.
Return: 1 when module grouping info needs to be dumped,
0 otherwise. */
static int
gcov_exit_init (void)
{
struct gcov_info *gi_ptr;
int dump_module_info = 0;
dump_module_info = 0;
gcov_prefix_strip = 0;
memset (&all, 0, sizeof (all));
/* Find the totals for this execution. */
memset (&this_program, 0, sizeof (this_program));
for (gi_ptr = __gcov_list; gi_ptr; gi_ptr = gi_ptr->next)
{
gcov_object_summary (gi_ptr, &this_program);
/* The IS_PRIMARY field is overloaded to indicate if this module
is FDO/LIPO. */
dump_module_info |= gi_ptr->mod_info->is_primary;
}
gcov_compute_histogram (&this_program);
gcov_alloc_filename ();
return dump_module_info;
}
/* Dump one entry in the gcov_info list (for one object). */
static void
gcov_dump_one_gcov (struct gcov_info *gi_ptr)
{
int ret;
gcov_sort_topn_counter_arrays (gi_ptr);
GCOV_GET_FILENAME (prefix_length, gcov_prefix_strip, gi_ptr->filename,
gi_filename_up);
if (gcov_open_by_filename (gi_filename) == -1)
return;
/* Now merge this file. */
ret = gcov_merge_gcda_file (gi_ptr);
if (ret != 0 ) return;
gcov_write_gcda_file (gi_ptr);
}
#endif /* L_gcov */
#ifdef L_gcov_reset
/* Function that can be called from application to reset counters to zero,
in order to collect profile in region of interest. */
void
__gcov_reset (void)
{
gcov_clear ();
/* Re-enable dumping to support collecting profile in multiple regions
of interest. */
gcov_dump_complete = 0;
}
#endif /* L_gcov_reset */
#ifdef L_gcov_dump
/* Function that can be called from application to write profile collected
so far, in order to collect profile in region of interest. */
void
__gcov_dump (void)
{
gcov_exit ();
/* Prevent profile from being dumped a second time on application exit. */
gcov_dump_complete = 1;
}
#endif /* L_gcov_dump */
#ifdef L_gcov_merge_add
/* The profile merging function that just adds the counters. It is given
an array COUNTERS of N_COUNTERS old counters and it reads the same number
of counters from the gcov file. */
void
__gcov_merge_add (gcov_type *counters, unsigned n_counters)
{
for (; n_counters; counters++, n_counters--)
*counters += gcov_read_counter ();
}
#endif /* L_gcov_merge_add */
#ifdef L_gcov_merge_ior
/* The profile merging function that just adds the counters. It is given
an array COUNTERS of N_COUNTERS old counters and it reads the same number
of counters from the gcov file. */
void
__gcov_merge_ior (gcov_type *counters, unsigned n_counters)
{
for (; n_counters; counters++, n_counters--)
*counters |= gcov_read_counter ();
}
#endif
#ifdef L_gcov_merge_dc
/* Returns 1 if the function global id GID is not valid. */
static int
__gcov_is_gid_insane (gcov_type gid)
{
if (EXTRACT_MODULE_ID_FROM_GLOBAL_ID (gid) == 0
|| EXTRACT_FUNC_ID_FROM_GLOBAL_ID (gid) == 0)
return 1;
return 0;
}
/* The profile merging function used for merging direct call counts
This function is given array COUNTERS of N_COUNTERS old counters and it
reads the same number of counters from the gcov file. */
void
__gcov_merge_dc (gcov_type *counters, unsigned n_counters)
{
unsigned i;
gcc_assert (!(n_counters % 2));
for (i = 0; i < n_counters; i += 2)
{
gcov_type global_id = gcov_read_counter ();
gcov_type call_count = gcov_read_counter ();
/* Note that global id counter may never have been set if no calls were
made from this call-site. */
if (counters[i] && global_id)
{
/* TODO race condition requires us do the following correction. */
if (__gcov_is_gid_insane (counters[i]))
counters[i] = global_id;
else if (__gcov_is_gid_insane (global_id))
global_id = counters[i];
gcc_assert (counters[i] == global_id);
}
else if (global_id)
counters[i] = global_id;
counters[i + 1] += call_count;
/* Reset. */
if (__gcov_is_gid_insane (counters[i]))
counters[i] = counters[i + 1] = 0;
/* Assert that the invariant (global_id == 0) <==> (call_count == 0)
holds true after merging. */
if (counters[i] == 0)
counters[i+1] = 0;
if (counters[i + 1] == 0)
counters[i] = 0;
}
}
#endif
#ifdef L_gcov_merge_icall_topn
/* The profile merging function used for merging indirect call counts
This function is given array COUNTERS of N_COUNTERS old counters and it
reads the same number of counters from the gcov file. */
void
__gcov_merge_icall_topn (gcov_type *counters, unsigned n_counters)
{
unsigned i, j, k, m;
gcc_assert (!(n_counters % GCOV_ICALL_TOPN_NCOUNTS));
for (i = 0; i < n_counters; i += GCOV_ICALL_TOPN_NCOUNTS)
{
gcov_type *value_array = &counters[i + 1];
unsigned tmp_size = 2 * (GCOV_ICALL_TOPN_NCOUNTS - 1);
gcov_type *tmp_array
= (gcov_type *) alloca (tmp_size * sizeof (gcov_type));
for (j = 0; j < tmp_size; j++)
tmp_array[j] = 0;
for (j = 0; j < GCOV_ICALL_TOPN_NCOUNTS - 1; j += 2)
{
tmp_array[j] = value_array[j];
tmp_array[j + 1] = value_array [j + 1];
}
/* Skip the number_of_eviction entry. */
gcov_read_counter ();
for (k = 0; k < GCOV_ICALL_TOPN_NCOUNTS - 1; k += 2)
{
int found = 0;
gcov_type global_id = gcov_read_counter ();
gcov_type call_count = gcov_read_counter ();
for (m = 0; m < j; m += 2)
{
if (tmp_array[m] == global_id)
{
found = 1;
tmp_array[m + 1] += call_count;
break;
}
}
if (!found)
{
tmp_array[j] = global_id;
tmp_array[j + 1] = call_count;
j += 2;
}
}
/* Now sort the temp array */
gcov_sort_n_vals (tmp_array, j);
/* Now copy back the top half of the temp array */
for (k = 0; k < GCOV_ICALL_TOPN_NCOUNTS - 1; k += 2)
{
value_array[k] = tmp_array[k];
value_array[k + 1] = tmp_array[k + 1];
}
}
}
#endif
#ifdef L_gcov_merge_single
/* The profile merging function for choosing the most common value.
It is given an array COUNTERS of N_COUNTERS old counters and it
reads the same number of counters from the gcov file. The counters
are split into 3-tuples where the members of the tuple have
meanings:
-- the stored candidate on the most common value of the measured entity
-- counter
-- total number of evaluations of the value */
void
__gcov_merge_single (gcov_type *counters, unsigned n_counters)
{
unsigned i, n_measures;
gcov_type value, counter, all;
gcc_assert (!(n_counters % 3));
n_measures = n_counters / 3;
for (i = 0; i < n_measures; i++, counters += 3)
{
value = gcov_read_counter ();
counter = gcov_read_counter ();
all = gcov_read_counter ();
if (counters[0] == value)
counters[1] += counter;
else if (counter > counters[1])
{
counters[0] = value;
counters[1] = counter - counters[1];
}
else
counters[1] -= counter;
counters[2] += all;
}
}
#endif /* L_gcov_merge_single */
#ifdef L_gcov_merge_delta
/* The profile merging function for choosing the most common
difference between two consecutive evaluations of the value. It is
given an array COUNTERS of N_COUNTERS old counters and it reads the
same number of counters from the gcov file. The counters are split
into 4-tuples where the members of the tuple have meanings:
-- the last value of the measured entity
-- the stored candidate on the most common difference
-- counter
-- total number of evaluations of the value */
void
__gcov_merge_delta (gcov_type *counters, unsigned n_counters)
{
unsigned i, n_measures;
gcov_type value, counter, all;
gcc_assert (!(n_counters % 4));
n_measures = n_counters / 4;
for (i = 0; i < n_measures; i++, counters += 4)
{
/* last = */ gcov_read_counter ();
value = gcov_read_counter ();
counter = gcov_read_counter ();
all = gcov_read_counter ();
if (counters[1] == value)
counters[2] += counter;
else if (counter > counters[2])
{
counters[1] = value;
counters[2] = counter - counters[2];
}
else
counters[2] -= counter;
counters[3] += all;
}
}
#endif /* L_gcov_merge_delta */
#ifdef L_gcov_interval_profiler
/* If VALUE is in interval <START, START + STEPS - 1>, then increases the
corresponding counter in COUNTERS. If the VALUE is above or below
the interval, COUNTERS[STEPS] or COUNTERS[STEPS + 1] is increased
instead. */
void
__gcov_interval_profiler (gcov_type *counters, gcov_type value,
int start, unsigned steps)
{
gcov_type delta = value - start;
if (delta < 0)
counters[steps + 1]++;
else if (delta >= steps)
counters[steps]++;
else
counters[delta]++;
}
#endif
#ifdef L_gcov_pow2_profiler
/* If VALUE is a power of two, COUNTERS[1] is incremented. Otherwise
COUNTERS[0] is incremented. */
void
__gcov_pow2_profiler (gcov_type *counters, gcov_type value)
{
if (value & (value - 1))
counters[0]++;
else
counters[1]++;
}
#endif
/* Tries to determine the most common value among its inputs. Checks if the
value stored in COUNTERS[0] matches VALUE. If this is the case, COUNTERS[1]
is incremented. If this is not the case and COUNTERS[1] is not zero,
COUNTERS[1] is decremented. Otherwise COUNTERS[1] is set to one and
VALUE is stored to COUNTERS[0]. This algorithm guarantees that if this
function is called more than 50% of the time with one value, this value
will be in COUNTERS[0] in the end.
In any case, COUNTERS[2] is incremented. */
static inline void
__gcov_one_value_profiler_body (gcov_type *counters, gcov_type value)
{
if (value == counters[0])
counters[1]++;
else if (counters[1] == 0)
{
counters[1] = 1;
counters[0] = value;
}
else
counters[1]--;
counters[2]++;
}
/* Atomic update version of __gcov_one_value_profile_body(). */
static inline void
__gcov_one_value_profiler_body_atomic (gcov_type *counters, gcov_type value)
{
if (value == counters[0])
GCOV_TYPE_ATOMIC_FETCH_ADD_FN (&counters[1], 1, MEMMODEL_RELAXED);
else if (counters[1] == 0)
{
counters[1] = 1;
counters[0] = value;
}
else
GCOV_TYPE_ATOMIC_FETCH_ADD_FN (&counters[1], -1, MEMMODEL_RELAXED);
GCOV_TYPE_ATOMIC_FETCH_ADD_FN (&counters[2], 1, MEMMODEL_RELAXED);
}
#ifdef L_gcov_indirect_call_topn_profiler
/* Tries to keep track the most frequent N values in the counters where
N is specified by parameter TOPN_VAL. To track top N values, 2*N counter
entries are used.
counter[0] --- the accumative count of the number of times one entry in
in the counters gets evicted/replaced due to limited capacity.
When this value reaches a threshold, the bottom N values are
cleared.
counter[1] through counter[2*N] records the top 2*N values collected so far.
Each value is represented by two entries: count[2*i+1] is the ith value, and
count[2*i+2] is the number of times the value is seen. */
static void
__gcov_topn_value_profiler_body (gcov_type *counters, gcov_type value,
gcov_unsigned_t topn_val)
{
unsigned i, found = 0, have_zero_count = 0;
gcov_type *entry;
gcov_type *lfu_entry = &counters[1];
gcov_type *value_array = &counters[1];
gcov_type *num_eviction = &counters[0];
/* There are 2*topn_val values tracked, each value takes two slots in the
counter array */
for ( i = 0; i < (topn_val << 2); i += 2)
{
entry = &value_array[i];
if ( entry[0] == value)
{
entry[1]++ ;
found = 1;
break;
}
else if (entry[1] == 0)
{
lfu_entry = entry;
have_zero_count = 1;
}
else if (entry[1] < lfu_entry[1])
lfu_entry = entry;
}
if (found)
return;
/* lfu_entry is either an empty entry or an entry
with lowest count, which will be evicted. */
lfu_entry[0] = value;
lfu_entry[1] = 1;
#define GCOV_ICALL_COUNTER_CLEAR_THRESHOLD 3000
/* Too many evictions -- time to clear bottom entries to
avoid hot values bumping each other out. */
if ( !have_zero_count
&& ++*num_eviction >= GCOV_ICALL_COUNTER_CLEAR_THRESHOLD)
{
unsigned i, j;
gcov_type *p, minv;
gcov_type* tmp_cnts
= (gcov_type *)alloca (topn_val * sizeof(gcov_type));
*num_eviction = 0;
for ( i = 0; i < topn_val; i++ )
tmp_cnts[i] = 0;
/* Find the largest topn_val values from the group of
2*topn_val values and put them into tmp_cnts. */
for ( i = 0; i < 2 * topn_val; i += 2 )
{
p = 0;
for ( j = 0; j < topn_val; j++ )
{
if ( !p || tmp_cnts[j] < *p )
p = &tmp_cnts[j];
}
if ( value_array[i + 1] > *p )
*p = value_array[i + 1];
}
minv = tmp_cnts[0];
for ( j = 1; j < topn_val; j++ )
{
if (tmp_cnts[j] < minv)
minv = tmp_cnts[j];
}
/* Zero out low value entries */
for ( i = 0; i < 2 * topn_val; i += 2 )
{
if (value_array[i + 1] < minv)
{
value_array[i] = 0;
value_array[i + 1] = 0;
}
}
}
}
#endif
#ifdef L_gcov_one_value_profiler
void
__gcov_one_value_profiler (gcov_type *counters, gcov_type value)
{
__gcov_one_value_profiler_body (counters, value);
}
void
__gcov_one_value_profiler_atomic (gcov_type *counters, gcov_type value)
{
__gcov_one_value_profiler_body_atomic (counters, value);
}
#endif
#ifdef L_gcov_indirect_call_profiler
/* By default, the C++ compiler will use function addresses in the
vtable entries. Setting TARGET_VTABLE_USES_DESCRIPTORS to nonzero
tells the compiler to use function descriptors instead. The value
of this macro says how many words wide the descriptor is (normally 2),
but it may be dependent on target flags. Since we do not have access
to the target flags here we just check to see if it is set and use
that to set VTABLE_USES_DESCRIPTORS to 0 or 1.
It is assumed that the address of a function descriptor may be treated
as a pointer to a function. */
#ifdef TARGET_VTABLE_USES_DESCRIPTORS
#define VTABLE_USES_DESCRIPTORS 1
#else
#define VTABLE_USES_DESCRIPTORS 0
#endif
/* Tries to determine the most common value among its inputs. */
void
__gcov_indirect_call_profiler (gcov_type* counter, gcov_type value,
void* cur_func, void* callee_func)
{
/* If the C++ virtual tables contain function descriptors then one
function may have multiple descriptors and we need to dereference
the descriptors to see if they point to the same function. */
if (cur_func == callee_func
|| (VTABLE_USES_DESCRIPTORS && callee_func
&& *(void **) cur_func == *(void **) callee_func))
__gcov_one_value_profiler_body (counter, value);
}
/* Atomic update version of __gcov_indirect_call_profiler(). */
void
__gcov_indirect_call_profiler_atomic (gcov_type* counter, gcov_type value,
void* cur_func, void* callee_func)
{
if (cur_func == callee_func
|| (VTABLE_USES_DESCRIPTORS && callee_func
&& *(void **) cur_func == *(void **) callee_func))
__gcov_one_value_profiler_body_atomic (counter, value);
}
#endif
#ifdef L_gcov_indirect_call_topn_profiler
extern THREAD_PREFIX gcov_type *__gcov_indirect_call_topn_counters ATTRIBUTE_HIDDEN;
extern THREAD_PREFIX void *__gcov_indirect_call_topn_callee ATTRIBUTE_HIDDEN;
#ifdef TARGET_VTABLE_USES_DESCRIPTORS
#define VTABLE_USES_DESCRIPTORS 1
#else
#define VTABLE_USES_DESCRIPTORS 0
#endif
void
__gcov_indirect_call_topn_profiler (void *cur_func,
void *cur_module_gcov_info,
gcov_unsigned_t cur_func_id)
{
void *callee_func = __gcov_indirect_call_topn_callee;
gcov_type *counter = __gcov_indirect_call_topn_counters;
/* If the C++ virtual tables contain function descriptors then one
function may have multiple descriptors and we need to dereference
the descriptors to see if they point to the same function. */
if (cur_func == callee_func
|| (VTABLE_USES_DESCRIPTORS && callee_func
&& *(void **) cur_func == *(void **) callee_func))
{
gcov_type global_id
= ((struct gcov_info *) cur_module_gcov_info)->mod_info->ident;
global_id = GEN_FUNC_GLOBAL_ID (global_id, cur_func_id);
__gcov_topn_value_profiler_body (counter, global_id, GCOV_ICALL_TOPN_VAL);
__gcov_indirect_call_topn_callee = 0;
}
}
#endif
#ifdef L_gcov_direct_call_profiler
extern THREAD_PREFIX gcov_type *__gcov_direct_call_counters ATTRIBUTE_HIDDEN;
extern THREAD_PREFIX void *__gcov_direct_call_callee ATTRIBUTE_HIDDEN;
/* Direct call profiler. */
void
__gcov_direct_call_profiler (void *cur_func,
void *cur_module_gcov_info,
gcov_unsigned_t cur_func_id)
{
if (cur_func == __gcov_direct_call_callee)
{
gcov_type global_id
= ((struct gcov_info *) cur_module_gcov_info)->mod_info->ident;
global_id = GEN_FUNC_GLOBAL_ID (global_id, cur_func_id);
__gcov_direct_call_counters[0] = global_id;
__gcov_direct_call_counters[1]++;
__gcov_direct_call_callee = 0;
}
}
#endif
#ifdef L_gcov_average_profiler
/* Increase corresponding COUNTER by VALUE. FIXME: Perhaps we want
to saturate up. */
void
__gcov_average_profiler (gcov_type *counters, gcov_type value)
{
counters[0] += value;
counters[1] ++;
}
#endif
#ifdef L_gcov_ior_profiler
/* Bitwise-OR VALUE into COUNTER. */
void
__gcov_ior_profiler (gcov_type *counters, gcov_type value)
{
*counters |= value;
}
#endif
#ifdef L_gcov_fork
/* A wrapper for the fork function. Flushes the accumulated profiling data, so
that they are not counted twice. */
pid_t
__gcov_fork (void)
{
pid_t pid;
extern __gthread_mutex_t __gcov_flush_mx;
__gcov_flush ();
pid = fork ();
if (pid == 0)
__GTHREAD_MUTEX_INIT_FUNCTION (&__gcov_flush_mx);
return pid;
}
#endif
#ifdef L_gcov_execl
/* A wrapper for the execl function. Flushes the accumulated profiling data, so
that they are not lost. */
int
__gcov_execl (const char *path, char *arg, ...)
{
va_list ap, aq;
unsigned i, length;
char **args;
__gcov_flush ();
va_start (ap, arg);
va_copy (aq, ap);
length = 2;
while (va_arg (ap, char *))
length++;
va_end (ap);
args = (char **) alloca (length * sizeof (void *));
args[0] = arg;
for (i = 1; i < length; i++)
args[i] = va_arg (aq, char *);
va_end (aq);
return execv (path, args);
}
#endif
#ifdef L_gcov_execlp
/* A wrapper for the execlp function. Flushes the accumulated profiling data, so
that they are not lost. */
int
__gcov_execlp (const char *path, char *arg, ...)
{
va_list ap, aq;
unsigned i, length;
char **args;
__gcov_flush ();
va_start (ap, arg);
va_copy (aq, ap);
length = 2;
while (va_arg (ap, char *))
length++;
va_end (ap);
args = (char **) alloca (length * sizeof (void *));
args[0] = arg;
for (i = 1; i < length; i++)
args[i] = va_arg (aq, char *);
va_end (aq);
return execvp (path, args);
}
#endif
#ifdef L_gcov_execle
/* A wrapper for the execle function. Flushes the accumulated profiling data, so
that they are not lost. */
int
__gcov_execle (const char *path, char *arg, ...)
{
va_list ap, aq;
unsigned i, length;
char **args;
char **envp;
__gcov_flush ();
va_start (ap, arg);
va_copy (aq, ap);
length = 2;
while (va_arg (ap, char *))
length++;
va_end (ap);
args = (char **) alloca (length * sizeof (void *));
args[0] = arg;
for (i = 1; i < length; i++)
args[i] = va_arg (aq, char *);
envp = va_arg (aq, char **);
va_end (aq);
return execve (path, args, envp);
}
#endif
#ifdef L_gcov_execv
/* A wrapper for the execv function. Flushes the accumulated profiling data, so
that they are not lost. */
int
__gcov_execv (const char *path, char *const argv[])
{
__gcov_flush ();
return execv (path, argv);
}
#endif
#ifdef L_gcov_execvp
/* A wrapper for the execvp function. Flushes the accumulated profiling data, so
that they are not lost. */
int
__gcov_execvp (const char *path, char *const argv[])
{
__gcov_flush ();
return execvp (path, argv);
}
#endif
#ifdef L_gcov_execve
/* A wrapper for the execve function. Flushes the accumulated profiling data, so
that they are not lost. */
int
__gcov_execve (const char *path, char *const argv[], char *const envp[])
{
__gcov_flush ();
return execve (path, argv, envp);
}
#endif
#endif /* inhibit_libc */