blob: 55d651f388704abbf26b5605d9ffe0195163942d [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Google Inc.
*
* camera_capabilities.cpp - Camera static properties manager
*/
#include "camera_capabilities.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <map>
#include <type_traits>
#include <hardware/camera3.h>
#include <libcamera/base/log.h>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/property_ids.h>
#include "libcamera/internal/formats.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL)
namespace {
/*
* \var camera3Resolutions
* \brief The list of image resolutions defined as mandatory to be supported by
* the Android Camera3 specification
*/
const std::vector<Size> camera3Resolutions = {
{ 320, 240 },
{ 640, 480 },
{ 1280, 720 },
{ 1920, 1080 }
};
/*
* \struct Camera3Format
* \brief Data associated with an Android format identifier
* \var libcameraFormats List of libcamera pixel formats compatible with the
* Android format
* \var name The human-readable representation of the Android format code
*/
struct Camera3Format {
std::vector<PixelFormat> libcameraFormats;
bool mandatory;
const char *name;
};
/*
* \var camera3FormatsMap
* \brief Associate Android format code with ancillary data
*/
const std::map<int, const Camera3Format> camera3FormatsMap = {
{
HAL_PIXEL_FORMAT_BLOB, {
{ formats::MJPEG },
true,
"BLOB"
}
}, {
HAL_PIXEL_FORMAT_YCbCr_420_888, {
{ formats::NV12, formats::NV21 },
true,
"YCbCr_420_888"
}
}, {
/*
* \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
* usage flag. For now, copy the YCbCr_420 configuration.
*/
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
{ formats::NV12, formats::NV21 },
true,
"IMPLEMENTATION_DEFINED"
}
}, {
HAL_PIXEL_FORMAT_RAW10, {
{
formats::SBGGR10_CSI2P,
formats::SGBRG10_CSI2P,
formats::SGRBG10_CSI2P,
formats::SRGGB10_CSI2P
},
false,
"RAW10"
}
}, {
HAL_PIXEL_FORMAT_RAW12, {
{
formats::SBGGR12_CSI2P,
formats::SGBRG12_CSI2P,
formats::SGRBG12_CSI2P,
formats::SRGGB12_CSI2P
},
false,
"RAW12"
}
}, {
HAL_PIXEL_FORMAT_RAW16, {
{
formats::SBGGR16,
formats::SGBRG16,
formats::SGRBG16,
formats::SRGGB16
},
false,
"RAW16"
}
},
};
const std::map<camera_metadata_enum_android_info_supported_hardware_level, std::string>
hwLevelStrings = {
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED, "LIMITED" },
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL, "FULL" },
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LEGACY, "LEGACY" },
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_3, "LEVEL_3" },
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_EXTERNAL, "EXTERNAL" },
};
enum class ControlRange {
Min,
Def,
Max,
};
/**
* \brief Set Android metadata from libcamera ControlInfo or a default value
* \tparam T Type of the control in libcamera
* \tparam U Type of the metadata in Android
* \param[in] metadata Android metadata pack to add the control value to
* \param[in] tag Android metadata tag
* \param[in] controlsInfo libcamera ControlInfoMap from which to find the control info
* \param[in] control libcamera ControlId to find from \a controlsInfo
* \param[in] controlRange Whether to use the min, def, or max value from the control info
* \param[in] defaultValue The value to set in \a metadata if \a control is not found
*
* Set the Android metadata entry in \a metadata with tag \a tag based on the
* control info found for the libcamera control \a control in the libcamera
* ControlInfoMap \a controlsInfo. If no libcamera ControlInfo is found, then
* the Android metadata entry is set to \a defaultValue.
*
* This function is for scalar values.
*/
template<typename T, typename U>
U setMetadata(CameraMetadata *metadata, uint32_t tag,
const ControlInfoMap &controlsInfo, const Control<T> &control,
enum ControlRange controlRange, const U defaultValue)
{
U value = defaultValue;
const auto &info = controlsInfo.find(&control);
if (info != controlsInfo.end()) {
switch (controlRange) {
case ControlRange::Min:
value = static_cast<U>(info->second.min().template get<T>());
break;
case ControlRange::Def:
value = static_cast<U>(info->second.def().template get<T>());
break;
case ControlRange::Max:
value = static_cast<U>(info->second.max().template get<T>());
break;
}
}
metadata->addEntry(tag, value);
return value;
}
/**
* \brief Set Android metadata from libcamera ControlInfo or a default value
* \tparam T Type of the control in libcamera
* \tparam U Type of the metadata in Android
* \param[in] metadata Android metadata pack to add the control value to
* \param[in] tag Android metadata tag
* \param[in] controlsInfo libcamera ControlInfoMap from which to find the control info
* \param[in] control libcamera ControlId to find from \a controlsInfo
* \param[in] defaultVector The value to set in \a metadata if \a control is not found
*
* Set the Android metadata entry in \a metadata with tag \a tag based on the
* control info found for the libcamera control \a control in the libcamera
* ControlInfoMap \a controlsInfo. If no libcamera ControlInfo is found, then
* the Android metadata entry is set to \a defaultVector.
*
* This function is for vector values.
*/
template<typename T, typename U>
std::vector<U> setMetadata(CameraMetadata *metadata, uint32_t tag,
const ControlInfoMap &controlsInfo,
const Control<T> &control,
const std::vector<U> &defaultVector)
{
const auto &info = controlsInfo.find(&control);
if (info == controlsInfo.end()) {
metadata->addEntry(tag, defaultVector);
return defaultVector;
}
std::vector<U> values(info->second.values().size());
for (const auto &value : info->second.values())
values.push_back(static_cast<U>(value.template get<T>()));
metadata->addEntry(tag, values);
return values;
}
} /* namespace */
bool CameraCapabilities::validateManualSensorCapability()
{
const char *noMode = "Manual sensor capability unavailable: ";
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_MODE_OFF)) {
LOG(HAL, Info) << noMode << "missing AE mode off";
return false;
}
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE)) {
LOG(HAL, Info) << noMode << "missing AE lock";
return false;
}
/*
* \todo Return true here after we satisfy all the requirements:
* https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR
* Manual frame duration control
* android.sensor.frameDuration
* android.sensor.info.maxFrameDuration
* Manual exposure control
* android.sensor.exposureTime
* android.sensor.info.exposureTimeRange
* Manual sensitivity control
* android.sensor.sensitivity
* android.sensor.info.sensitivityRange
* Manual lens control (if the lens is adjustable)
* android.lens.*
* Manual flash control (if a flash unit is present)
* android.flash.*
* Manual black level locking
* android.blackLevel.lock
* Auto exposure lock
* android.control.aeLock
*/
return false;
}
bool CameraCapabilities::validateManualPostProcessingCapability()
{
const char *noMode = "Manual post processing capability unavailable: ";
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_AWB_MODE_OFF)) {
LOG(HAL, Info) << noMode << "missing AWB mode off";
return false;
}
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE)) {
LOG(HAL, Info) << noMode << "missing AWB lock";
return false;
}
/*
* \todo return true here after we satisfy all the requirements:
* https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING
* Manual tonemap control
* android.tonemap.curve
* android.tonemap.mode
* android.tonemap.maxCurvePoints
* android.tonemap.gamma
* android.tonemap.presetCurve
* Manual white balance control
* android.colorCorrection.transform
* android.colorCorrection.gains
* Manual lens shading map control
* android.shading.mode
* android.statistics.lensShadingMapMode
* android.statistics.lensShadingMap
* android.lens.info.shadingMapSize
* Manual aberration correction control (if aberration correction is supported)
* android.colorCorrection.aberrationMode
* android.colorCorrection.availableAberrationModes
* Auto white balance lock
* android.control.awbLock
*/
return false;
}
bool CameraCapabilities::validateBurstCaptureCapability()
{
camera_metadata_ro_entry_t entry;
bool found;
const char *noMode = "Burst capture capability unavailable: ";
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE)) {
LOG(HAL, Info) << noMode << "missing AE lock";
return false;
}
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE)) {
LOG(HAL, Info) << noMode << "missing AWB lock";
return false;
}
found = staticMetadata_->getEntry(ANDROID_SYNC_MAX_LATENCY, &entry);
if (!found || *entry.data.i32 < 0 || 4 < *entry.data.i32) {
LOG(HAL, Info)
<< noMode << "max sync latency is "
<< (found ? std::to_string(*entry.data.i32) : "not present");
return false;
}
/*
* \todo return true here after we satisfy all the requirements
* https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE
*/
return false;
}
std::set<camera_metadata_enum_android_request_available_capabilities>
CameraCapabilities::computeCapabilities()
{
std::set<camera_metadata_enum_android_request_available_capabilities>
capabilities;
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE);
if (validateManualSensorCapability()) {
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR);
/* The requirements for READ_SENSOR_SETTINGS are a subset of MANUAL_SENSOR */
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_READ_SENSOR_SETTINGS);
}
if (validateManualPostProcessingCapability())
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING);
if (validateBurstCaptureCapability())
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE);
if (rawStreamAvailable_)
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
return capabilities;
}
void CameraCapabilities::computeHwLevel(
const std::set<camera_metadata_enum_android_request_available_capabilities> &caps)
{
const char *noFull = "Hardware level FULL unavailable: ";
camera_metadata_ro_entry_t entry;
bool found;
camera_metadata_enum_android_info_supported_hardware_level
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL;
if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR))
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING))
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE))
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
found = staticMetadata_->getEntry(ANDROID_SYNC_MAX_LATENCY, &entry);
if (!found || *entry.data.i32 != 0) {
LOG(HAL, Info) << noFull << "missing or invalid max sync latency";
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
}
hwLevel_ = hwLevel;
}
int CameraCapabilities::initialize(std::shared_ptr<Camera> camera,
int orientation, int facing)
{
camera_ = camera;
orientation_ = orientation;
facing_ = facing;
rawStreamAvailable_ = false;
maxFrameDuration_ = 0;
/* Acquire the camera and initialize available stream configurations. */
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to temporarily acquire the camera";
return ret;
}
ret = initializeStreamConfigurations();
if (ret) {
camera_->release();
return ret;
}
ret = initializeStaticMetadata();
camera_->release();
return ret;
}
std::vector<Size>
CameraCapabilities::initializeYUVResolutions(const PixelFormat &pixelFormat,
const std::vector<Size> &resolutions)
{
std::vector<Size> supportedResolutions;
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Viewfinder });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get supported YUV resolutions";
return supportedResolutions;
}
StreamConfiguration &cfg = cameraConfig->at(0);
for (const Size &res : resolutions) {
cfg.pixelFormat = pixelFormat;
cfg.size = res;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Valid) {
LOG(HAL, Debug) << cfg.toString() << " not supported";
continue;
}
LOG(HAL, Debug) << cfg.toString() << " supported";
supportedResolutions.push_back(res);
}
return supportedResolutions;
}
std::vector<Size>
CameraCapabilities::initializeRawResolutions(const PixelFormat &pixelFormat)
{
std::vector<Size> supportedResolutions;
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Raw });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get supported Raw resolutions";
return supportedResolutions;
}
StreamConfiguration &cfg = cameraConfig->at(0);
const StreamFormats &formats = cfg.formats();
supportedResolutions = formats.sizes(pixelFormat);
return supportedResolutions;
}
/*
* Initialize the format conversion map to translate from Android format
* identifier to libcamera pixel formats and fill in the list of supported
* stream configurations to be reported to the Android camera framework through
* the camera static metadata.
*/
int CameraCapabilities::initializeStreamConfigurations()
{
/*
* Get the maximum output resolutions
* \todo Get this from the camera properties once defined
*/
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StillCapture });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get maximum resolution";
return -EINVAL;
}
StreamConfiguration &cfg = cameraConfig->at(0);
/*
* \todo JPEG - Adjust the maximum available resolution by taking the
* JPEG encoder requirements into account (alignment and aspect ratio).
*/
const Size maxRes = cfg.size;
LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
/*
* Build the list of supported image resolutions.
*
* The resolutions listed in camera3Resolution are mandatory to be
* supported, up to the camera maximum resolution.
*
* Augment the list by adding resolutions calculated from the camera
* maximum one.
*/
std::vector<Size> cameraResolutions;
std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
std::back_inserter(cameraResolutions),
[&](const Size &res) { return res < maxRes; });
/*
* The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
* resolution.
*/
for (unsigned int divider = 2;; divider <<= 1) {
Size derivedSize{
maxRes.width / divider,
maxRes.height / divider,
};
if (derivedSize.width < 320 ||
derivedSize.height < 240)
break;
cameraResolutions.push_back(derivedSize);
}
cameraResolutions.push_back(maxRes);
/* Remove duplicated entries from the list of supported resolutions. */
std::sort(cameraResolutions.begin(), cameraResolutions.end());
auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
cameraResolutions.erase(last, cameraResolutions.end());
/*
* Build the list of supported camera formats.
*
* To each Android format a list of compatible libcamera formats is
* associated. The first libcamera format that tests successful is added
* to the format translation map used when configuring the streams.
* It is then tested against the list of supported camera resolutions to
* build the stream configuration map reported through the camera static
* metadata.
*/
Size maxJpegSize;
for (const auto &format : camera3FormatsMap) {
int androidFormat = format.first;
const Camera3Format &camera3Format = format.second;
const std::vector<PixelFormat> &libcameraFormats =
camera3Format.libcameraFormats;
LOG(HAL, Debug) << "Trying to map Android format "
<< camera3Format.name;
/*
* JPEG is always supported, either produced directly by the
* camera, or encoded in the HAL.
*/
if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
formatsMap_[androidFormat] = formats::MJPEG;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< formats::MJPEG.toString()
<< " (fixed mapping)";
continue;
}
/*
* Test the libcamera formats that can produce images
* compatible with the format defined by Android.
*/
PixelFormat mappedFormat;
for (const PixelFormat &pixelFormat : libcameraFormats) {
LOG(HAL, Debug) << "Testing " << pixelFormat.toString();
/*
* The stream configuration size can be adjusted,
* not the pixel format.
*
* \todo This could be simplified once all pipeline
* handlers will report the StreamFormats list of
* supported formats.
*/
cfg.pixelFormat = pixelFormat;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Invalid &&
cfg.pixelFormat == pixelFormat) {
mappedFormat = pixelFormat;
break;
}
}
if (!mappedFormat.isValid()) {
/* If the format is not mandatory, skip it. */
if (!camera3Format.mandatory)
continue;
LOG(HAL, Error)
<< "Failed to map mandatory Android format "
<< camera3Format.name << " ("
<< utils::hex(androidFormat) << "): aborting";
return -EINVAL;
}
/*
* Record the mapping and then proceed to generate the
* stream configurations map, by testing the image resolutions.
*/
formatsMap_[androidFormat] = mappedFormat;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< mappedFormat.toString();
std::vector<Size> resolutions;
const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
switch (info.colourEncoding) {
case PixelFormatInfo::ColourEncodingRAW:
if (info.bitsPerPixel != 16)
continue;
rawStreamAvailable_ = true;
resolutions = initializeRawResolutions(mappedFormat);
break;
case PixelFormatInfo::ColourEncodingYUV:
case PixelFormatInfo::ColourEncodingRGB:
/*
* We support enumerating RGB streams here to allow
* mapping IMPLEMENTATION_DEFINED format to RGB.
*/
resolutions = initializeYUVResolutions(mappedFormat,
cameraResolutions);
break;
}
for (const Size &res : resolutions) {
/*
* Configure the Camera with the collected format and
* resolution to get an updated list of controls.
*
* \todo Avoid the need to configure the camera when
* redesigning the configuration API.
*/
cfg.size = res;
int ret = camera_->configure(cameraConfig.get());
if (ret)
return ret;
const ControlInfoMap &controls = camera_->controls();
const auto frameDurations = controls.find(
&controls::FrameDurationLimits);
if (frameDurations == controls.end()) {
LOG(HAL, Error)
<< "Camera does not report frame durations";
return -EINVAL;
}
int64_t minFrameDuration = frameDurations->second.min().get<int64_t>() * 1000;
int64_t maxFrameDuration = frameDurations->second.max().get<int64_t>() * 1000;
/*
* Cap min frame duration to 30 FPS with 1% tolerance.
*
* 30 frames per second has been validated as the most
* opportune frame rate for quality tuning, and power
* vs performances budget on Intel IPU3-based
* Chromebooks.
*
* \todo This is a platform-specific decision that needs
* to be abstracted and delegated to the configuration
* file.
*
* \todo libcamera only allows to control frame duration
* through the per-request controls::FrameDuration
* control. If we cap the durations here, we should be
* capable of configuring the camera to operate at such
* duration without requiring to have the FrameDuration
* control to be specified for each Request. Defer this
* to the in-development configuration API rework.
*/
int64_t minFrameDurationCap = 1e9 / 30.0;
if (minFrameDuration < minFrameDurationCap) {
float tolerance =
(minFrameDurationCap - minFrameDuration) * 100.0 / minFrameDurationCap;
/*
* If the tolerance is less than 1%, do not cap
* the frame duration.
*/
if (tolerance > 1.0)
minFrameDuration = minFrameDurationCap;
}
streamConfigurations_.push_back({
res, androidFormat, minFrameDuration, maxFrameDuration,
});
/*
* If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
* from which JPEG is produced, add an entry for
* the JPEG stream.
*
* \todo Wire the JPEG encoder to query the supported
* sizes provided a list of formats it can encode.
*
* \todo Support JPEG streams produced by the camera
* natively.
*
* \todo HAL_PIXEL_FORMAT_BLOB is a 'stalling' format,
* its duration should take into account the time
* required for the YUV to JPEG encoding. For now
* use the same frame durations as collected for
* the YUV/RGB streams.
*/
if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
streamConfigurations_.push_back({
res, HAL_PIXEL_FORMAT_BLOB,
minFrameDuration, maxFrameDuration,
});
maxJpegSize = std::max(maxJpegSize, res);
}
maxFrameDuration_ = std::max(maxFrameDuration_,
maxFrameDuration);
}
/*
* \todo Calculate the maximum JPEG buffer size by asking the
* encoder giving the maximum frame size required.
*/
maxJpegBufferSize_ = maxJpegSize.width * maxJpegSize.height * 1.5;
}
LOG(HAL, Debug) << "Collected stream configuration map: ";
for (const auto &entry : streamConfigurations_)
LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
<< utils::hex(entry.androidFormat) << " }";
return 0;
}
int CameraCapabilities::initializeStaticMetadata()
{
staticMetadata_ = std::make_unique<CameraMetadata>(64, 1024);
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
staticMetadata_.reset();
return -EINVAL;
}
/*
* Generate and apply a new configuration for the Viewfinder role to
* collect control limits and properties from a known state.
*/
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Viewfinder });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to generate camera configuration";
staticMetadata_.reset();
return -ENODEV;
}
int ret = camera_->configure(cameraConfig.get());
if (ret) {
LOG(HAL, Error) << "Failed to initialize the camera state";
staticMetadata_.reset();
return ret;
}
const ControlInfoMap &controlsInfo = camera_->controls();
const ControlList &properties = camera_->properties();
availableCharacteristicsKeys_ = {
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
ANDROID_CONTROL_AE_COMPENSATION_STEP,
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AF_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_EFFECTS,
ANDROID_CONTROL_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_MAX_REGIONS,
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
ANDROID_FLASH_INFO_AVAILABLE,
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
ANDROID_JPEG_MAX_SIZE,
ANDROID_LENS_FACING,
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
ANDROID_SCALER_CROPPING_TYPE,
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
ANDROID_SENSOR_ORIENTATION,
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
ANDROID_SYNC_MAX_LATENCY,
};
availableRequestKeys_ = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
ANDROID_CONTROL_AF_MODE,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_CAPTURE_INTENT,
ANDROID_CONTROL_EFFECT_MODE,
ANDROID_CONTROL_MODE,
ANDROID_CONTROL_SCENE_MODE,
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
ANDROID_FLASH_MODE,
ANDROID_JPEG_ORIENTATION,
ANDROID_JPEG_QUALITY,
ANDROID_JPEG_THUMBNAIL_QUALITY,
ANDROID_JPEG_THUMBNAIL_SIZE,
ANDROID_LENS_APERTURE,
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_SCALER_CROP_REGION,
ANDROID_STATISTICS_FACE_DETECT_MODE
};
availableResultKeys_ = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_STATE,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
ANDROID_CONTROL_AF_MODE,
ANDROID_CONTROL_AF_STATE,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_AWB_STATE,
ANDROID_CONTROL_CAPTURE_INTENT,
ANDROID_CONTROL_EFFECT_MODE,
ANDROID_CONTROL_MODE,
ANDROID_CONTROL_SCENE_MODE,
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
ANDROID_FLASH_MODE,
ANDROID_FLASH_STATE,
ANDROID_JPEG_GPS_COORDINATES,
ANDROID_JPEG_GPS_PROCESSING_METHOD,
ANDROID_JPEG_GPS_TIMESTAMP,
ANDROID_JPEG_ORIENTATION,
ANDROID_JPEG_QUALITY,
ANDROID_JPEG_SIZE,
ANDROID_JPEG_THUMBNAIL_QUALITY,
ANDROID_JPEG_THUMBNAIL_SIZE,
ANDROID_LENS_APERTURE,
ANDROID_LENS_FOCAL_LENGTH,
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
ANDROID_LENS_STATE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_REQUEST_PIPELINE_DEPTH,
ANDROID_SCALER_CROP_REGION,
ANDROID_SENSOR_EXPOSURE_TIME,
ANDROID_SENSOR_FRAME_DURATION,
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
ANDROID_SENSOR_TEST_PATTERN_MODE,
ANDROID_SENSOR_TIMESTAMP,
ANDROID_STATISTICS_FACE_DETECT_MODE,
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
ANDROID_STATISTICS_SCENE_FLICKER,
};
/* Color correction static metadata. */
{
std::vector<uint8_t> data;
data.reserve(3);
const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
data);
}
/* Control static metadata. */
std::vector<uint8_t> aeAvailableAntiBandingModes = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
aeAvailableAntiBandingModes);
std::vector<uint8_t> aeAvailableModes = {
ANDROID_CONTROL_AE_MODE_ON,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
aeAvailableModes);
std::vector<int32_t> aeCompensationRange = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
aeCompensationRange);
const camera_metadata_rational_t aeCompensationStep[] = {
{ 0, 1 }
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
aeCompensationStep);
std::vector<uint8_t> availableAfModes = {
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModes);
std::vector<uint8_t> availableEffects = {
ANDROID_CONTROL_EFFECT_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects);
std::vector<uint8_t> availableSceneModes = {
ANDROID_CONTROL_SCENE_MODE_DISABLED,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes);
std::vector<uint8_t> availableStabilizationModes = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableStabilizationModes);
/*
* \todo Inspect the camera capabilities to report the available
* AWB modes. Default to AUTO as CTS tests require it.
*/
std::vector<uint8_t> availableAwbModes = {
ANDROID_CONTROL_AWB_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes);
std::vector<int32_t> availableMaxRegions = {
0, 0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
availableMaxRegions);
std::vector<uint8_t> sceneModesOverride = {
ANDROID_CONTROL_AE_MODE_ON,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
sceneModesOverride);
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
aeLockAvailable);
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
awbLockAvailable);
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
availableControlModes);
/* JPEG static metadata. */
/*
* Create the list of supported thumbnail sizes by inspecting the
* available JPEG resolutions collected in streamConfigurations_ and
* generate one entry for each aspect ratio.
*
* The JPEG thumbnailer can freely scale, so pick an arbitrary
* (160, 160) size as the bounding rectangle, which is then cropped to
* the different supported aspect ratios.
*/
constexpr Size maxJpegThumbnail(160, 160);
std::vector<Size> thumbnailSizes;
thumbnailSizes.push_back({ 0, 0 });
for (const auto &entry : streamConfigurations_) {
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
continue;
Size thumbnailSize = maxJpegThumbnail
.boundedToAspectRatio({ entry.resolution.width,
entry.resolution.height });
thumbnailSizes.push_back(thumbnailSize);
}
std::sort(thumbnailSizes.begin(), thumbnailSizes.end());
auto last = std::unique(thumbnailSizes.begin(), thumbnailSizes.end());
thumbnailSizes.erase(last, thumbnailSizes.end());
/* Transform sizes in to a list of integers that can be consumed. */
std::vector<int32_t> thumbnailEntries;
thumbnailEntries.reserve(thumbnailSizes.size() * 2);
for (const auto &size : thumbnailSizes) {
thumbnailEntries.push_back(size.width);
thumbnailEntries.push_back(size.height);
}
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
thumbnailEntries);
staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, maxJpegBufferSize_);
/* Sensor static metadata. */
std::array<int32_t, 2> pixelArraySize;
{
const Size &size = properties.get(properties::PixelArraySize);
pixelArraySize[0] = size.width;
pixelArraySize[1] = size.height;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
pixelArraySize);
}
if (properties.contains(properties::UnitCellSize)) {
const Size &cellSize = properties.get<Size>(properties::UnitCellSize);
std::array<float, 2> physicalSize{
cellSize.width * pixelArraySize[0] / 1e6f,
cellSize.height * pixelArraySize[1] / 1e6f
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
physicalSize);
}
{
const Span<const Rectangle> &rects =
properties.get(properties::PixelArrayActiveAreas);
std::vector<int32_t> data{
static_cast<int32_t>(rects[0].x),
static_cast<int32_t>(rects[0].y),
static_cast<int32_t>(rects[0].width),
static_cast<int32_t>(rects[0].height),
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
data);
}
int32_t sensitivityRange[] = {
32, 2400,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
sensitivityRange);
/* Report the color filter arrangement if the camera reports it. */
if (properties.contains(properties::draft::ColorFilterArrangement)) {
uint8_t filterArr = properties.get(properties::draft::ColorFilterArrangement);
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
filterArr);
}
const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
if (exposureInfo != controlsInfo.end()) {
int64_t exposureTimeRange[2] = {
exposureInfo->second.min().get<int32_t>() * 1000LL,
exposureInfo->second.max().get<int32_t>() * 1000LL,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
exposureTimeRange, 2);
}
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, orientation_);
std::vector<int32_t> testPatternModes = {
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
};
const auto &testPatternsInfo =
controlsInfo.find(&controls::draft::TestPatternMode);
if (testPatternsInfo != controlsInfo.end()) {
const auto &values = testPatternsInfo->second.values();
ASSERT(!values.empty());
for (const auto &value : values) {
switch (value.get<int32_t>()) {
case controls::draft::TestPatternModeOff:
/*
* ANDROID_SENSOR_TEST_PATTERN_MODE_OFF is
* already in testPatternModes.
*/
break;
case controls::draft::TestPatternModeSolidColor:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
break;
case controls::draft::TestPatternModeColorBars:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS);
break;
case controls::draft::TestPatternModeColorBarsFadeToGray:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY);
break;
case controls::draft::TestPatternModePn9:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_PN9);
break;
case controls::draft::TestPatternModeCustom1:
/* We don't support this yet. */
break;
default:
LOG(HAL, Error) << "Unknown test pattern mode: "
<< value.get<int32_t>();
continue;
}
}
}
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
testPatternModes);
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
timestampSource);
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
maxFrameDuration_);
/* Statistics static metadata. */
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
faceDetectMode);
int32_t maxFaceCount = 0;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
maxFaceCount);
{
std::vector<uint8_t> data;
data.reserve(2);
const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
data);
}
/* Sync static metadata. */
setMetadata(staticMetadata_.get(), ANDROID_SYNC_MAX_LATENCY,
controlsInfo, controls::draft::MaxLatency,
ControlRange::Def,
ANDROID_SYNC_MAX_LATENCY_UNKNOWN);
/* Flash static metadata. */
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
flashAvailable);
/* Lens static metadata. */
std::vector<float> lensApertures = {
2.53 / 100,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
lensApertures);
uint8_t lensFacing;
switch (facing_) {
default:
case CAMERA_FACING_FRONT:
lensFacing = ANDROID_LENS_FACING_FRONT;
break;
case CAMERA_FACING_BACK:
lensFacing = ANDROID_LENS_FACING_BACK;
break;
case CAMERA_FACING_EXTERNAL:
lensFacing = ANDROID_LENS_FACING_EXTERNAL;
break;
}
staticMetadata_->addEntry(ANDROID_LENS_FACING, lensFacing);
std::vector<float> lensFocalLengths = {
1,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
lensFocalLengths);
std::vector<uint8_t> opticalStabilizations = {
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
opticalStabilizations);
float hypeFocalDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
hypeFocalDistance);
float minFocusDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
minFocusDistance);
/* Noise reduction modes. */
{
std::vector<uint8_t> data;
data.reserve(5);
const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
data);
}
/* Scaler static metadata. */
/*
* \todo The digital zoom factor is a property that depends on the
* desired output configuration and the sensor frame size input to the
* ISP. This information is not available to the Android HAL, not at
* initialization time at least.
*
* As a workaround rely on pipeline handlers initializing the
* ScalerCrop control with the camera default configuration and use the
* maximum and minimum crop rectangles to calculate the digital zoom
* factor.
*/
float maxZoom = 1.0f;
const auto scalerCrop = controlsInfo.find(&controls::ScalerCrop);
if (scalerCrop != controlsInfo.end()) {
Rectangle min = scalerCrop->second.min().get<Rectangle>();
Rectangle max = scalerCrop->second.max().get<Rectangle>();
maxZoom = std::min(1.0f * max.width / min.width,
1.0f * max.height / min.height);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
maxZoom);
std::vector<uint32_t> availableStreamConfigurations;
std::vector<int64_t> minFrameDurations;
int maxYUVFps = 0;
Size maxYUVSize;
availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
minFrameDurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
/*
* Filter out YUV streams not capable of running at 30 FPS.
*
* This requirement comes from CTS RecordingTest failures most
* probably related to a requirement of the camcoder video
* recording profile. Inspecting the Intel IPU3 HAL
* implementation confirms this but no reference has been found
* in the metadata documentation.
*
* Calculate FPS as CTS does: see
* Camera2SurfaceViewTestCase.java:getSuitableFpsRangeForDuration()
*/
unsigned int fps = static_cast<unsigned int>
(floor(1e9 / entry.minFrameDurationNsec + 0.05f));
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB && fps < 30)
continue;
/*
* Collect the FPS of the maximum YUV output size to populate
* AE_AVAILABLE_TARGET_FPS_RANGE
*/
if (entry.androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888 &&
entry.resolution > maxYUVSize) {
maxYUVSize = entry.resolution;
maxYUVFps = fps;
}
/* Stream configuration map. */
availableStreamConfigurations.push_back(entry.androidFormat);
availableStreamConfigurations.push_back(entry.resolution.width);
availableStreamConfigurations.push_back(entry.resolution.height);
availableStreamConfigurations.push_back(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
/* Per-stream durations. */
minFrameDurations.push_back(entry.androidFormat);
minFrameDurations.push_back(entry.resolution.width);
minFrameDurations.push_back(entry.resolution.height);
minFrameDurations.push_back(entry.minFrameDurationNsec);
LOG(HAL, Debug)
<< "Output Stream: " << utils::hex(entry.androidFormat)
<< " (" << entry.resolution.toString() << ")["
<< entry.minFrameDurationNsec << "]"
<< "@" << fps;
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
availableStreamConfigurations);
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
minFrameDurations);
/*
* Register to the camera service {min, max} and {max, max} with
* 'max' being the larger YUV stream maximum frame rate and 'min' being
* the globally minimum frame rate rounded to the next largest integer
* as the camera service expects the camera maximum frame duration to be
* smaller than 10^9 / minFps.
*/
int32_t minFps = std::ceil(1e9 / maxFrameDuration_);
int32_t availableAeFpsTarget[] = {
minFps, maxYUVFps, maxYUVFps, maxYUVFps,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableAeFpsTarget);
std::vector<int64_t> availableStallDurations;
for (const auto &entry : streamConfigurations_) {
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
continue;
availableStallDurations.push_back(entry.androidFormat);
availableStallDurations.push_back(entry.resolution.width);
availableStallDurations.push_back(entry.resolution.height);
availableStallDurations.push_back(entry.minFrameDurationNsec);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
availableStallDurations);
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, croppingType);
/* Request static metadata. */
int32_t partialResultCount = 1;
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
partialResultCount);
{
/* Default the value to 2 if not reported by the camera. */
uint8_t maxPipelineDepth = 2;
const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
if (infoMap != controlsInfo.end())
maxPipelineDepth = infoMap->second.max().get<int32_t>();
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
maxPipelineDepth);
}
/* LIMITED does not support reprocessing. */
uint32_t maxNumInputStreams = 0;
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
maxNumInputStreams);
/* Number of { RAW, YUV, JPEG } supported output streams */
int32_t numOutStreams[] = { rawStreamAvailable_, 2, 1 };
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
numOutStreams);
/* Check capabilities */
capabilities_ = computeCapabilities();
/* This *must* be uint8_t. */
std::vector<uint8_t> capsVec(capabilities_.begin(), capabilities_.end());
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, capsVec);
computeHwLevel(capabilities_);
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL, hwLevel_);
LOG(HAL, Info)
<< "Hardware level: " << hwLevelStrings.find(hwLevel_)->second;
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
std::vector<int32_t>(availableCharacteristicsKeys_.begin(),
availableCharacteristicsKeys_.end()));
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
std::vector<int32_t>(availableRequestKeys_.begin(),
availableRequestKeys_.end()));
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
std::vector<int32_t>(availableResultKeys_.begin(),
availableResultKeys_.end()));
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to construct static metadata";
staticMetadata_.reset();
return -EINVAL;
}
if (staticMetadata_->resized()) {
auto [entryCount, dataCount] = staticMetadata_->usage();
LOG(HAL, Info)
<< "Static metadata resized: " << entryCount
<< " entries and " << dataCount << " bytes used";
}
return 0;
}
/* Translate Android format code to libcamera pixel format. */
PixelFormat CameraCapabilities::toPixelFormat(int format) const
{
auto it = formatsMap_.find(format);
if (it == formatsMap_.end()) {
LOG(HAL, Error) << "Requested format " << utils::hex(format)
<< " not supported";
return PixelFormat();
}
return it->second;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateManual() const
{
if (!capabilities_.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR)) {
LOG(HAL, Error) << "Manual template not supported";
return nullptr;
}
std::unique_ptr<CameraMetadata> manualTemplate = requestTemplatePreview();
if (!manualTemplate)
return nullptr;
return manualTemplate;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplatePreview() const
{
/*
* Give initial hint of entries and number of bytes to be allocated.
* It is deliberate that the hint is slightly larger than required, to
* avoid resizing the container.
*
* CameraMetadata is capable of resizing the container on the fly, if
* adding a new entry will exceed its capacity.
*/
auto requestTemplate = std::make_unique<CameraMetadata>(22, 38);
if (!requestTemplate->isValid()) {
return nullptr;
}
/* Get the FPS range registered in the static metadata. */
camera_metadata_ro_entry_t entry;
bool found = staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
&entry);
if (!found) {
LOG(HAL, Error) << "Cannot create capture template without FPS range";
return nullptr;
}
/*
* Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
* has been assembled as {{min, max} {max, max}}.
*/
requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
entry.data.i32, 2);
/*
* Get thumbnail sizes from static metadata and add the first non-zero
* size to the template.
*/
found = staticMetadata_->getEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
&entry);
ASSERT(found && entry.count >= 4);
requestTemplate->addEntry(ANDROID_JPEG_THUMBNAIL_SIZE,
entry.data.i32 + 2, 2);
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE, aeMode);
int32_t aeExposureCompensation = 0;
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
aeExposureCompensation);
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
aePrecaptureTrigger);
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK, aeLock);
uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
aeAntibandingMode);
uint8_t afMode = ANDROID_CONTROL_AF_MODE_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AF_MODE, afMode);
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER, afTrigger);
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE, awbMode);
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK, awbLock);
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
requestTemplate->addEntry(ANDROID_FLASH_MODE, flashMode);
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
faceDetectMode);
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
noiseReduction);
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
aberrationMode);
uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_MODE, controlMode);
float lensAperture = 2.53 / 100;
requestTemplate->addEntry(ANDROID_LENS_APERTURE, lensAperture);
uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
opticalStabilization);
uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
captureIntent);
return requestTemplate;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateStill() const
{
std::unique_ptr<CameraMetadata> stillTemplate = requestTemplatePreview();
if (!stillTemplate)
return nullptr;
return stillTemplate;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateVideo() const
{
std::unique_ptr<CameraMetadata> previewTemplate = requestTemplatePreview();
if (!previewTemplate)
return nullptr;
/*
* The video template requires a fixed FPS range. Everything else
* stays the same as the preview template.
*/
camera_metadata_ro_entry_t entry;
staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
&entry);
/*
* Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
* has been assembled as {{min, max} {max, max}}.
*/
previewTemplate->updateEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
entry.data.i32 + 2, 2);
return previewTemplate;
}