blob: e6fe9ca3b318f08c327250fc728a321e8ee17180 [file] [log] [blame]
//===- llvm/unittest/ADT/DenseSetTest.cpp - DenseSet unit tests --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseSet.h"
#include "gtest/gtest.h"
#include <type_traits>
using namespace llvm;
namespace {
static_assert(std::is_const<std::remove_pointer<
DenseSet<int>::const_iterator::pointer>::type>::value,
"Iterator pointer type should be const");
static_assert(std::is_const<std::remove_reference<
DenseSet<int>::const_iterator::reference>::type>::value,
"Iterator reference type should be const");
// Test hashing with a set of only two entries.
TEST(DenseSetTest, DoubleEntrySetTest) {
llvm::DenseSet<unsigned> set(2);
set.insert(0);
set.insert(1);
// Original failure was an infinite loop in this call:
EXPECT_EQ(0u, set.count(2));
}
struct TestDenseSetInfo {
static inline unsigned getEmptyKey() { return ~0; }
static inline unsigned getTombstoneKey() { return ~0U - 1; }
static unsigned getHashValue(const unsigned& Val) { return Val * 37U; }
static unsigned getHashValue(const char* Val) {
return (unsigned)(Val[0] - 'a') * 37U;
}
static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
return LHS == RHS;
}
static bool isEqual(const char* LHS, const unsigned& RHS) {
return (unsigned)(LHS[0] - 'a') == RHS;
}
};
// Test fixture
template <typename T> class DenseSetTest : public testing::Test {
protected:
T Set = GetTestSet();
private:
static T GetTestSet() {
typename std::remove_const<T>::type Set;
Set.insert(0);
Set.insert(1);
Set.insert(2);
return Set;
}
};
// Register these types for testing.
typedef ::testing::Types<DenseSet<unsigned, TestDenseSetInfo>,
const DenseSet<unsigned, TestDenseSetInfo>,
SmallDenseSet<unsigned, 1, TestDenseSetInfo>,
SmallDenseSet<unsigned, 4, TestDenseSetInfo>,
const SmallDenseSet<unsigned, 4, TestDenseSetInfo>,
SmallDenseSet<unsigned, 64, TestDenseSetInfo>>
DenseSetTestTypes;
TYPED_TEST_CASE(DenseSetTest, DenseSetTestTypes);
TYPED_TEST(DenseSetTest, InitializerList) {
TypeParam set({1, 2, 1, 4});
EXPECT_EQ(3u, set.size());
EXPECT_EQ(1u, set.count(1));
EXPECT_EQ(1u, set.count(2));
EXPECT_EQ(1u, set.count(4));
EXPECT_EQ(0u, set.count(3));
}
TYPED_TEST(DenseSetTest, InitializerListWithNonPowerOfTwoLength) {
TypeParam set({1, 2, 3});
EXPECT_EQ(3u, set.size());
EXPECT_EQ(1u, set.count(1));
EXPECT_EQ(1u, set.count(2));
EXPECT_EQ(1u, set.count(3));
}
TYPED_TEST(DenseSetTest, ConstIteratorComparison) {
TypeParam set({1});
const TypeParam &cset = set;
EXPECT_EQ(set.begin(), cset.begin());
EXPECT_EQ(set.end(), cset.end());
EXPECT_NE(set.end(), cset.begin());
EXPECT_NE(set.begin(), cset.end());
}
TYPED_TEST(DenseSetTest, DefaultConstruction) {
typename TypeParam::iterator I, J;
typename TypeParam::const_iterator CI, CJ;
EXPECT_EQ(I, J);
EXPECT_EQ(CI, CJ);
}
TYPED_TEST(DenseSetTest, EmptyInitializerList) {
TypeParam set({});
EXPECT_EQ(0u, set.size());
EXPECT_EQ(0u, set.count(0));
}
TYPED_TEST(DenseSetTest, FindAsTest) {
auto &set = this->Set;
// Size tests
EXPECT_EQ(3u, set.size());
// Normal lookup tests
EXPECT_EQ(1u, set.count(1));
EXPECT_EQ(0u, *set.find(0));
EXPECT_EQ(1u, *set.find(1));
EXPECT_EQ(2u, *set.find(2));
EXPECT_TRUE(set.find(3) == set.end());
// find_as() tests
EXPECT_EQ(0u, *set.find_as("a"));
EXPECT_EQ(1u, *set.find_as("b"));
EXPECT_EQ(2u, *set.find_as("c"));
EXPECT_TRUE(set.find_as("d") == set.end());
}
TYPED_TEST(DenseSetTest, EqualityComparisonTest) {
TypeParam set1({1, 2, 3, 4});
TypeParam set2({4, 3, 2, 1});
TypeParam set3({2, 3, 4, 5});
EXPECT_EQ(set1, set2);
EXPECT_NE(set1, set3);
}
// Simple class that counts how many moves and copy happens when growing a map
struct CountCopyAndMove {
static int Move;
static int Copy;
int Value;
CountCopyAndMove(int Value) : Value(Value) {}
CountCopyAndMove(const CountCopyAndMove &RHS) {
Value = RHS.Value;
Copy++;
}
CountCopyAndMove &operator=(const CountCopyAndMove &RHS) {
Value = RHS.Value;
Copy++;
return *this;
}
CountCopyAndMove(CountCopyAndMove &&RHS) {
Value = RHS.Value;
Move++;
}
CountCopyAndMove &operator=(const CountCopyAndMove &&RHS) {
Value = RHS.Value;
Move++;
return *this;
}
};
int CountCopyAndMove::Copy = 0;
int CountCopyAndMove::Move = 0;
} // anonymous namespace
namespace llvm {
// Specialization required to insert a CountCopyAndMove into a DenseSet.
template <> struct DenseMapInfo<CountCopyAndMove> {
static inline CountCopyAndMove getEmptyKey() { return CountCopyAndMove(-1); };
static inline CountCopyAndMove getTombstoneKey() {
return CountCopyAndMove(-2);
};
static unsigned getHashValue(const CountCopyAndMove &Val) {
return Val.Value;
}
static bool isEqual(const CountCopyAndMove &LHS,
const CountCopyAndMove &RHS) {
return LHS.Value == RHS.Value;
}
};
}
namespace {
// Make sure reserve actually gives us enough buckets to insert N items
// without increasing allocation size.
TEST(DenseSetCustomTest, ReserveTest) {
// Test a few different size, 48 is *not* a random choice: we need a value
// that is 2/3 of a power of two to stress the grow() condition, and the power
// of two has to be at least 64 because of minimum size allocation in the
// DenseMa. 66 is a value just above the 64 default init.
for (auto Size : {1, 2, 48, 66}) {
DenseSet<CountCopyAndMove> Set;
Set.reserve(Size);
unsigned MemorySize = Set.getMemorySize();
CountCopyAndMove::Copy = 0;
CountCopyAndMove::Move = 0;
for (int i = 0; i < Size; ++i)
Set.insert(CountCopyAndMove(i));
// Check that we didn't grow
EXPECT_EQ(MemorySize, Set.getMemorySize());
// Check that move was called the expected number of times
EXPECT_EQ(Size, CountCopyAndMove::Move);
// Check that no copy occurred
EXPECT_EQ(0, CountCopyAndMove::Copy);
}
}
TEST(DenseSetCustomTest, ConstTest) {
// Test that const pointers work okay for count and find, even when the
// underlying map is a non-const pointer.
DenseSet<int *> Map;
int A;
int *B = &A;
const int *C = &A;
Map.insert(B);
EXPECT_EQ(Map.count(B), 1u);
EXPECT_EQ(Map.count(C), 1u);
EXPECT_NE(Map.find(B), Map.end());
EXPECT_NE(Map.find(C), Map.end());
}
}