blob: 90ccded3d7bf37ab60b6f0aab54c315400560c8b [file] [log] [blame]
/*
* Cypress APA trackpad with I2C interface
*
* Author: Dudley Du <dudl@cypress.com>
* Further cleanup and restructuring by:
* Daniel Kurtz <djkurtz@chromium.org>
* Benson Leung <bleung@chromium.org>
*
* Copyright (C) 2011-2012 Cypress Semiconductor, Inc.
* Copyright (C) 2011-2012 Google, Inc.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/async.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
/* APA trackpad firmware generation */
#define CYAPA_GEN3 0x03 /* support MT-protocol B with tracking ID. */
#define CYAPA_NAME "Cypress APA Trackpad (cyapa)"
/* commands for read/write registers of Cypress trackpad */
#define CYAPA_CMD_SOFT_RESET 0x00
#define CYAPA_CMD_POWER_MODE 0x01
#define CYAPA_CMD_DEV_STATUS 0x02
#define CYAPA_CMD_GROUP_DATA 0x03
#define CYAPA_CMD_GROUP_CMD 0x04
#define CYAPA_CMD_GROUP_QUERY 0x05
#define CYAPA_CMD_BL_STATUS 0x06
#define CYAPA_CMD_BL_HEAD 0x07
#define CYAPA_CMD_BL_CMD 0x08
#define CYAPA_CMD_BL_DATA 0x09
#define CYAPA_CMD_BL_ALL 0x0a
#define CYAPA_CMD_BLK_PRODUCT_ID 0x0b
#define CYAPA_CMD_BLK_HEAD 0x0c
#define CYAPA_CMD_MAX_BASELINE 0x0d
#define CYAPA_CMD_MIN_BASELINE 0x0e
/* report data start reg offset address. */
#define DATA_REG_START_OFFSET 0x0000
#define BL_HEAD_OFFSET 0x00
#define BL_DATA_OFFSET 0x10
/*
* Operational Device Status Register
*
* bit 7: Valid interrupt source
* bit 6 - 4: Reserved
* bit 3 - 2: Power status
* bit 1 - 0: Device status
*/
#define REG_OP_STATUS 0x00
#define OP_STATUS_SRC 0x80
#define OP_STATUS_POWER 0x0c
#define OP_STATUS_DEV 0x03
#define OP_STATUS_MASK (OP_STATUS_SRC | OP_STATUS_POWER | OP_STATUS_DEV)
/*
* Operational Finger Count/Button Flags Register
*
* bit 7 - 4: Number of touched finger
* bit 3: Valid data
* bit 2: Middle Physical Button
* bit 1: Right Physical Button
* bit 0: Left physical Button
*/
#define REG_OP_DATA1 0x01
#define OP_DATA_VALID 0x08
#define OP_DATA_MIDDLE_BTN 0x04
#define OP_DATA_RIGHT_BTN 0x02
#define OP_DATA_LEFT_BTN 0x01
#define OP_DATA_BTN_MASK (OP_DATA_MIDDLE_BTN | OP_DATA_RIGHT_BTN | \
OP_DATA_LEFT_BTN)
/*
* Bootloader Status Register
*
* bit 7: Busy
* bit 6 - 5: Reserved
* bit 4: Bootloader running
* bit 3 - 2: Reserved
* bit 1: Watchdog Reset
* bit 0: Checksum valid
*/
#define REG_BL_STATUS 0x01
#define BL_STATUS_REV_6_5 0x60
#define BL_STATUS_BUSY 0x80
#define BL_STATUS_RUNNING 0x10
#define BL_STATUS_REV_3_2 0x0c
#define BL_STATUS_WATCHDOG 0x02
#define BL_STATUS_CSUM_VALID 0x01
#define BL_STATUS_REV_MASK (BL_STATUS_WATCHDOG | BL_STATUS_REV_3_2 | \
BL_STATUS_REV_6_5)
/*
* Bootloader Error Register
*
* bit 7: Invalid
* bit 6: Invalid security key
* bit 5: Bootloading
* bit 4: Command checksum
* bit 3: Flash protection error
* bit 2: Flash checksum error
* bit 1 - 0: Reserved
*/
#define REG_BL_ERROR 0x02
#define BL_ERROR_INVALID 0x80
#define BL_ERROR_INVALID_KEY 0x40
#define BL_ERROR_BOOTLOADING 0x20
#define BL_ERROR_CMD_CSUM 0x10
#define BL_ERROR_FLASH_PROT 0x08
#define BL_ERROR_FLASH_CSUM 0x04
#define BL_ERROR_RESERVED 0x03
#define BL_STATUS_SIZE 3 /* length of bootloader status registers */
#define BLK_HEAD_BYTES 32
/* Macro for register map group offset. */
#define CYAPA_REG_MAP_SIZE 256
#define PRODUCT_ID_SIZE 16
#define QUERY_DATA_SIZE 27
#define REG_PROTOCOL_GEN_QUERY_OFFSET 20
#define REG_OFFSET_DATA_BASE 0x0000
#define REG_OFFSET_COMMAND_BASE 0x0028
#define REG_OFFSET_QUERY_BASE 0x002a
#define CAPABILITY_LEFT_BTN_MASK (0x01 << 3)
#define CAPABILITY_RIGHT_BTN_MASK (0x01 << 4)
#define CAPABILITY_MIDDLE_BTN_MASK (0x01 << 5)
#define CAPABILITY_BTN_MASK (CAPABILITY_LEFT_BTN_MASK | \
CAPABILITY_RIGHT_BTN_MASK | \
CAPABILITY_MIDDLE_BTN_MASK)
#define CYAPA_OFFSET_SOFT_RESET REG_OFFSET_COMMAND_BASE
#define OP_RECALIBRATION_MASK 0x80
#define OP_REPORT_BASELINE_MASK 0x40
#define REG_OFFSET_MAX_BASELINE 0x0026
#define REG_OFFSET_MIN_BASELINE 0x0027
#define REG_OFFSET_POWER_MODE (REG_OFFSET_COMMAND_BASE + 1)
#define SET_POWER_MODE_DELAY 10000 /* unit: us */
#define SET_POWER_MODE_TRIES 5
#define PWR_MODE_MASK 0xfc
#define PWR_MODE_FULL_ACTIVE (0x3f << 2)
#define PWR_MODE_IDLE (0x03 << 2) /* default rt suspend scanrate: 30ms */
#define PWR_MODE_SLEEP (0x05 << 2) /* default suspend scanrate: 50ms */
#define PWR_MODE_BTN_ONLY (0x01 << 2)
#define PWR_MODE_OFF (0x00 << 2)
#define BTN_ONLY_MODE_NAME "buttononly"
#define PWR_STATUS_MASK 0x0c
#define PWR_STATUS_ACTIVE (0x03 << 2)
#define PWR_STATUS_IDLE (0x02 << 2)
#define PWR_STATUS_BTN_ONLY (0x01 << 2)
#define PWR_STATUS_OFF (0x00 << 2)
#define AUTOSUSPEND_DELAY 2000 /* unit : ms */
/*
* CYAPA trackpad device states.
* Used in register 0x00, bit1-0, DeviceStatus field.
* After trackpad boots, and can report data, it sets this value.
* Other values indicate device is in an abnormal state and must be reset.
*/
#define CYAPA_DEV_NORMAL 0x03
#define CYAPA_DEV_BUSY 0x01
enum cyapa_state {
CYAPA_STATE_OP,
CYAPA_STATE_BL_IDLE,
CYAPA_STATE_BL_ACTIVE,
CYAPA_STATE_BL_BUSY,
CYAPA_STATE_NO_DEVICE,
};
struct cyapa_touch {
/*
* high bits or x/y position value
* bit 7 - 4: high 4 bits of x position value
* bit 3 - 0: high 4 bits of y position value
*/
u8 xy_hi;
u8 x_lo; /* low 8 bits of x position value. */
u8 y_lo; /* low 8 bits of y position value. */
u8 pressure;
/* id range is 1 - 15. It is incremented with every new touch. */
u8 id;
} __packed;
/* The touch.id is used as the MT slot id, thus max MT slot is 15 */
#define CYAPA_MAX_MT_SLOTS 15
struct cyapa_reg_data {
/*
* bit 0 - 1: device status
* bit 3 - 2: power mode
* bit 6 - 4: reserved
* bit 7: interrupt valid bit
*/
u8 device_status;
/*
* bit 7 - 4: number of fingers currently touching pad
* bit 3: valid data check bit
* bit 2: middle mechanism button state if exists
* bit 1: right mechanism button state if exists
* bit 0: left mechanism button state if exists
*/
u8 finger_btn;
/* CYAPA reports up to 5 touches per packet. */
struct cyapa_touch touches[5];
} __packed;
/* The main device structure */
struct cyapa {
enum cyapa_state state;
u8 status[BL_STATUS_SIZE];
struct i2c_client *client;
struct input_dev *input;
char phys[32]; /* device physical location */
int irq;
u8 adapter_func;
bool irq_wake; /* irq wake is enabled */
bool smbus;
bool debug;
/* power mode settings */
u8 suspend_power_mode;
#ifdef CONFIG_PM_RUNTIME
u8 runtime_suspend_power_mode;
#endif /* CONFIG_PM_RUNTIME */
bool suspended;
/* read from query data region. */
char product_id[16];
u8 fw_maj_ver; /* firmware major version. */
u8 fw_min_ver; /* firmware minor version. */
u8 hw_maj_ver; /* hardware major version. */
u8 hw_min_ver; /* hardware minor version. */
u8 btn_capability;
u8 gen;
int max_abs_x;
int max_abs_y;
int physical_size_x;
int physical_size_y;
bool lid_handler_registered;
struct input_handler lid_handler;
struct mutex debugfs_mutex;
/* per-instance debugfs root */
struct dentry *dentry_dev;
/* Buffer to store firmware read using debugfs */
u8 *read_fw_image;
};
static const u8 bl_activate[] = { 0x00, 0xff, 0x38, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07 };
static const u8 bl_deactivate[] = { 0x00, 0xff, 0x3b, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07 };
static const u8 bl_exit[] = { 0x00, 0xff, 0xa5, 0x00, 0x01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07 };
/* global root node of the cyapa debugfs directory. */
static struct dentry *cyapa_debugfs_root;
struct cyapa_cmd_len {
u8 cmd;
u8 len;
};
#define CYAPA_ADAPTER_FUNC_NONE 0
#define CYAPA_ADAPTER_FUNC_I2C 1
#define CYAPA_ADAPTER_FUNC_SMBUS 2
#define CYAPA_ADAPTER_FUNC_BOTH 3
#define CYTP_I2C 0
#define CYTP_SMBUS 1
/*
* macros for SMBus communication
*/
#define SMBUS_READ 0x01
#define SMBUS_WRITE 0x00
#define SMBUS_ENCODE_IDX(cmd, idx) ((cmd) | (((idx) & 0x03) << 1))
#define SMBUS_ENCODE_RW(cmd, rw) ((cmd) | ((rw) & 0x01))
#define SMBUS_BYTE_BLOCK_CMD_MASK 0x80
#define SMBUS_GROUP_BLOCK_CMD_MASK 0x40
/* for byte read/write command */
#define CMD_RESET 0
#define CMD_POWER_MODE 1
#define CMD_DEV_STATUS 2
#define CMD_REPORT_MAX_BASELINE 3
#define CMD_REPORT_MIN_BASELINE 4
#define SMBUS_BYTE_CMD(cmd) (((cmd) & 0x3f) << 1)
#define CYAPA_SMBUS_RESET SMBUS_BYTE_CMD(CMD_RESET)
#define CYAPA_SMBUS_POWER_MODE SMBUS_BYTE_CMD(CMD_POWER_MODE)
#define CYAPA_SMBUS_DEV_STATUS SMBUS_BYTE_CMD(CMD_DEV_STATUS)
#define CYAPA_SMBUS_MAX_BASELINE SMBUS_BYTE_CMD(CMD_REPORT_MAX_BASELINE)
#define CYAPA_SMBUS_MIN_BASELINE SMBUS_BYTE_CMD(CMD_REPORT_MIN_BASELINE)
/* for group registers read/write command */
#define REG_GROUP_DATA 0
#define REG_GROUP_CMD 2
#define REG_GROUP_QUERY 3
#define SMBUS_GROUP_CMD(grp) (0x80 | (((grp) & 0x07) << 3))
#define CYAPA_SMBUS_GROUP_DATA SMBUS_GROUP_CMD(REG_GROUP_DATA)
#define CYAPA_SMBUS_GROUP_CMD SMBUS_GROUP_CMD(REG_GROUP_CMD)
#define CYAPA_SMBUS_GROUP_QUERY SMBUS_GROUP_CMD(REG_GROUP_QUERY)
/* for register block read/write command */
#define CMD_BL_STATUS 0
#define CMD_BL_HEAD 1
#define CMD_BL_CMD 2
#define CMD_BL_DATA 3
#define CMD_BL_ALL 4
#define CMD_BLK_PRODUCT_ID 5
#define CMD_BLK_HEAD 6
#define SMBUS_BLOCK_CMD(cmd) (0xc0 | (((cmd) & 0x1f) << 1))
/* register block read/write command in bootloader mode */
#define CYAPA_SMBUS_BL_STATUS SMBUS_BLOCK_CMD(CMD_BL_STATUS)
#define CYAPA_SMBUS_BL_HEAD SMBUS_BLOCK_CMD(CMD_BL_HEAD)
#define CYAPA_SMBUS_BL_CMD SMBUS_BLOCK_CMD(CMD_BL_CMD)
#define CYAPA_SMBUS_BL_DATA SMBUS_BLOCK_CMD(CMD_BL_DATA)
#define CYAPA_SMBUS_BL_ALL SMBUS_BLOCK_CMD(CMD_BL_ALL)
/* register block read/write command in operational mode */
#define CYAPA_SMBUS_BLK_PRODUCT_ID SMBUS_BLOCK_CMD(CMD_BLK_PRODUCT_ID)
#define CYAPA_SMBUS_BLK_HEAD SMBUS_BLOCK_CMD(CMD_BLK_HEAD)
static const struct cyapa_cmd_len cyapa_i2c_cmds[] = {
{CYAPA_OFFSET_SOFT_RESET, 1},
{REG_OFFSET_COMMAND_BASE + 1, 1},
{REG_OFFSET_DATA_BASE, 1},
{REG_OFFSET_DATA_BASE, sizeof(struct cyapa_reg_data)},
{REG_OFFSET_COMMAND_BASE, 0},
{REG_OFFSET_QUERY_BASE, QUERY_DATA_SIZE},
{BL_HEAD_OFFSET, 3},
{BL_HEAD_OFFSET, 16},
{BL_HEAD_OFFSET, 16},
{BL_DATA_OFFSET, 16},
{BL_HEAD_OFFSET, 32},
{REG_OFFSET_QUERY_BASE, PRODUCT_ID_SIZE},
{REG_OFFSET_DATA_BASE, 32},
{REG_OFFSET_MAX_BASELINE, 1},
{REG_OFFSET_MIN_BASELINE, 1},
};
static const struct cyapa_cmd_len cyapa_smbus_cmds[] = {
{CYAPA_SMBUS_RESET, 1},
{CYAPA_SMBUS_POWER_MODE, 1},
{CYAPA_SMBUS_DEV_STATUS, 1},
{CYAPA_SMBUS_GROUP_DATA, sizeof(struct cyapa_reg_data)},
{CYAPA_SMBUS_GROUP_CMD, 2},
{CYAPA_SMBUS_GROUP_QUERY, QUERY_DATA_SIZE},
{CYAPA_SMBUS_BL_STATUS, 3},
{CYAPA_SMBUS_BL_HEAD, 16},
{CYAPA_SMBUS_BL_CMD, 16},
{CYAPA_SMBUS_BL_DATA, 16},
{CYAPA_SMBUS_BL_ALL, 32},
{CYAPA_SMBUS_BLK_PRODUCT_ID, PRODUCT_ID_SIZE},
{CYAPA_SMBUS_BLK_HEAD, 16},
{CYAPA_SMBUS_MAX_BASELINE, 1},
{CYAPA_SMBUS_MIN_BASELINE, 1},
};
#define CYAPA_DEBUGFS_READ_FW "read_fw"
#define CYAPA_FW_NAME "cyapa.bin"
#define CYAPA_FW_BLOCK_SIZE 64
#define CYAPA_FW_READ_SIZE 16
#define CYAPA_FW_HDR_START 0x0780
#define CYAPA_FW_HDR_BLOCK_COUNT 2
#define CYAPA_FW_HDR_BLOCK_START (CYAPA_FW_HDR_START / CYAPA_FW_BLOCK_SIZE)
#define CYAPA_FW_HDR_SIZE (CYAPA_FW_HDR_BLOCK_COUNT * \
CYAPA_FW_BLOCK_SIZE)
#define CYAPA_FW_DATA_START 0x0800
#define CYAPA_FW_DATA_BLOCK_COUNT 480
#define CYAPA_FW_DATA_BLOCK_START (CYAPA_FW_DATA_START / CYAPA_FW_BLOCK_SIZE)
#define CYAPA_FW_DATA_SIZE (CYAPA_FW_DATA_BLOCK_COUNT * \
CYAPA_FW_BLOCK_SIZE)
#define CYAPA_FW_SIZE (CYAPA_FW_HDR_SIZE + CYAPA_FW_DATA_SIZE)
#define CYAPA_CMD_LEN 16
static void cyapa_detect(struct cyapa *cyapa);
#define BYTE_PER_LINE 8
void cyapa_dump_data(struct cyapa *cyapa, size_t length, const u8 *data)
{
#ifdef DEBUG
struct device *dev = &cyapa->client->dev;
int i;
char buf[BYTE_PER_LINE * 3 + 1];
char *s = buf;
for (i = 0; i < length; i++) {
s += sprintf(s, " %02x", data[i]);
if ((i + 1) == length || ((i + 1) % BYTE_PER_LINE) == 0) {
dev_dbg(dev, "%s\n", buf);
s = buf;
}
}
#endif
}
#undef BYTE_PER_LINE
#define cyapa_dbg(cyapa, fmt, ...) \
do { \
if (cyapa->debug) \
dev_info(&cyapa->client->dev, fmt, ##__VA_ARGS__); \
else \
dev_dbg(&cyapa->client->dev, fmt, ##__VA_ARGS__); \
} while (0)
static ssize_t cyapa_i2c_reg_read_block(struct cyapa *cyapa, u8 reg, size_t len,
u8 *values)
{
ssize_t ret;
ret = i2c_smbus_read_i2c_block_data(cyapa->client, reg, len, values);
cyapa_dbg(cyapa, "i2c read block reg: 0x%02x len: %zu ret: %zd\n",
reg, len, ret);
if (ret > 0)
cyapa_dump_data(cyapa, ret, values);
return ret;
}
static ssize_t cyapa_i2c_reg_write_block(struct cyapa *cyapa, u8 reg,
size_t len, const u8 *values)
{
ssize_t ret;
ret = i2c_smbus_write_i2c_block_data(cyapa->client, reg, len, values);
cyapa_dbg(cyapa, "i2c write block reg: 0x%02x len: %zu ret: %zd\n",
reg, len, ret);
cyapa_dump_data(cyapa, len, values);
return ret;
}
/*
* cyapa_smbus_read_block - perform smbus block read command
* @cyapa - private data structure of the driver
* @cmd - the properly encoded smbus command
* @length - expected length of smbus command result
* @values - buffer to store smbus command result
*
* Returns negative errno, else the number of bytes written.
*
* Note:
* In trackpad device, the memory block allocated for I2C register map
* is 256 bytes, so the max read block for I2C bus is 256 bytes.
*/
static ssize_t cyapa_smbus_read_block(struct cyapa *cyapa, u8 cmd, size_t len,
u8 *values)
{
ssize_t ret;
u8 index;
u8 smbus_cmd;
u8 *buf;
struct i2c_client *client = cyapa->client;
if (!(SMBUS_BYTE_BLOCK_CMD_MASK & cmd))
return -EINVAL;
if (SMBUS_GROUP_BLOCK_CMD_MASK & cmd) {
/* read specific block registers command. */
smbus_cmd = SMBUS_ENCODE_RW(cmd, SMBUS_READ);
ret = i2c_smbus_read_block_data(client, smbus_cmd, values);
goto out;
}
ret = 0;
for (index = 0; index * I2C_SMBUS_BLOCK_MAX < len; index++) {
smbus_cmd = SMBUS_ENCODE_IDX(cmd, index);
smbus_cmd = SMBUS_ENCODE_RW(smbus_cmd, SMBUS_READ);
buf = values + I2C_SMBUS_BLOCK_MAX * index;
ret = i2c_smbus_read_block_data(client, smbus_cmd, buf);
if (ret < 0)
goto out;
}
out:
cyapa_dbg(cyapa, "smbus read block cmd: 0x%02x len: %zu ret: %zd\n",
cmd, len, ret);
if (ret > 0)
cyapa_dump_data(cyapa, len, values);
return (ret > 0) ? len : ret;
}
static s32 cyapa_read_byte(struct cyapa *cyapa, u8 cmd_idx)
{
int ret;
u8 cmd;
if (cyapa->smbus) {
cmd = cyapa_smbus_cmds[cmd_idx].cmd;
cmd = SMBUS_ENCODE_RW(cmd, SMBUS_READ);
} else {
cmd = cyapa_i2c_cmds[cmd_idx].cmd;
}
ret = i2c_smbus_read_byte_data(cyapa->client, cmd);
cyapa_dbg(cyapa, "read byte [0x%02x] = 0x%02x ret: %d\n",
cmd, ret, ret);
return ret;
}
static s32 cyapa_write_byte(struct cyapa *cyapa, u8 cmd_idx, u8 value)
{
int ret;
u8 cmd;
if (cyapa->smbus) {
cmd = cyapa_smbus_cmds[cmd_idx].cmd;
cmd = SMBUS_ENCODE_RW(cmd, SMBUS_WRITE);
} else {
cmd = cyapa_i2c_cmds[cmd_idx].cmd;
}
ret = i2c_smbus_write_byte_data(cyapa->client, cmd, value);
cyapa_dbg(cyapa, "write byte [0x%02x] = 0x%02x ret: %d\n",
cmd, value, ret);
return ret;
}
static ssize_t cyapa_read_block(struct cyapa *cyapa, u8 cmd_idx, u8 *values)
{
u8 cmd;
size_t len;
if (cyapa->smbus) {
cmd = cyapa_smbus_cmds[cmd_idx].cmd;
len = cyapa_smbus_cmds[cmd_idx].len;
return cyapa_smbus_read_block(cyapa, cmd, len, values);
} else {
cmd = cyapa_i2c_cmds[cmd_idx].cmd;
len = cyapa_i2c_cmds[cmd_idx].len;
return cyapa_i2c_reg_read_block(cyapa, cmd, len, values);
}
}
/*
* Query device for its current operating state.
*
*/
static int cyapa_get_state(struct cyapa *cyapa)
{
int ret;
u8 status[BL_STATUS_SIZE];
cyapa->state = CYAPA_STATE_NO_DEVICE;
/*
* Get trackpad status by reading 3 registers starting from 0.
* If the device is in the bootloader, this will be BL_HEAD.
* If the device is in operation mode, this will be the DATA regs.
*
* Note: on SMBus, this may be slow.
* TODO(djkurtz): make it fast on SMBus!
*/
ret = cyapa_i2c_reg_read_block(cyapa, BL_HEAD_OFFSET, BL_STATUS_SIZE,
status);
/*
* On smbus systems in OP mode, the i2c_reg_read will fail with
* -ETIMEDOUT. In this case, try again using the smbus equivalent
* command. This should return a BL_HEAD indicating CYAPA_STATE_OP.
*/
if (cyapa->smbus && (ret == -ETIMEDOUT || ret == -ENXIO)) {
cyapa_dbg(cyapa, "smbus: probing with BL_STATUS command\n");
ret = cyapa_read_block(cyapa, CYAPA_CMD_BL_STATUS, status);
}
if (ret != BL_STATUS_SIZE)
goto error;
cyapa->status[REG_OP_STATUS] = status[REG_OP_STATUS];
cyapa->status[REG_BL_STATUS] = status[REG_BL_STATUS];
cyapa->status[REG_BL_ERROR] = status[REG_BL_ERROR];
cyapa_dbg(cyapa, "status registers = [0x%02x, 0x%02x, 0x%02x]\n",
status[REG_OP_STATUS], status[REG_BL_STATUS],
status[REG_BL_ERROR]);
if ((status[REG_OP_STATUS] & OP_STATUS_SRC) == OP_STATUS_SRC) {
switch (status[REG_OP_STATUS] & OP_STATUS_DEV) {
case CYAPA_DEV_NORMAL:
cyapa_dbg(cyapa, "device state: operational mode\n");
cyapa->state = CYAPA_STATE_OP;
break;
case CYAPA_DEV_BUSY:
cyapa_dbg(cyapa, "device state: operational busy\n");
cyapa->state = CYAPA_STATE_OP;
break;
default:
cyapa->debug = true;
cyapa_dbg(cyapa, "device state: unknown\n");
cyapa->state = CYAPA_STATE_NO_DEVICE;
ret = -EAGAIN;
goto error;
}
} else {
if (status[REG_BL_STATUS] & BL_STATUS_BUSY) {
cyapa_dbg(cyapa, "device state: bootloader busy\n");
cyapa->state = CYAPA_STATE_BL_BUSY;
} else if (status[REG_BL_ERROR] & BL_ERROR_BOOTLOADING) {
cyapa_dbg(cyapa, "device state: bootloader active\n");
cyapa->state = CYAPA_STATE_BL_ACTIVE;
} else {
cyapa_dbg(cyapa, "device state: bootloader idle\n");
cyapa->state = CYAPA_STATE_BL_IDLE;
}
}
return 0;
error:
return (ret < 0) ? ret : -EAGAIN;
}
/*
* Poll device for its status in a loop, waiting up to timeout for a response.
*
* When the device switches state, it usually takes ~300 ms.
* However, when running a new firmware image, the device must calibrate its
* sensors, which can take as long as 2 seconds.
*
* Note: The timeout has granularity of the polling rate, which is 100 ms.
*
* Returns:
* 0 when the device eventually responds with a valid non-busy state.
* -ETIMEDOUT if device never responds (too many -EAGAIN)
* < 0 other errors
*/
static int cyapa_poll_state(struct cyapa *cyapa, unsigned int timeout)
{
int ret;
int tries = timeout / 100;
bool debug_prev = cyapa->debug;
cyapa_dbg(cyapa, "======< cyapa_poll_state >======");
ret = cyapa_get_state(cyapa);
if (ret) {
dev_err(&cyapa->client->dev, "poll state first trial"
" failed\n");
cyapa->debug = true;
}
while ((ret || cyapa->state >= CYAPA_STATE_BL_BUSY) && tries--) {
msleep(100);
ret = cyapa_get_state(cyapa);
if (ret)
cyapa->debug = true;
}
if (ret == 0 && debug_prev != cyapa->debug)
cyapa->debug = debug_prev;
return (ret == -EAGAIN || ret == -ETIMEDOUT) ? -ETIMEDOUT : ret;
}
static const char *cyapa_state_to_string(struct cyapa *cyapa)
{
switch (cyapa->state) {
case CYAPA_STATE_BL_ACTIVE: return "BL_ACTIVE";
case CYAPA_STATE_BL_IDLE: return "BL_IDLE";
case CYAPA_STATE_BL_BUSY: return "BL_BUSY";
case CYAPA_STATE_OP: return "OPERATIONAL";
default: return "UNKNOWN";
}
}
/*
* Enter bootloader by soft resetting the device.
*
* If device is already in the bootloader, the function just returns.
* Otherwise, reset the device; after reset, device enters bootloader idle
* state immediately.
*
* Also, if device was unregister device from input core. Device will
* re-register after it is detected following resumption of operational mode.
*
* Returns:
* 0 on success
* -EAGAIN device was reset, but is not now in bootloader idle state
* < 0 if the device never responds within the timeout
*/
static int cyapa_bl_enter(struct cyapa *cyapa)
{
int ret;
cyapa_dbg(cyapa, "======< cyapa_bl_enter >======");
if (cyapa->input) {
disable_irq(cyapa->irq);
input_unregister_device(cyapa->input);
cyapa->input = NULL;
}
ret = cyapa_poll_state(cyapa, 500);
if (ret < 0)
return ret;
if (cyapa->state == CYAPA_STATE_BL_IDLE) {
cyapa_dbg(cyapa, "Already in BL_IDLE. Skipping exit.\n");
return 0;
}
if (cyapa->state != CYAPA_STATE_OP) {
cyapa->debug = true;
cyapa_dbg(cyapa, "Not in OP state. state = %s\n",
cyapa_state_to_string(cyapa));
return -EAGAIN;
}
cyapa->state = CYAPA_STATE_NO_DEVICE;
ret = cyapa_write_byte(cyapa, CYAPA_CMD_SOFT_RESET, 0x01);
if (ret < 0) {
cyapa->debug = true;
cyapa_dbg(cyapa, "bl_enter cyapa_write_byte failed, %d\n",
ret);
return -EIO;
}
usleep_range(25000, 50000);
ret = cyapa_poll_state(cyapa, 500);
if (ret < 0)
return ret;
if ((cyapa->state != CYAPA_STATE_BL_IDLE) ||
(cyapa->status[REG_BL_STATUS] & BL_STATUS_WATCHDOG)) {
cyapa->debug = true;
cyapa_dbg(cyapa, "bl_enter failed. Now in state %s\n",
cyapa_state_to_string(cyapa));
return -EAGAIN;
}
return 0;
}
static int cyapa_bl_activate(struct cyapa *cyapa)
{
int ret;
cyapa_dbg(cyapa, "======< cyapa_bl_activate >======");
ret = cyapa_i2c_reg_write_block(cyapa, 0, sizeof(bl_activate),
bl_activate);
if (ret < 0) {
cyapa->debug = true;
cyapa_dbg(cyapa, "bl_activate i2c_reg_write failed, %d\n",
ret);
return ret;
}
/* Wait for bootloader to activate; takes between 2 and 12 seconds */
msleep(2000);
ret = cyapa_poll_state(cyapa, 11000);
if (ret < 0)
return ret;
if (cyapa->state != CYAPA_STATE_BL_ACTIVE) {
cyapa->debug = true;
cyapa_dbg(cyapa, "bl_activate failed. Now in state %s.\n",
cyapa_state_to_string(cyapa));
return -EAGAIN;
}
return 0;
}
static int cyapa_bl_deactivate(struct cyapa *cyapa)
{
int ret;
cyapa_dbg(cyapa, "======< cyapa_bl_deactivate >======");
ret = cyapa_i2c_reg_write_block(cyapa, 0, sizeof(bl_deactivate),
bl_deactivate);
if (ret < 0) {
cyapa->debug = true;
cyapa_dbg(cyapa, "bl_deactivate i2c_reg_write failed, %d\n",
ret);
return ret;
}
/* wait for bootloader to switch to idle state; should take < 100ms */
msleep(100);
ret = cyapa_poll_state(cyapa, 500);
if (ret < 0)
return ret;
if (cyapa->state != CYAPA_STATE_BL_IDLE) {
cyapa->debug = true;
cyapa_dbg(cyapa, "bl_deactivate failed. Now in state %s.\n",
cyapa_state_to_string(cyapa));
return -EAGAIN;
}
return 0;
}
/*
* Exit bootloader
*
* Send bl_exit command, then wait 50 - 100 ms to let device transition to
* operational mode. If this is the first time the device's firmware is
* running, it can take up to 2 seconds to calibrate its sensors. So, poll
* the device's new state for up to 2 seconds.
*
* Returns:
* -EIO failure while reading from device
* -EAGAIN device is stuck in bootloader, b/c it has invalid firmware
* 0 device is supported and in operational mode
*/
static int cyapa_bl_exit(struct cyapa *cyapa)
{
int ret;
cyapa_dbg(cyapa, "======< cyapa_bl_exit >======");
ret = cyapa_i2c_reg_write_block(cyapa, 0, sizeof(bl_exit), bl_exit);
if (ret < 0) {
cyapa->debug = true;
cyapa_dbg(cyapa, "bl_exit i2c_reg_write failed, %d\n", ret);
return ret;
}
/*
* Wait for bootloader to exit, and operation mode to start.
* Normally, this takes at least 50 ms.
*/
usleep_range(50000, 100000);
/*
* In addition, when a device boots for the first time after being
* updated to new firmware, it must first calibrate its sensors, which
* can take up to an additional 2 seconds. If the device power is
* running low, this may take even longer.
*/
ret = cyapa_poll_state(cyapa, 4000);
if (ret < 0)
return ret;
if (cyapa->state != CYAPA_STATE_OP) {
cyapa->debug = true;
cyapa_dbg(cyapa, "bl_exit failed. Now in state %s.\n",
cyapa_state_to_string(cyapa));
cyapa_dbg(cyapa, "status registers ="
" [0x%02x, 0x%02x, 0x%02x]\n",
cyapa->status[REG_OP_STATUS],
cyapa->status[REG_BL_STATUS],
cyapa->status[REG_BL_ERROR]);
return -EAGAIN;
}
return 0;
}
/*
* cyapa_sleep_time_to_pwr_cmd and cyapa_pwr_cmd_to_sleep_time
*
* These are helper functions that convert to and from integer idle
* times and register settings to write to the PowerMode register.
* The trackpad supports between 20ms to 1000ms scan intervals.
* The time will be increased in increments of 10ms from 20ms to 100ms.
* From 100ms to 1000ms, time will be increased in increments of 20ms.
*
* When Idle_Time < 100, the format to convert Idle_Time to Idle_Command is:
* Idle_Command = Idle Time / 10;
* When Idle_Time >= 100, the format to convert Idle_Time to Idle_Command is:
* Idle_Command = Idle Time / 20 + 5;
*/
static u8 cyapa_sleep_time_to_pwr_cmd(u16 sleep_time)
{
if (sleep_time < 20)
sleep_time = 20; /* minimal sleep time. */
else if (sleep_time > 1000)
sleep_time = 1000; /* maximal sleep time. */
if (sleep_time < 100)
return ((sleep_time / 10) << 2) & PWR_MODE_MASK;
else
return ((sleep_time / 20 + 5) << 2) & PWR_MODE_MASK;
}
static u16 cyapa_pwr_cmd_to_sleep_time(u8 pwr_mode)
{
u8 encoded_time = pwr_mode >> 2;
return (encoded_time < 10) ? encoded_time * 10
: (encoded_time - 5) * 20;
}
/*
* cyapa_get_wait_time_for_pwr_cmd
*
* Compute the amount of time we need to wait after updating the touchpad
* power mode. The touchpad needs to consume the incoming power mode set
* command at the current clock rate.
*/
static u16 cyapa_get_wait_time_for_pwr_cmd(u8 pwr_mode)
{
switch (pwr_mode) {
case PWR_MODE_FULL_ACTIVE: return 20;
case PWR_MODE_BTN_ONLY: return 20;
case PWR_MODE_OFF: return 20;
default: return cyapa_pwr_cmd_to_sleep_time(pwr_mode) + 50;
}
}
/*
* Set device power mode
*
* Write to the field to configure power state. Power states include :
* Full : Max scans and report rate.
* Idle : Report rate set by user specified time.
* ButtonOnly : No scans for fingers. When the button is triggered,
* a slave interrupt is asserted to notify host to wake up.
* Off : Only awake for i2c commands from host. No function for button
* or touch sensors.
*
* The power_mode command should conform to the following :
* Full : 0x3f
* Idle : Configurable from 20 to 1000ms. See note below for
* cyapa_sleep_time_to_pwr_cmd and cyapa_pwr_cmd_to_sleep_time
* ButtonOnly : 0x01
* Off : 0x00
*
* Device power mode can only be set when device is in operational mode.
*/
static int cyapa_set_power_mode(struct cyapa *cyapa, u8 power_mode)
{
struct device *dev = &cyapa->client->dev;
int ret;
u8 power;
int tries = SET_POWER_MODE_TRIES;
u16 sleep_time;
cyapa_dbg(cyapa, "======< cyapa_set_power_mode >======");
if (cyapa->state != CYAPA_STATE_OP)
return 0;
while (true) {
ret = cyapa_read_byte(cyapa, CYAPA_CMD_POWER_MODE);
if (ret >= 0 || --tries < 1)
break;
dev_dbg(dev, "set_power_mode read retry. tries left = %d\n",
tries);
usleep_range(SET_POWER_MODE_DELAY, 2 * SET_POWER_MODE_DELAY);
}
if (ret < 0) {
dev_err(dev, "set_power_mode failed to read power mode %d\n",
ret);
cyapa->debug = true;
return ret;
}
/*
* Return early if the power mode to set is the same as the current
* one.
*/
if ((ret & PWR_MODE_MASK) == power_mode) {
cyapa_dbg(cyapa, "set_power_mode early return\n");
return 0;
}
sleep_time = cyapa_get_wait_time_for_pwr_cmd(ret & PWR_MODE_MASK);
power = ret;
power &= ~PWR_MODE_MASK;
power |= power_mode & PWR_MODE_MASK;
while (true) {
ret = cyapa_write_byte(cyapa, CYAPA_CMD_POWER_MODE, power);
if (!ret || --tries < 1)
break;
dev_dbg(dev, "set_power_mode write retry. tries left = %d\n",
tries);
usleep_range(SET_POWER_MODE_DELAY, 2 * SET_POWER_MODE_DELAY);
}
if (ret < 0) {
dev_err(dev, "set_power_mode failed to set power mode"
" 0x%02x err = %d\n", power_mode, ret);
cyapa->debug = true;
}
/*
* Wait for the newly set power command to go in at the previous
* clock speed (scanrate) used by the touchpad firmware. Not
* doing so before issuing the next command may result in errors
* depending on the command's content.
*/
msleep(sleep_time);
return ret;
}
static int cyapa_get_query_data(struct cyapa *cyapa)
{
u8 query_data[QUERY_DATA_SIZE];
int ret;
cyapa_dbg(cyapa, "======< cyapa_get_query_data >======");
if (cyapa->state != CYAPA_STATE_OP)
return -EBUSY;
ret = cyapa_read_block(cyapa, CYAPA_CMD_GROUP_QUERY, query_data);
if (ret != QUERY_DATA_SIZE) {
cyapa->debug = true;
cyapa_dbg(cyapa, "failed to get query data, ret = %d\n", ret);
return (ret < 0) ? ret : -EIO;
}
memcpy(&cyapa->product_id[0], &query_data[0], 5);
cyapa->product_id[5] = '-';
memcpy(&cyapa->product_id[6], &query_data[5], 6);
cyapa->product_id[12] = '-';
memcpy(&cyapa->product_id[13], &query_data[11], 2);
cyapa->product_id[15] = '\0';
cyapa->fw_maj_ver = query_data[15];
cyapa->fw_min_ver = query_data[16];
cyapa->hw_maj_ver = query_data[17];
cyapa->hw_min_ver = query_data[18];
cyapa->btn_capability = query_data[19] & CAPABILITY_BTN_MASK;
cyapa->gen = query_data[20] & 0x0f;
cyapa->max_abs_x = ((query_data[21] & 0xf0) << 4) | query_data[22];
cyapa->max_abs_y = ((query_data[21] & 0x0f) << 8) | query_data[23];
cyapa->physical_size_x =
((query_data[24] & 0xf0) << 4) | query_data[25];
cyapa->physical_size_y =
((query_data[24] & 0x0f) << 8) | query_data[26];
return 0;
}
/*
* Check if device is operational.
*
* An operational device is responding, has exited bootloader, and has
* firmware supported by this driver.
*
* Returns:
* -EBUSY no device or in bootloader
* -EIO failure while reading from device
* -EAGAIN device is still in bootloader
* if ->state = CYAPA_STATE_BL_IDLE, device has invalid firmware
* -EINVAL device is in operational mode, but not supported by this driver
* 0 device is supported
*/
static int cyapa_check_is_operational(struct cyapa *cyapa)
{
struct device *dev = &cyapa->client->dev;
static const char unique_str[] = "CYTRA";
int ret;
cyapa_dbg(cyapa, "======< cyapa_check_is_operational >======");
ret = cyapa_poll_state(cyapa, 4000);
if (ret < 0)
return ret;
switch (cyapa->state) {
case CYAPA_STATE_BL_ACTIVE:
ret = cyapa_bl_deactivate(cyapa);
if (ret) {
dev_err(dev, "failed to bl_deactivate. %d\n", ret);
return ret;
}
/* Fallthrough state */
case CYAPA_STATE_BL_IDLE:
ret = cyapa_bl_exit(cyapa);
if (ret) {
dev_err(dev, "failed to bl_exit. %d\n", ret);
return ret;
}
/* Fallthrough state */
case CYAPA_STATE_OP:
/*
* Reading query data before going back to the full mode
* may cause problems, so we set the power mode first here.
*/
ret = cyapa_set_power_mode(cyapa, PWR_MODE_FULL_ACTIVE);
if (ret) {
dev_err(dev, "check_is_operational active power"
" failed, %d\n", ret);
cyapa->debug = true;
}
ret = cyapa_get_query_data(cyapa);
if (ret < 0)
return ret;
/* only support firmware protocol gen3 */
if (cyapa->gen != CYAPA_GEN3) {
dev_err(dev, "unsupported protocol version (%d)",
cyapa->gen);
return -EINVAL;
}
/* only support product ID starting with CYTRA */
if (memcmp(cyapa->product_id, unique_str,
sizeof(unique_str) - 1) != 0) {
dev_err(dev, "unsupported product ID (%s)\n",
cyapa->product_id);
return -EINVAL;
}
return 0;
default:
return -EIO;
}
return 0;
}
static u16 cyapa_csum(const u8 *buf, size_t count)
{
int i;
u16 csum = 0;
for (i = 0; i < count; i++)
csum += buf[i];
return csum;
}
/*
* Write a |len| byte long buffer |buf| to the device, by chopping it up into a
* sequence of smaller |CYAPA_CMD_LEN|-length write commands.
*
* The data bytes for a write command are prepended with the 1-byte offset
* of the data relative to the start of |buf|.
*/
static int cyapa_write_buffer(struct cyapa *cyapa, const u8 *buf, size_t len)
{
int ret;
size_t i;
unsigned char cmd[CYAPA_CMD_LEN + 1];
size_t cmd_len;
for (i = 0; i < len; i += CYAPA_CMD_LEN) {
const u8 *payload = &buf[i];
cmd_len = (len - i >= CYAPA_CMD_LEN) ? CYAPA_CMD_LEN : len - i;
cmd[0] = i;
memcpy(&cmd[1], payload, cmd_len);
ret = cyapa_i2c_reg_write_block(cyapa, 0, cmd_len + 1, cmd);
if (ret < 0) {
cyapa->debug = true;
cyapa_dbg(cyapa, "write_buffer i2c_reg_write"
" failed, %d\n", ret);
return ret;
}
}
return 0;
}
/*
* A firmware block write command writes 64 bytes of data to a single flash
* page in the device. The 78-byte block write command has the format:
* <0xff> <CMD> <Key> <Start> <Data> <Data-Checksum> <CMD Checksum>
*
* <0xff> - every command starts with 0xff
* <CMD> - the write command value is 0x39
* <Key> - write commands include an 8-byte key: { 00 01 02 03 04 05 06 07 }
* <Block> - Memory Block number (address / 64) (16-bit, big-endian)
* <Data> - 64 bytes of firmware image data
* <Data Checksum> - sum of 64 <Data> bytes, modulo 0xff
* <CMD Checksum> - sum of 77 bytes, from 0xff to <Data Checksum>
*
* Each write command is split into 5 i2c write transactions of up to 16 bytes.
* Each transaction starts with an i2c register offset: (00, 10, 20, 30, 40).
*/
static int cyapa_write_fw_block(struct cyapa *cyapa, u16 block, const u8 *data)
{
int ret;
u8 cmd[78];
u8 status[BL_STATUS_SIZE];
/* Programming for one block can take about 100ms. */
int tries = 11;
u8 bl_status, bl_error;
struct device *dev = &cyapa->client->dev;
/* set write command and security key bytes. */
cmd[0] = 0xff;
cmd[1] = 0x39;
cmd[2] = 0x00;
cmd[3] = 0x01;
cmd[4] = 0x02;
cmd[5] = 0x03;
cmd[6] = 0x04;
cmd[7] = 0x05;
cmd[8] = 0x06;
cmd[9] = 0x07;
cmd[10] = block >> 8;
cmd[11] = block;
memcpy(&cmd[12], data, CYAPA_FW_BLOCK_SIZE);
cmd[76] = cyapa_csum(data, CYAPA_FW_BLOCK_SIZE);
cmd[77] = cyapa_csum(cmd, sizeof(cmd) - 1);
ret = cyapa_write_buffer(cyapa, cmd, sizeof(cmd));
if (ret) {
cyapa_dbg(cyapa, "write_fw_block write_buffer"
" failed, %d\n", ret);
return ret;
}
/* wait for write to finish */
do {
usleep_range(10000, 20000);
/* check block write command result status. */
ret = cyapa_i2c_reg_read_block(cyapa, BL_HEAD_OFFSET,
BL_STATUS_SIZE, status);
if (ret != BL_STATUS_SIZE) {
cyapa->debug = true;
cyapa_dbg(cyapa, "write_fw_block i2c_reg_read"
" failed, %d\n", ret);
return (ret < 0) ? ret : -EIO;
}
} while ((status[1] & BL_STATUS_BUSY) && --tries);
/* ignore WATCHDOG bit and reserved bits. */
bl_status = status[1] & ~BL_STATUS_REV_MASK;
bl_error = status[2] & ~BL_ERROR_RESERVED;
if (status[1] & BL_STATUS_BUSY) {
dev_warn(dev, "write_fw_block timeout.\n");
ret = -ETIMEDOUT;
} else if (bl_status != BL_STATUS_RUNNING ||
bl_error != BL_ERROR_BOOTLOADING) {
ret = -EIO;
} else {
ret = 0;
}
if (ret) {
cyapa->debug = true;
cyapa_dbg(cyapa, "status registers ="
" [0x%02x, 0x%02x, 0x%02x]\n",
status[REG_OP_STATUS], status[REG_BL_STATUS],
status[REG_BL_ERROR]);
}
return ret;
}
/*
* A firmware block read command reads 16 bytes of data from flash starting
* from a given address. The 12-byte block read command has the format:
* <0xff> <CMD> <Key> <Addr>
*
* <0xff> - every command starts with 0xff
* <CMD> - the read command value is 0x3c
* <Key> - read commands include an 8-byte key: { 00 01 02 03 04 05 06 07 }
* <Addr> - Memory address (16-bit, big-endian)
*
* The command is followed by an i2c block read to read the 16 bytes of data.
*/
static int cyapa_read_fw_bytes(struct cyapa *cyapa, u16 addr, u8 *data)
{
int ret;
u8 cmd[] = { 0xff, 0x3c, 0, 1, 2, 3, 4, 5, 6, 7, addr >> 8, addr };
ret = cyapa_write_buffer(cyapa, cmd, sizeof(cmd));
if (ret) {
cyapa_dbg(cyapa, "read_fw_bytes write_buffer"
" failed, %d\n", ret);
return ret;
}
/* read data buffer starting from offset 16 */
ret = cyapa_i2c_reg_read_block(cyapa, 16, CYAPA_FW_READ_SIZE, data);
if (ret != CYAPA_FW_READ_SIZE) {
cyapa->debug = true;
cyapa_dbg(cyapa, "read_fw_bytes i2c_reg_read failed, %d\n",
ret);
return (ret < 0) ? ret : -EIO;
}
return 0;
}
/*
* Verify the integrity of a CYAPA firmware image file.
*
* The firmware image file is 30848 bytes, composed of 482 64-byte blocks.
*
* The first 2 blocks are the firmware header.
* The next 480 blocks are the firmware image.
*
* The first two bytes of the header hold the header checksum, computed by
* summing the other 126 bytes of the header.
* The last two bytes of the header hold the firmware image checksum, computed
* by summing the 30720 bytes of the image modulo 0xffff.
*
* Both checksums are stored little-endian.
*/
static int cyapa_check_fw(struct cyapa *cyapa, const struct firmware *fw)
{
struct device *dev = &cyapa->client->dev;
u16 csum;
u16 csum_expected;
/* Firmware must match exact 30848 bytes = 482 64-byte blocks. */
if (fw->size != CYAPA_FW_SIZE) {
dev_err(dev, "invalid firmware size = %zu, expected %u.\n",
fw->size, CYAPA_FW_SIZE);
return -EINVAL;
}
/* Verify header block */
csum_expected = (fw->data[0] << 8) | fw->data[1];
csum = cyapa_csum(&fw->data[2], CYAPA_FW_HDR_SIZE - 2);
if (csum != csum_expected) {
dev_err(dev, "invalid firmware header checksum = %04x,"
" expected: %04x\n", csum, csum_expected);
return -EINVAL;
}
/* Verify firmware image */
csum_expected = (fw->data[CYAPA_FW_HDR_SIZE - 2] << 8) |
fw->data[CYAPA_FW_HDR_SIZE - 1];
csum = cyapa_csum(&fw->data[CYAPA_FW_HDR_SIZE], CYAPA_FW_DATA_SIZE);
if (csum != csum_expected) {
dev_err(dev, "invalid firmware header checksum = %04x,"
" expected: %04x\n", csum, csum_expected);
return -EINVAL;
}
return 0;
}
static int cyapa_firmware(struct cyapa *cyapa, const char *fw_name)
{
struct device *dev = &cyapa->client->dev;
int ret;
const struct firmware *fw;
int i;
cyapa_dbg(cyapa, "======< cyapa_firmware >======");
ret = request_firmware(&fw, fw_name, dev);
if (ret) {
dev_err(dev, "Could not load firmware from %s, %d\n",
fw_name, ret);
return ret;
}
ret = cyapa_check_fw(cyapa, fw);
if (ret) {
dev_err(dev, "Invalid CYAPA firmware image: %s\n", fw_name);
goto done;
}
/*
* Resume the potentially suspended device because doing FW
* update on a device not in the FULL mode has a chance to
* fail.
*/
pm_runtime_get_sync(dev);
ret = cyapa_bl_enter(cyapa);
if (ret) {
dev_err(dev, "Error in bl_enter\n");
goto err_detect;
}
ret = cyapa_bl_activate(cyapa);
if (ret) {
dev_err(dev, "Error in bl_activate\n");
goto err_detect;
}
cyapa_dbg(cyapa, "Start writing firmware\n");
/* First write data, starting at byte 128 of fw->data */
for (i = 0; i < CYAPA_FW_DATA_BLOCK_COUNT; i++) {
size_t block = CYAPA_FW_DATA_BLOCK_START + i;
size_t addr = (i + CYAPA_FW_HDR_BLOCK_COUNT) *
CYAPA_FW_BLOCK_SIZE;
const u8 *data = &fw->data[addr];
ret = cyapa_write_fw_block(cyapa, block, data);
if (ret) {
dev_err(dev, "FW update aborted, %d\n", ret);
goto err_detect;
}
}
cyapa_dbg(cyapa, "Start writing firmware checksum\n");
/* Then write checksum */
for (i = 0; i < CYAPA_FW_HDR_BLOCK_COUNT; i++) {
size_t block = CYAPA_FW_HDR_BLOCK_START + i;
size_t addr = i * CYAPA_FW_BLOCK_SIZE;
const u8 *data = &fw->data[addr];
ret = cyapa_write_fw_block(cyapa, block, data);
if (ret) {
dev_err(dev, "FW update aborted, %d\n", ret);
goto err_detect;
}
}
err_detect:
pm_runtime_put_noidle(dev);
cyapa_detect(cyapa);
done:
release_firmware(fw);
return ret;
}
/*
* Read the entire firmware image into ->read_fw_image.
* If the ->read_fw_image has already been allocated, then this function
* doesn't do anything and just returns 0.
* If an error occurs while reading the image, ->read_fw_image is freed, and
* the error is returned.
*
* The firmware is a fixed size (CYAPA_FW_SIZE), and is read out in
* fixed length (CYAPA_FW_READ_SIZE) chunks.
*/
static int cyapa_read_fw(struct cyapa *cyapa)
{
int ret;
int addr;
if (cyapa->read_fw_image)
return 0;
ret = cyapa_bl_enter(cyapa);
if (ret)
goto err_detect;
cyapa->read_fw_image = kmalloc(CYAPA_FW_SIZE, GFP_KERNEL);
if (!cyapa->read_fw_image) {
ret = -ENOMEM;
goto err_detect;
}
for (addr = 0; addr < CYAPA_FW_SIZE; addr += CYAPA_FW_READ_SIZE) {
ret = cyapa_read_fw_bytes(cyapa, CYAPA_FW_HDR_START + addr,
&cyapa->read_fw_image[addr]);
if (ret) {
cyapa_dbg(cyapa, "read_fw failed at addr = %d,"
" ret = %d\n", addr, ret);
kfree(cyapa->read_fw_image);
cyapa->read_fw_image = NULL;
break;
}
}
err_detect:
cyapa_detect(cyapa);
return ret;
}
/*
*******************************************************************
* Sysfs Interface.
*******************************************************************
*/
static ssize_t cyapa_show_fm_ver(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%d.%d\n", cyapa->fw_maj_ver,
cyapa->fw_min_ver);
}
static ssize_t cyapa_show_hw_ver(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%d.%d\n", cyapa->hw_maj_ver,
cyapa->hw_min_ver);
}
static ssize_t cyapa_show_product_id(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%s\n", cyapa->product_id);
}
static ssize_t cyapa_show_protocol_version(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
return scnprintf(buf, PAGE_SIZE, "%d\n", cyapa->gen);
}
static ssize_t cyapa_update_fw_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
const char *fw_name;
int ret;
/* Do not allow paths that step out of /lib/firmware */
if (strstr(buf, "../") != NULL)
return -EINVAL;
fw_name = !strncmp(buf, "1", count) ||
!strncmp(buf, "1\n", count) ? CYAPA_FW_NAME : buf;
ret = cyapa_firmware(cyapa, fw_name);
if (ret)
dev_err(dev, "firmware update failed, %d\n", ret);
else
dev_dbg(dev, "firmware update succeeded\n");
return ret ? ret : count;
}
static ssize_t cyapa_calibrate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
int tries = 20; /* max recalibration timeout 2s. */
int ret;
cyapa_dbg(cyapa, "======< cyapa_calibrate_store >======");
disable_irq(cyapa->irq);
ret = cyapa_read_byte(cyapa, CYAPA_CMD_DEV_STATUS);
if (ret < 0) {
dev_err(dev, "Error reading dev status. err = %d\n", ret);
goto out;
}
if ((ret & CYAPA_DEV_NORMAL) != CYAPA_DEV_NORMAL) {
dev_warn(dev, "Trackpad device is busy. device state = 0x%x\n",
ret);
ret = -EAGAIN;
goto out;
}
ret = cyapa_write_byte(cyapa, CYAPA_CMD_SOFT_RESET,
OP_RECALIBRATION_MASK);
if (ret < 0) {
dev_err(dev, "Failed to send calibrate command. ret = %d\n",
ret);
goto out;
}
do {
/*
* For this recalibration, the max time will not exceed 2s.
* The average time is approximately 500 - 700 ms, and we
* will check the status every 100 - 200ms.
*/
usleep_range(100000, 200000);
ret = cyapa_read_byte(cyapa, CYAPA_CMD_DEV_STATUS);
if (ret < 0) {
dev_err(dev, "Error reading dev status. err = %d\n",
ret);
goto out;
}
if ((ret & CYAPA_DEV_NORMAL) == CYAPA_DEV_NORMAL)
break;
} while (--tries);
if (tries == 0) {
dev_err(dev, "Failed to calibrate. Timeout.\n");
ret = -ETIMEDOUT;
goto out;
}
dev_dbg(dev, "Calibration successful.\n");
out:
enable_irq(cyapa->irq);
return ret < 0 ? ret : count;
}
static ssize_t cyapa_show_baseline(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
int max_baseline, min_baseline;
int tries = 3;
int ret;
cyapa_dbg(cyapa, "======< cyapa_show_baseline >======");
disable_irq(cyapa->irq);
ret = cyapa_read_byte(cyapa, CYAPA_CMD_DEV_STATUS);
if (ret < 0) {
dev_err(dev, "Error reading dev status. err = %d\n", ret);
goto out;
}
if ((ret & CYAPA_DEV_NORMAL) != CYAPA_DEV_NORMAL) {
dev_warn(dev, "Trackpad device is busy. device state = 0x%x\n",
ret);
ret = -EAGAIN;
goto out;
}
ret = cyapa_write_byte(cyapa, CYAPA_CMD_SOFT_RESET,
OP_REPORT_BASELINE_MASK);
if (ret < 0) {
dev_err(dev, "Failed to send report baseline command. %d\n",
ret);
goto out;
}
do {
usleep_range(10000, 20000);
ret = cyapa_read_byte(cyapa, CYAPA_CMD_DEV_STATUS);
if (ret < 0) {
dev_err(dev, "Error reading dev status. err = %d\n",
ret);
goto out;
}
if ((ret & CYAPA_DEV_NORMAL) == CYAPA_DEV_NORMAL)
break;
} while (--tries);
if (tries == 0) {
dev_err(dev, "Device timed out going to Normal state.\n");
ret = -ETIMEDOUT;
goto out;
}
ret = cyapa_read_byte(cyapa, CYAPA_CMD_MAX_BASELINE);
if (ret < 0) {
dev_err(dev, "Failed to read max baseline. err = %d\n", ret);
goto out;
}
max_baseline = ret;
ret = cyapa_read_byte(cyapa, CYAPA_CMD_MIN_BASELINE);
if (ret < 0) {
dev_err(dev, "Failed to read min baseline. err = %d\n", ret);
goto out;
}
min_baseline = ret;
dev_dbg(dev, "Baseline report successful. Max: %d Min: %d\n",
max_baseline, min_baseline);
ret = scnprintf(buf, PAGE_SIZE, "%d %d\n", max_baseline, min_baseline);
out:
enable_irq(cyapa->irq);
return ret;
}
#ifdef CONFIG_PM_RUNTIME
static ssize_t cyapa_show_rt_suspend_scanrate(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
u8 pwr_cmd = cyapa->runtime_suspend_power_mode;
return scnprintf(buf, PAGE_SIZE, "%u\n",
cyapa_pwr_cmd_to_sleep_time(pwr_cmd));
}
static ssize_t cyapa_update_rt_suspend_scanrate(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
u16 time;
cyapa_dbg(cyapa, "======< cyapa_update_rt_suspend_scanrate >======");
if (buf == NULL || count == 0 || kstrtou16(buf, 10, &time)) {
dev_err(dev, "invalid runtime suspend scanrate ms parameter\n");
return -EINVAL;
}
cyapa_dbg(cyapa, "New suspend mode sleep time: %d\n", time);
/*
* When the suspend scanrate is changed, pm_runtime_get to resume
* a potentially suspended device, update to the new pwr_cmd
* and then pm_runtime_put to suspend into the new power mode.
*/
pm_runtime_get_sync(dev);
cyapa->runtime_suspend_power_mode = cyapa_sleep_time_to_pwr_cmd(time);
pm_runtime_put_sync_autosuspend(dev);
return count;
}
static DEVICE_ATTR(runtime_suspend_scanrate_ms, S_IRUGO|S_IWUSR,
cyapa_show_rt_suspend_scanrate,
cyapa_update_rt_suspend_scanrate);
static struct attribute *cyapa_power_runtime_entries[] = {
&dev_attr_runtime_suspend_scanrate_ms.attr,
NULL,
};
static const struct attribute_group cyapa_power_runtime_group = {
.name = power_group_name,
.attrs = cyapa_power_runtime_entries,
};
#endif /* CONFIG_PM_RUNTIME */
#ifdef CONFIG_PM_SLEEP
static ssize_t cyapa_show_suspend_scanrate(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
int len;
u8 pwr_cmd = cyapa->suspend_power_mode;
if (pwr_cmd == PWR_MODE_BTN_ONLY)
len = scnprintf(buf, PAGE_SIZE, "%s\n", BTN_ONLY_MODE_NAME);
else
len = scnprintf(buf, PAGE_SIZE, "%u\n",
cyapa_pwr_cmd_to_sleep_time(pwr_cmd));
return len;
}
static ssize_t cyapa_update_suspend_scanrate(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cyapa *cyapa = dev_get_drvdata(dev);
u8 pwr_cmd;
u16 sleep_time;
cyapa_dbg(cyapa, "======< cyapa_update_suspend_scanrate >======");
if (buf == NULL || count == 0)
goto invalidparam;
if (sysfs_streq(buf, BTN_ONLY_MODE_NAME))
pwr_cmd = PWR_MODE_BTN_ONLY;
else if (!kstrtou16(buf, 10, &sleep_time))
pwr_cmd = cyapa_sleep_time_to_pwr_cmd(sleep_time);
else
goto invalidparam;
cyapa->suspend_power_mode = pwr_cmd;
return count;
invalidparam:
dev_err(dev, "invalid suspend scanrate ms parameters\n");
return -EINVAL;
}
static DEVICE_ATTR(suspend_scanrate_ms, S_IRUGO|S_IWUSR,
cyapa_show_suspend_scanrate,
cyapa_update_suspend_scanrate);
static struct attribute *cyapa_power_wakeup_entries[] = {
&dev_attr_suspend_scanrate_ms.attr,
NULL,
};
static const struct attribute_group cyapa_power_wakeup_group = {
.name = power_group_name,
.attrs = cyapa_power_wakeup_entries,
};
#endif /* CONFIG_PM_SLEEP */
static DEVICE_ATTR(firmware_version, S_IRUGO, cyapa_show_fm_ver, NULL);
static DEVICE_ATTR(hardware_version, S_IRUGO, cyapa_show_hw_ver, NULL);
static DEVICE_ATTR(product_id, S_IRUGO, cyapa_show_product_id, NULL);
static DEVICE_ATTR(protocol_version, S_IRUGO, cyapa_show_protocol_version,
NULL);
static DEVICE_ATTR(update_fw, S_IWUSR, NULL, cyapa_update_fw_store);
static DEVICE_ATTR(baseline, S_IRUGO, cyapa_show_baseline, NULL);
static DEVICE_ATTR(calibrate, S_IWUSR, NULL, cyapa_calibrate_store);
static struct attribute *cyapa_sysfs_entries[] = {
&dev_attr_firmware_version.attr,
&dev_attr_hardware_version.attr,
&dev_attr_product_id.attr,
&dev_attr_protocol_version.attr,
&dev_attr_update_fw.attr,
&dev_attr_baseline.attr,
&dev_attr_calibrate.attr,
NULL,
};
static const struct attribute_group cyapa_sysfs_group = {
.attrs = cyapa_sysfs_entries,
};
/*
**************************************************************
* debugfs interface
**************************************************************
*/
static int cyapa_debugfs_open(struct inode *inode, struct file *file)
{
struct cyapa *cyapa = inode->i_private;
int ret;
if (!cyapa)
return -ENODEV;
ret = mutex_lock_interruptible(&cyapa->debugfs_mutex);
if (ret)
return ret;
if (!kobject_get(&cyapa->client->dev.kobj)) {
ret = -ENODEV;
goto out;
}
file->private_data = cyapa;
/*
* If firmware hasn't been read yet, read it all in one pass.
* Subsequent opens will reuse the data in this same buffer.
*/
ret = cyapa_read_fw(cyapa);
out:
mutex_unlock(&cyapa->debugfs_mutex);
return ret;
}
static int cyapa_debugfs_release(struct inode *inode, struct file *file)
{
struct cyapa *cyapa = file->private_data;
int ret;
if (!cyapa)
return 0;
ret = mutex_lock_interruptible(&cyapa->debugfs_mutex);
if (ret)
return ret;
file->private_data = NULL;
kobject_put(&cyapa->client->dev.kobj);
mutex_unlock(&cyapa->debugfs_mutex);
return 0;
}
/* Return some bytes from the buffered firmware image, starting from *ppos */
static ssize_t cyapa_debugfs_read_fw(struct file *file, char __user *buffer,
size_t count, loff_t *ppos)
{
struct cyapa *cyapa = file->private_data;
if (!cyapa->read_fw_image)
return -EINVAL;
if (*ppos >= CYAPA_FW_SIZE)
return 0;
if (count + *ppos > CYAPA_FW_SIZE)
count = CYAPA_FW_SIZE - *ppos;
if (copy_to_user(buffer, &cyapa->read_fw_image[*ppos], count))
return -EFAULT;
*ppos += count;
return count;
}
static const struct file_operations cyapa_read_fw_fops = {
.open = cyapa_debugfs_open,
.release = cyapa_debugfs_release,
.read = cyapa_debugfs_read_fw
};
static int cyapa_debugfs_init(struct cyapa *cyapa)
{
struct device *dev = &cyapa->client->dev;
if (!cyapa_debugfs_root)
return -ENODEV;
cyapa->dentry_dev = debugfs_create_dir(kobject_name(&dev->kobj),
cyapa_debugfs_root);
if (!cyapa->dentry_dev)
return -ENODEV;
mutex_init(&cyapa->debugfs_mutex);
debugfs_create_file(CYAPA_DEBUGFS_READ_FW, S_IRUSR, cyapa->dentry_dev,
cyapa, &cyapa_read_fw_fops);
return 0;
}
static irqreturn_t cyapa_irq(int irq, void *dev_id)
{
struct cyapa *cyapa = dev_id;
struct device *dev = &cyapa->client->dev;
struct input_dev *input = cyapa->input;
struct cyapa_reg_data data;
int i;
int ret;
int num_fingers;
unsigned int mask;
cyapa_dbg(cyapa, "======< cyapa_irq >======");
pm_runtime_get_sync(dev);
pm_runtime_mark_last_busy(dev);
/*
* Don't read input if input device has not been configured.
* This check check solves a race during probe() between irq_request()
* and irq_disable(), since there is no way to request an irq that is
* initially disabled.
*/
if (!input)
goto irqhandled;
if (device_may_wakeup(dev))
pm_wakeup_event(dev, 0);
ret = cyapa_read_block(cyapa, CYAPA_CMD_GROUP_DATA, (u8 *)&data);
if (ret != sizeof(data)) {
cyapa->debug = true;
cyapa_dbg(cyapa, "read_block failed in cyapa_irq. ret = %d\n",
ret);
cyapa_detect(cyapa);
goto irqhandled;
}
if ((data.device_status & OP_STATUS_SRC) != OP_STATUS_SRC ||
(data.device_status & OP_STATUS_DEV) != CYAPA_DEV_NORMAL ||
(data.finger_btn & OP_DATA_VALID) != OP_DATA_VALID) {
cyapa->debug = true;
cyapa_dbg(cyapa,
"irq error. device_status = 0x%x finger_btn = 0x%x",
data.device_status, data.finger_btn);
cyapa_detect(cyapa);
goto irqhandled;
}
mask = 0;
num_fingers = (data.finger_btn >> 4) & 0x0f;
for (i = 0; i < num_fingers; i++) {
const struct cyapa_touch *touch = &data.touches[i];
/* Note: touch->id range is 1 to 15; slots are 0 to 14. */
int slot = touch->id - 1;
mask |= (1 << slot);
input_mt_slot(input, slot);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
input_report_abs(input, ABS_MT_POSITION_X,
((touch->xy_hi & 0xf0) << 4) | touch->x_lo);
input_report_abs(input, ABS_MT_POSITION_Y,
((touch->xy_hi & 0x0f) << 8) | touch->y_lo);
input_report_abs(input, ABS_MT_PRESSURE, touch->pressure);
}
/* Invalidate all unreported slots */
for (i = 0; i < CYAPA_MAX_MT_SLOTS; i++) {
if (mask & (1 << i))
continue;
input_mt_slot(input, i);
input_mt_report_slot_state(input, MT_TOOL_FINGER, false);
}
input_mt_report_pointer_emulation(input, true);
if (cyapa->btn_capability & CAPABILITY_LEFT_BTN_MASK) {
input_report_key(input, BTN_LEFT,
!!(data.finger_btn & OP_DATA_LEFT_BTN));
}
if (cyapa->btn_capability & CAPABILITY_MIDDLE_BTN_MASK) {
input_report_key(input, BTN_MIDDLE,
!!(data.finger_btn & OP_DATA_MIDDLE_BTN));
}
if (cyapa->btn_capability & CAPABILITY_RIGHT_BTN_MASK) {
input_report_key(input, BTN_RIGHT,
!!(data.finger_btn & OP_DATA_RIGHT_BTN));
}
input_sync(input);
irqhandled:
pm_runtime_put_sync_autosuspend(dev);
return IRQ_HANDLED;
}
static u8 cyapa_check_adapter_functionality(struct i2c_client *client)
{
u8 ret = CYAPA_ADAPTER_FUNC_NONE;
if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
ret |= CYAPA_ADAPTER_FUNC_I2C;
if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_BLOCK_DATA |
I2C_FUNC_SMBUS_I2C_BLOCK))
ret |= CYAPA_ADAPTER_FUNC_SMBUS;
return ret;
}
static int cyapa_create_input_dev(struct cyapa *cyapa)
{
struct device *dev = &cyapa->client->dev;
int ret;
struct input_dev *input;
cyapa_dbg(cyapa, "======< cyapa_create_input_dev >======");
dev_info(dev,
"Cypress APA Trackpad Information:\n" \
" Product ID: %s\n" \
" Protocol Generation: %d\n" \
" Firmware Version: %d.%d\n" \
" Hardware Version: %d.%d\n" \
" Max ABS X,Y: %d,%d\n" \
" Physical Size X,Y: %d,%d\n",
cyapa->product_id,
cyapa->gen,
cyapa->fw_maj_ver, cyapa->fw_min_ver,
cyapa->hw_maj_ver, cyapa->hw_min_ver,
cyapa->max_abs_x, cyapa->max_abs_y,
cyapa->physical_size_x, cyapa->physical_size_y);
input = cyapa->input = input_allocate_device();
if (!input) {
dev_err(dev, "allocate memory for input device failed\n");
return -ENOMEM;
}
input->name = CYAPA_NAME;
input->phys = cyapa->phys;
input->id.bustype = BUS_I2C;
input->id.version = 1;
input->id.product = 0; /* means any product in eventcomm. */
input->dev.parent = &cyapa->client->dev;
input_set_drvdata(input, cyapa);
__set_bit(EV_ABS, input->evbit);
/*
* set and report not-MT axes to support synaptics X Driver.
* When multi-fingers on trackpad, only the first finger touch
* will be reported as X/Y axes values.
*/
input_set_abs_params(input, ABS_X, 0, cyapa->max_abs_x, 0, 0);
input_set_abs_params(input, ABS_Y, 0, cyapa->max_abs_y, 0, 0);
input_set_abs_params(input, ABS_PRESSURE, 0, 255, 0, 0);
/* finger position */
input_set_abs_params(input, ABS_MT_POSITION_X, 0, cyapa->max_abs_x, 0,
0);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0, cyapa->max_abs_y, 0,
0);
input_set_abs_params(input, ABS_MT_PRESSURE, 0, 255, 0, 0);
ret = input_mt_init_slots(input, CYAPA_MAX_MT_SLOTS);
if (ret < 0) {
dev_err(dev, "allocate memory for MT slots failed, %d\n", ret);
goto err_free_device;
}
if (cyapa->physical_size_x && cyapa->physical_size_y) {
input_abs_set_res(input, ABS_X,
cyapa->max_abs_x / cyapa->physical_size_x);
input_abs_set_res(input, ABS_Y,
cyapa->max_abs_y / cyapa->physical_size_y);
input_abs_set_res(input, ABS_MT_POSITION_X,
cyapa->max_abs_x / cyapa->physical_size_x);
input_abs_set_res(input, ABS_MT_POSITION_Y,
cyapa->max_abs_y / cyapa->physical_size_y);
}
__set_bit(EV_KEY, input->evbit);
__set_bit(BTN_TOUCH, input->keybit);
__set_bit(BTN_TOOL_FINGER, input->keybit);
__set_bit(BTN_TOOL_DOUBLETAP, input->keybit);
__set_bit(BTN_TOOL_TRIPLETAP, input->keybit);
__set_bit(BTN_TOOL_QUADTAP, input->keybit);
__set_bit(BTN_TOOL_QUINTTAP, input->keybit);
if (cyapa->btn_capability & CAPABILITY_LEFT_BTN_MASK)
__set_bit(BTN_LEFT, input->keybit);
if (cyapa->btn_capability & CAPABILITY_MIDDLE_BTN_MASK)
__set_bit(BTN_MIDDLE, input->keybit);
if (cyapa->btn_capability & CAPABILITY_RIGHT_BTN_MASK)
__set_bit(BTN_RIGHT, input->keybit);
/*
* We are using the number of buttons reported to infer BUTTONPAD.
* This is true for all currently known devices, that a device with
* just one button (a left button) is a type with the button
* underneath the touch surface, and one with more than one button
* is not. It is concievable that device can be built that does
* not conform to this, though.
*/
if (cyapa->btn_capability == CAPABILITY_LEFT_BTN_MASK)
__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
__set_bit(INPUT_PROP_POINTER, input->propbit);
/* Register the device in input subsystem */
ret = input_register_device(input);
if (ret) {
dev_err(dev, "input device register failed, %d\n", ret);
goto err_free_device;
}
enable_irq(cyapa->irq);
return 0;
err_free_device:
input_free_device(input);
cyapa->input = NULL;
return ret;
}
static void cyapa_detect(struct cyapa *cyapa)
{
struct device *dev = &cyapa->client->dev;
char *envp[] = {"ERROR=1", NULL};
int ret;
cyapa_dbg(cyapa, "======< cyapa_detect >======");
ret = cyapa_check_is_operational(cyapa);
if (ret == -ETIMEDOUT) {
dev_err(dev, "no device detected, %d\n", ret);
} else if (ret) {
dev_err(dev, "device detected, but not operational, %d\n", ret);
}
if (ret) {
kobject_uevent_env(&dev->kobj, KOBJ_CHANGE, envp);
return;
}
cyapa->debug = false;
if (!cyapa->input) {
ret = cyapa_create_input_dev(cyapa);
if (ret)
dev_err(dev, "create input_dev instance failed, %d\n",
ret);
/*
* On some systems, a system crash / warm boot does not reset
* the device's current power mode to FULL_ACTIVE.
* If such an event happens during suspend, after the device
* has been put in a low power mode, the device will still be
* in low power mode on a subsequent boot, since there was
* never a matching resume().
* Handle this by always forcing full power here, when a
* device is first detected to be in operational mode.
*/
ret = cyapa_set_power_mode(cyapa, PWR_MODE_FULL_ACTIVE);
if (ret)
dev_warn(dev, "set active power failed, %d\n", ret);
}
}
#ifdef CONFIG_PM_RUNTIME
static void cyapa_start_runtime(struct cyapa *cyapa)
{
struct device *dev = &cyapa->client->dev;
cyapa_dbg(cyapa, "======< cyapa_start_runtime >======");
cyapa->runtime_suspend_power_mode = PWR_MODE_IDLE;
if (sysfs_merge_group(&dev->kobj, &cyapa_power_runtime_group))
dev_warn(dev, "error creating wakeup runtime entries.\n");
pm_runtime_set_active(dev);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_DELAY);
pm_runtime_enable(dev);
}
#else
static void cyapa_start_runtime(struct cyapa *cyapa) {}
#endif /* CONFIG_PM_RUNTIME */
/*
* We rely on EV_SW and SW_LID bits to identify a LID device, and hook
* up our filter to listen for SW_LID events to enable/disable touchpad when
* LID is open/closed.
*/
static const struct input_device_id lid_device_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
INPUT_DEVICE_ID_MATCH_SWBIT,
.evbit = { BIT_MASK(EV_SW) },
.swbit = { BIT_MASK(SW_LID) },
},
{ },
};
static int lid_device_connect(struct input_handler *handler,
struct input_dev *dev,
const struct input_device_id *id)
{
struct input_handle *lid_handle;
int error;
pr_info("cyapa: LID device: '%s' connected\n", dev->name);
lid_handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!lid_handle)
return -ENOMEM;
lid_handle->dev = dev;
lid_handle->handler = handler;
lid_handle->name = "lid_event_handler";
lid_handle->private = handler->private;
error = input_register_handle(lid_handle);
if (error) {
pr_err("Failed to register lid_event_handler, error %d\n",
error);
goto err_free;
}
error = input_open_device(lid_handle);
if (error) {
pr_err("Failed to open input device, error %d\n", error);
goto err_unregister;
}
return 0;
err_unregister:
input_unregister_handle(lid_handle);
err_free:
kfree(lid_handle);
return error;
}
static void lid_device_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static bool lid_event_filter(struct input_handle *handle,
unsigned int type, unsigned int code, int value)
{
struct cyapa *cyapa = handle->private;
struct device *dev = &cyapa->client->dev;
if (type == EV_SW && code == SW_LID) {
pr_info("cyapa %s: %s touch device\n",
dev_name(&cyapa->client->dev),
(value ? "disable" : "enable"));
if (cyapa->suspended) {
/*
* If the lid event filter is called while suspended,
* there is no guarantee that the underlying i2cs are
* resumed at this point, so it is not safe to issue
* the command to change power modes.
* Instead, rely on cyapa_resume to set us back to
* PWR_MODE_FULL_ACTIVE.
*/
pr_info("cyapa %s: skipping lid pm change in suspend\n",
dev_name(&cyapa->client->dev));
return false;
}
if (value == 0) {
cyapa_set_power_mode(cyapa, PWR_MODE_FULL_ACTIVE);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
} else {
pm_runtime_disable(dev);
cyapa_set_power_mode(cyapa, PWR_MODE_OFF);
}
}
return false;
}
static void lid_event_register_handler(struct cyapa *cyapa)
{
int error;
struct input_handler *lid_handler = &cyapa->lid_handler;
if (cyapa->lid_handler_registered) {
pr_err("lid handler is registered already\n");
return;
}
lid_handler->filter = lid_event_filter;
lid_handler->connect = lid_device_connect;
lid_handler->disconnect = lid_device_disconnect;
lid_handler->name = "cyapa_lid_event_handler";
lid_handler->id_table = lid_device_ids;
lid_handler->private = cyapa;
error = input_register_handler(lid_handler);
if (error) {
pr_err("Failed to register lid handler(%d)\n", error);
return;
}
cyapa->lid_handler_registered = true;
}
static void lid_event_unregister_handler(struct cyapa *cyapa)
{
if (cyapa->lid_handler_registered) {
input_unregister_handler(&cyapa->lid_handler);
cyapa->lid_handler_registered = false;
}
}
static void cyapa_detect_and_start(void *data, async_cookie_t cookie)
{
struct cyapa *cyapa = data;
cyapa_detect(cyapa);
cyapa_start_runtime(cyapa);
lid_event_register_handler(cyapa);
}
static int __devinit cyapa_probe(struct i2c_client *client,
const struct i2c_device_id *dev_id)
{
int ret;
u8 adapter_func;
struct cyapa *cyapa;
struct device *dev = &client->dev;
union i2c_smbus_data dummy;
adapter_func = cyapa_check_adapter_functionality(client);
if (adapter_func == CYAPA_ADAPTER_FUNC_NONE) {
dev_err(dev, "not a supported I2C/SMBus adapter\n");
return -EIO;
}
/* Make sure there is something at this address */
if (dev->of_node && i2c_smbus_xfer(client->adapter, client->addr, 0,
I2C_SMBUS_READ, 0, I2C_SMBUS_BYTE, &dummy) < 0)
return -ENODEV;
cyapa = kzalloc(sizeof(struct cyapa), GFP_KERNEL);
if (!cyapa) {
dev_err(dev, "allocate memory for cyapa failed\n");
return -ENOMEM;
}
cyapa->debug = false;
cyapa->gen = CYAPA_GEN3;
cyapa->client = client;
i2c_set_clientdata(client, cyapa);
sprintf(cyapa->phys, "i2c-%d-%04x/input0", client->adapter->nr,
client->addr);
cyapa->adapter_func = adapter_func;
/* i2c isn't supported, set smbus */
if (cyapa->adapter_func == CYAPA_ADAPTER_FUNC_SMBUS)
cyapa->smbus = true;
cyapa->state = CYAPA_STATE_NO_DEVICE;
cyapa->suspend_power_mode = PWR_MODE_SLEEP;
/*
* Note: There is no way to request an irq that is initially disabled.
* Thus, there is a little race here, which is resolved in cyapa_irq()
* by checking that cyapa->input has been allocated, which happens
* in cyapa_detect(), before creating input events.
*/
cyapa->irq = client->irq;
ret = request_threaded_irq(cyapa->irq,
NULL,
cyapa_irq,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"cyapa",
cyapa);
if (ret) {
dev_err(dev, "IRQ request failed: %d\n, ", ret);
goto err_mem_free;
}
disable_irq(cyapa->irq);
if (sysfs_create_group(&client->dev.kobj, &cyapa_sysfs_group))
dev_warn(dev, "error creating sysfs entries.\n");
if (cyapa_debugfs_init(cyapa))
dev_warn(dev, "error creating debugfs entries.\n");
#ifdef CONFIG_PM_SLEEP
if (device_can_wakeup(dev) &&
sysfs_merge_group(&client->dev.kobj, &cyapa_power_wakeup_group))
dev_warn(dev, "error creating wakeup power entries.\n");
#endif /* CONFIG_PM_SLEEP */
async_schedule(cyapa_detect_and_start, cyapa);
return 0;
err_mem_free:
kfree(cyapa);
return ret;
}
static int __devexit cyapa_remove(struct i2c_client *client)
{
struct cyapa *cyapa = i2c_get_clientdata(client);
pm_runtime_disable(&client->dev);
sysfs_remove_group(&client->dev.kobj, &cyapa_sysfs_group);
#ifdef CONFIG_PM_SLEEP
sysfs_unmerge_group(&client->dev.kobj, &cyapa_power_wakeup_group);
#endif
#ifdef CONFIG_PM_RUNTIME
sysfs_unmerge_group(&client->dev.kobj, &cyapa_power_runtime_group);
#endif
free_irq(cyapa->irq, cyapa);
if (cyapa->dentry_dev) {
debugfs_remove_recursive(cyapa->dentry_dev);
mutex_destroy(&cyapa->debugfs_mutex);
}
if (cyapa->input)
input_unregister_device(cyapa->input);
lid_event_unregister_handler(cyapa);
cyapa_set_power_mode(cyapa, PWR_MODE_OFF);
kfree(cyapa->read_fw_image);
kfree(cyapa);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int cyapa_suspend(struct device *dev)
{
int ret;
u8 power_mode;
struct cyapa *cyapa = dev_get_drvdata(dev);
cyapa_dbg(cyapa, "======< cyapa_suspend >======");
disable_irq(cyapa->irq);
cyapa->suspended = true;
/* set trackpad device to idle mode if wakeup is allowed
* otherwise turn off. */
power_mode = device_may_wakeup(dev) ? cyapa->suspend_power_mode
: PWR_MODE_OFF;
ret = cyapa_set_power_mode(cyapa, power_mode);
if (ret < 0)
dev_err(dev, "suspend set power mode failed, %d\n", ret);
if (device_may_wakeup(dev))
cyapa->irq_wake = (enable_irq_wake(cyapa->irq) == 0);
return 0;
}
static int cyapa_resume(struct device *dev)
{
int ret;
struct cyapa *cyapa = dev_get_drvdata(dev);
cyapa_dbg(cyapa, "======< cyapa_resume >======");
if (device_may_wakeup(dev) && cyapa->irq_wake)
disable_irq_wake(cyapa->irq);
cyapa_detect(cyapa);
ret = cyapa_set_power_mode(cyapa, PWR_MODE_FULL_ACTIVE);
if (ret)
dev_warn(dev, "resume active power failed, %d\n", ret);
/* runtime set active to reflect active state. */
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
cyapa->suspended = false;
enable_irq(cyapa->irq);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM_RUNTIME
static int cyapa_runtime_suspend(struct device *dev)
{
int ret;
struct cyapa *cyapa = dev_get_drvdata(dev);
cyapa_dbg(cyapa, "======< cyapa_runtime_suspend >======");
/* set trackpad device to idle mode */
ret = cyapa_set_power_mode(cyapa, cyapa->runtime_suspend_power_mode);
if (ret)
dev_err(dev, "runtime suspend failed, %d\n", ret);
return ret;
}
static int cyapa_runtime_resume(struct device *dev)
{
int ret;
struct cyapa *cyapa = dev_get_drvdata(dev);
cyapa_dbg(cyapa, "======< cyapa_runtime_resume >======");
/* resume to full active mode */
ret = cyapa_set_power_mode(cyapa, PWR_MODE_FULL_ACTIVE);
if (ret)
dev_err(dev, "runtime resume failed, %d\n", ret);
return ret;
}
#endif /* CONFIG_PM_RUNTIME */
static const struct dev_pm_ops cyapa_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(cyapa_suspend, cyapa_resume)
SET_RUNTIME_PM_OPS(cyapa_runtime_suspend, cyapa_runtime_resume, NULL)
};
static const struct i2c_device_id cyapa_id_table[] = {
{ "cyapa", 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, cyapa_id_table);
static struct i2c_driver cyapa_driver = {
.driver = {
.name = "cyapa",
.owner = THIS_MODULE,
.pm = &cyapa_pm_ops,
},
.probe = cyapa_probe,
.remove = __devexit_p(cyapa_remove),
.id_table = cyapa_id_table,
};
static int __init cyapa_init(void)
{
int ret;
/* Create a global debugfs root for all cyapa devices */
cyapa_debugfs_root = debugfs_create_dir("cyapa", NULL);
if (cyapa_debugfs_root == ERR_PTR(-ENODEV))
cyapa_debugfs_root = NULL;
ret = i2c_add_driver(&cyapa_driver);
if (ret) {
pr_err("cyapa driver register FAILED.\n");
return ret;
}
return ret;
}
static void __exit cyapa_exit(void)
{
if (cyapa_debugfs_root)
debugfs_remove_recursive(cyapa_debugfs_root);
i2c_del_driver(&cyapa_driver);
}
module_init(cyapa_init);
module_exit(cyapa_exit);
MODULE_DESCRIPTION("Cypress APA I2C Trackpad Driver");
MODULE_AUTHOR("Dudley Du <dudl@cypress.com>");
MODULE_LICENSE("GPL");