blob: 2da9e09973ca4139bd3c5e33433a8a4f3eae5f1f [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "blorp_nir_builder.h"
#include "compiler/nir/nir_format_convert.h"
#include "blorp_priv.h"
#include "util/format_rgb9e5.h"
/* header-only include needed for _mesa_unorm_to_float and friends. */
#include "mesa/main/format_utils.h"
#include "util/u_math.h"
#define FILE_DEBUG_FLAG DEBUG_BLORP
static const bool split_blorp_blit_debug = false;
struct brw_blorp_blit_vars {
/* Input values from brw_blorp_wm_inputs */
nir_variable *v_discard_rect;
nir_variable *v_rect_grid;
nir_variable *v_coord_transform;
nir_variable *v_src_z;
nir_variable *v_src_offset;
nir_variable *v_dst_offset;
nir_variable *v_src_inv_size;
};
static void
brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
const struct brw_blorp_blit_prog_key *key)
{
#define LOAD_INPUT(name, type)\
v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
LOAD_INPUT(discard_rect, glsl_vec4_type())
LOAD_INPUT(rect_grid, glsl_vec4_type())
LOAD_INPUT(coord_transform, glsl_vec4_type())
LOAD_INPUT(src_z, glsl_float_type())
LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
LOAD_INPUT(src_inv_size, glsl_vector_type(GLSL_TYPE_FLOAT, 2))
#undef LOAD_INPUT
}
static nir_ssa_def *
blorp_blit_get_frag_coords(nir_builder *b,
const struct brw_blorp_blit_prog_key *key,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *coord = nir_f2i32(b, nir_load_frag_coord(b));
/* Account for destination surface intratile offset
*
* Transformation parameters giving translation from destination to source
* coordinates don't take into account possible intra-tile destination
* offset. Therefore it has to be first subtracted from the incoming
* coordinates. Vertices are set up based on coordinates containing the
* intra-tile offset.
*/
if (key->need_dst_offset)
coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
if (key->persample_msaa_dispatch) {
return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
nir_load_sample_id(b));
} else {
return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
}
}
/**
* Emit code to translate from destination (X, Y) coordinates to source (X, Y)
* coordinates.
*/
static nir_ssa_def *
blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
nir_channel(b, coord_transform, 3));
nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
nir_channel(b, coord_transform, 2));
return nir_fadd(b, nir_fmul(b, src_pos, mul), offset);
}
static inline void
blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *c0, *c1, *c2, *c3;
nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
nir_discard_if(b, oob);
}
static nir_tex_instr *
blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
nir_alu_type dst_type)
{
nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
tex->op = op;
tex->dest_type = dst_type | 32;
tex->is_array = false;
tex->is_shadow = false;
/* Blorp only has one texture and it's bound at unit 0 */
tex->texture_index = 0;
tex->sampler_index = 0;
/* To properly handle 3-D and 2-D array textures, we pull the Z component
* from an input. TODO: This is a bit magic; we should probably make this
* more explicit in the future.
*/
assert(pos->num_components >= 2);
if (op == nir_texop_txf || op == nir_texop_txf_ms || op == nir_texop_txf_ms_mcs) {
pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
nir_f2i32(b, nir_load_var(b, v->v_src_z)));
} else {
pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
nir_load_var(b, v->v_src_z));
}
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(pos);
tex->coord_components = 3;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
return tex;
}
static nir_ssa_def *
blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
const struct brw_blorp_blit_prog_key *key, nir_ssa_def *pos)
{
if (key->need_src_offset)
pos = nir_fadd(b, pos, nir_i2f32(b, nir_load_var(b, v->v_src_offset)));
/* If the sampler requires normalized coordinates, we need to compensate. */
if (key->src_coords_normalized)
pos = nir_fmul(b, pos, nir_load_var(b, v->v_src_inv_size));
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2,
key->texture_data_type);
assert(pos->num_components == 2);
tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos, nir_alu_type dst_type)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
mcs != NULL ? 3 : 2, dst_type);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->src[1].src_type = nir_tex_src_ms_index;
if (pos->num_components == 2) {
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
} else {
assert(pos->num_components == 3);
tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
}
if (mcs) {
tex->src[2].src_type = nir_tex_src_ms_mcs;
tex->src[2].src = nir_src_for_ssa(mcs);
}
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_blit_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
pos, 1, nir_type_int);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
/**
* Emit code to compensate for the difference between Y and W tiling.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
*
* (See brw_blorp_build_nir_shader).
*/
static inline nir_ssa_def *
blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
{
assert(pos->num_components == 2);
nir_ssa_def *x_Y = nir_channel(b, pos, 0);
nir_ssa_def *y_Y = nir_channel(b, pos, 1);
/* Given X and Y coordinates that describe an address using Y tiling,
* translate to the X and Y coordinates that describe the same address
* using W tiling.
*
* If we break down the low order bits of X and Y, using a
* single letter to represent each low-order bit:
*
* X = A << 7 | 0bBCDEFGH
* Y = J << 5 | 0bKLMNP (1)
*
* Then we can apply the Y tiling formula to see the memory offset being
* addressed:
*
* offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
*
* If we apply the W detiling formula to this memory location, that the
* corresponding X' and Y' coordinates are:
*
* X' = A << 6 | 0bBCDPFH (3)
* Y' = J << 6 | 0bKLMNEG
*
* Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
* we need to make the following computation:
*
* X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
* Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
*/
nir_ssa_def *x_W = nir_imm_int(b, 0);
x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
nir_ssa_def *y_W = nir_imm_int(b, 0);
y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
return nir_vec2(b, x_W, y_W);
}
/**
* Emit code to compensate for the difference between Y and W tiling.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
*
* (See brw_blorp_build_nir_shader).
*/
static inline nir_ssa_def *
blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
{
assert(pos->num_components == 2);
nir_ssa_def *x_W = nir_channel(b, pos, 0);
nir_ssa_def *y_W = nir_channel(b, pos, 1);
/* Applying the same logic as above, but in reverse, we obtain the
* formulas:
*
* X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
* Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
*/
nir_ssa_def *x_Y = nir_imm_int(b, 0);
x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
nir_ssa_def *y_Y = nir_imm_int(b, 0);
y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
return nir_vec2(b, x_Y, y_Y);
}
/**
* Emit code to compensate for the difference between MSAA and non-MSAA
* surfaces.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
*
* (See brw_blorp_blit_program).
*/
static inline nir_ssa_def *
blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
unsigned num_samples, enum isl_msaa_layout layout)
{
assert(pos->num_components == 2 || pos->num_components == 3);
switch (layout) {
case ISL_MSAA_LAYOUT_NONE:
assert(pos->num_components == 2);
return pos;
case ISL_MSAA_LAYOUT_ARRAY:
/* No translation needed */
return pos;
case ISL_MSAA_LAYOUT_INTERLEAVED: {
nir_ssa_def *x_in = nir_channel(b, pos, 0);
nir_ssa_def *y_in = nir_channel(b, pos, 1);
nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
nir_channel(b, pos, 2);
nir_ssa_def *x_out = nir_imm_int(b, 0);
nir_ssa_def *y_out = nir_imm_int(b, 0);
switch (num_samples) {
case 2:
case 4:
/* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = Y
*
* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
if (num_samples == 2) {
y_out = y_in;
} else {
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
}
break;
case 8:
/* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
* | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
break;
case 16:
/* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
* | (X & 0b1)
* Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
* | (Y & 0b1)
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
break;
default:
unreachable("Invalid number of samples for IMS layout");
}
return nir_vec2(b, x_out, y_out);
}
default:
unreachable("Invalid MSAA layout");
}
}
/**
* Emit code to compensate for the difference between MSAA and non-MSAA
* surfaces.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
*
* (See brw_blorp_blit_program).
*/
static inline nir_ssa_def *
blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
unsigned num_samples, enum isl_msaa_layout layout)
{
assert(pos->num_components == 2 || pos->num_components == 3);
switch (layout) {
case ISL_MSAA_LAYOUT_NONE:
/* No translation necessary, and S should already be zero. */
assert(pos->num_components == 2);
return pos;
case ISL_MSAA_LAYOUT_ARRAY:
/* No translation necessary. */
return pos;
case ISL_MSAA_LAYOUT_INTERLEAVED: {
assert(pos->num_components == 2);
nir_ssa_def *x_in = nir_channel(b, pos, 0);
nir_ssa_def *y_in = nir_channel(b, pos, 1);
nir_ssa_def *x_out = nir_imm_int(b, 0);
nir_ssa_def *y_out = nir_imm_int(b, 0);
nir_ssa_def *s_out = nir_imm_int(b, 0);
switch (num_samples) {
case 2:
case 4:
/* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* S = (X & 0b10) >> 1
*
* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (Y & 0b10) | (X & 0b10) >> 1
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
if (num_samples == 2) {
y_out = y_in;
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
} else {
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
}
break;
case 8:
/* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
break;
case 16:
/* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
* S = (Y & 0b100) << 1 | (X & 0b100) |
* (Y & 0b10) | (X & 0b10) >> 1
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
break;
default:
unreachable("Invalid number of samples for IMS layout");
}
return nir_vec3(b, x_out, y_out, s_out);
}
default:
unreachable("Invalid MSAA layout");
}
}
/**
* Count the number of trailing 1 bits in the given value. For example:
*
* count_trailing_one_bits(0) == 0
* count_trailing_one_bits(7) == 3
* count_trailing_one_bits(11) == 2
*/
static inline int count_trailing_one_bits(unsigned value)
{
#ifdef HAVE___BUILTIN_CTZ
return __builtin_ctz(~value);
#else
return util_bitcount(value & ~(value + 1));
#endif
}
static nir_ssa_def *
blorp_nir_combine_samples(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos, unsigned tex_samples,
enum isl_aux_usage tex_aux_usage,
nir_alu_type dst_type,
enum blorp_filter filter)
{
nir_variable *color =
nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
nir_ssa_def *mcs = NULL;
if (isl_aux_usage_has_mcs(tex_aux_usage))
mcs = blorp_blit_txf_ms_mcs(b, v, pos);
nir_op combine_op;
switch (filter) {
case BLORP_FILTER_AVERAGE:
assert(dst_type == nir_type_float);
combine_op = nir_op_fadd;
break;
case BLORP_FILTER_MIN_SAMPLE:
switch (dst_type) {
case nir_type_int: combine_op = nir_op_imin; break;
case nir_type_uint: combine_op = nir_op_umin; break;
case nir_type_float: combine_op = nir_op_fmin; break;
default: unreachable("Invalid dst_type");
}
break;
case BLORP_FILTER_MAX_SAMPLE:
switch (dst_type) {
case nir_type_int: combine_op = nir_op_imax; break;
case nir_type_uint: combine_op = nir_op_umax; break;
case nir_type_float: combine_op = nir_op_fmax; break;
default: unreachable("Invalid dst_type");
}
break;
default:
unreachable("Invalid filter");
}
/* If true, we inserted an if statement that we need to pop at at the end.
*/
bool inserted_if = false;
/* We add together samples using a binary tree structure, e.g. for 4x MSAA:
*
* result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
*
* This ensures that when all samples have the same value, no numerical
* precision is lost, since each addition operation always adds two equal
* values, and summing two equal floating point values does not lose
* precision.
*
* We perform this computation by treating the texture_data array as a
* stack and performing the following operations:
*
* - push sample 0 onto stack
* - push sample 1 onto stack
* - add top two stack entries
* - push sample 2 onto stack
* - push sample 3 onto stack
* - add top two stack entries
* - add top two stack entries
* - divide top stack entry by 4
*
* Note that after pushing sample i onto the stack, the number of add
* operations we do is equal to the number of trailing 1 bits in i. This
* works provided the total number of samples is a power of two, which it
* always is for i965.
*
* For integer formats, we replace the add operations with average
* operations and skip the final division.
*/
nir_ssa_def *texture_data[5];
texture_data[0] = NULL; /* Avoid maybe-uninitialized warning with GCC 10 */
unsigned stack_depth = 0;
for (unsigned i = 0; i < tex_samples; ++i) {
assert(stack_depth == util_bitcount(i)); /* Loop invariant */
/* Push sample i onto the stack */
assert(stack_depth < ARRAY_SIZE(texture_data));
nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
nir_channel(b, pos, 1),
nir_imm_int(b, i));
texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
if (i == 0 && isl_aux_usage_has_mcs(tex_aux_usage)) {
/* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
* suggests an optimization:
*
* "A simple optimization with probable large return in
* performance is to compare the MCS value to zero (indicating
* all samples are on sample slice 0), and sample only from
* sample slice 0 using ld2dss if MCS is zero."
*
* Note that in the case where the MCS value is zero, sampling from
* sample slice 0 using ld2dss and sampling from sample 0 using
* ld2dms are equivalent (since all samples are on sample slice 0).
* Since we have already sampled from sample 0, all we need to do is
* skip the remaining fetches and averaging if MCS is zero.
*
* It's also trivial to detect when the MCS has the magic clear color
* value. In this case, the txf we did on sample 0 will return the
* clear color and we can skip the remaining fetches just like we do
* when MCS == 0.
*/
nir_ssa_def *mcs_zero = nir_ieq_imm(b, nir_channel(b, mcs, 0), 0);
if (tex_samples == 16) {
mcs_zero = nir_iand(b, mcs_zero,
nir_ieq_imm(b, nir_channel(b, mcs, 1), 0));
}
nir_ssa_def *mcs_clear =
blorp_nir_mcs_is_clear_color(b, mcs, tex_samples);
nir_push_if(b, nir_ior(b, mcs_zero, mcs_clear));
nir_store_var(b, color, texture_data[0], 0xf);
nir_push_else(b, NULL);
inserted_if = true;
}
for (int j = 0; j < count_trailing_one_bits(i); j++) {
assert(stack_depth >= 2);
--stack_depth;
texture_data[stack_depth - 1] =
nir_build_alu(b, combine_op,
texture_data[stack_depth - 1],
texture_data[stack_depth],
NULL, NULL);
}
}
/* We should have just 1 sample on the stack now. */
assert(stack_depth == 1);
if (filter == BLORP_FILTER_AVERAGE) {
assert(dst_type == nir_type_float);
texture_data[0] = nir_fmul(b, texture_data[0],
nir_imm_float(b, 1.0 / tex_samples));
}
nir_store_var(b, color, texture_data[0], 0xf);
if (inserted_if)
nir_pop_if(b, NULL);
return nir_load_var(b, color);
}
static nir_ssa_def *
blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
unsigned tex_samples,
const struct brw_blorp_blit_prog_key *key,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
/* Translate coordinates to lay out the samples in a rectangular grid
* roughly corresponding to sample locations.
*/
pos_xy = nir_fmul(b, pos_xy, scale);
/* Adjust coordinates so that integers represent pixel centers rather
* than pixel edges.
*/
pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
/* Clamp the X, Y texture coordinates to properly handle the sampling of
* texels on texture edges.
*/
pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
nir_vec2(b, nir_channel(b, rect_grid, 0),
nir_channel(b, rect_grid, 1)));
/* Store the fractional parts to be used as bilinear interpolation
* coefficients.
*/
nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
/* Round the float coordinates down to nearest integer */
pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
nir_ssa_def *tex_data[4];
for (unsigned i = 0; i < 4; ++i) {
float sample_off_x = (float)(i & 0x1) / key->x_scale;
float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
nir_ssa_def *sample_coords_int = nir_f2i32(b, sample_coords);
/* The MCS value we fetch has to match up with the pixel that we're
* sampling from. Since we sample from different pixels in each
* iteration of this "for" loop, the call to mcs_fetch() should be
* here inside the loop after computing the pixel coordinates.
*/
nir_ssa_def *mcs = NULL;
if (isl_aux_usage_has_mcs(key->tex_aux_usage))
mcs = blorp_blit_txf_ms_mcs(b, v, sample_coords_int);
/* Compute sample index and map the sample index to a sample number.
* Sample index layout shows the numbering of slots in a rectangular
* grid of samples with in a pixel. Sample number layout shows the
* rectangular grid of samples roughly corresponding to the real sample
* locations with in a pixel.
*
* In the case of 2x MSAA, the layout of sample indices is reversed from
* the layout of sample numbers:
*
* sample index layout : --------- sample number layout : ---------
* | 0 | 1 | | 1 | 0 |
* --------- ---------
*
* In case of 4x MSAA, layout of sample indices matches the layout of
* sample numbers:
* ---------
* | 0 | 1 |
* ---------
* | 2 | 3 |
* ---------
*
* In case of 8x MSAA the two layouts don't match.
* sample index layout : --------- sample number layout : ---------
* | 0 | 1 | | 3 | 7 |
* --------- ---------
* | 2 | 3 | | 5 | 0 |
* --------- ---------
* | 4 | 5 | | 1 | 2 |
* --------- ---------
* | 6 | 7 | | 4 | 6 |
* --------- ---------
*
* Fortunately, this can be done fairly easily as:
* S' = (0x17306425 >> (S * 4)) & 0xf
*
* In the case of 16x MSAA the two layouts don't match.
* Sample index layout: Sample number layout:
* --------------------- ---------------------
* | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
* --------------------- ---------------------
* | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
* --------------------- ---------------------
* | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
* --------------------- ---------------------
* | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
* --------------------- ---------------------
*
* This is equivalent to
* S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
*/
nir_ssa_def *frac = nir_ffract(b, sample_coords);
nir_ssa_def *sample =
nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
key->x_scale * key->y_scale));
sample = nir_f2i32(b, sample);
if (tex_samples == 2) {
sample = nir_isub(b, nir_imm_int(b, 1), sample);
} else if (tex_samples == 8) {
sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
nir_ishl(b, sample, nir_imm_int(b, 2))),
nir_imm_int(b, 0xf));
} else if (tex_samples == 16) {
nir_ssa_def *sample_low =
nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
nir_ishl(b, sample, nir_imm_int(b, 2))),
nir_imm_int(b, 0xf));
nir_ssa_def *sample_high =
nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
nir_ishl(b, nir_iadd(b, sample,
nir_imm_int(b, -8)),
nir_imm_int(b, 2))),
nir_imm_int(b, 0xf));
sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
sample_low, sample_high);
}
nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
nir_channel(b, sample_coords_int, 1),
sample);
tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
}
nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
nir_flrp(b, tex_data[2], tex_data[3], frac_x),
frac_y);
}
/** Perform a color bit-cast operation
*
* For copy operations involving CCS, we may need to use different formats for
* the source and destination surfaces. The two formats must both be UINT
* formats and must have the same size but may have different bit layouts.
* For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
* to R16G16_UINT. This function generates code to shuffle bits around to get
* us from one to the other.
*/
static nir_ssa_def *
bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
const struct brw_blorp_blit_prog_key *key)
{
if (key->src_format == key->dst_format)
return color;
const struct isl_format_layout *src_fmtl =
isl_format_get_layout(key->src_format);
const struct isl_format_layout *dst_fmtl =
isl_format_get_layout(key->dst_format);
/* They must be formats with the same bit size */
assert(src_fmtl->bpb == dst_fmtl->bpb);
if (src_fmtl->bpb <= 32) {
assert(src_fmtl->channels.r.type == ISL_UINT ||
src_fmtl->channels.r.type == ISL_UNORM);
assert(dst_fmtl->channels.r.type == ISL_UINT ||
dst_fmtl->channels.r.type == ISL_UNORM);
nir_ssa_def *packed = nir_imm_int(b, 0);
for (unsigned c = 0; c < 4; c++) {
if (src_fmtl->channels_array[c].bits == 0)
continue;
const unsigned chan_start_bit = src_fmtl->channels_array[c].start_bit;
const unsigned chan_bits = src_fmtl->channels_array[c].bits;
nir_ssa_def *chan = nir_channel(b, color, c);
if (src_fmtl->channels_array[c].type == ISL_UNORM)
chan = nir_format_float_to_unorm(b, chan, &chan_bits);
packed = nir_ior(b, packed, nir_shift(b, chan, chan_start_bit));
}
nir_ssa_def *chans[4] = { };
for (unsigned c = 0; c < 4; c++) {
if (dst_fmtl->channels_array[c].bits == 0) {
chans[c] = nir_imm_int(b, 0);
continue;
}
const unsigned chan_start_bit = dst_fmtl->channels_array[c].start_bit;
const unsigned chan_bits = dst_fmtl->channels_array[c].bits;
chans[c] = nir_iand(b, nir_shift(b, packed, -(int)chan_start_bit),
nir_imm_int(b, BITFIELD_MASK(chan_bits)));
if (dst_fmtl->channels_array[c].type == ISL_UNORM)
chans[c] = nir_format_unorm_to_float(b, chans[c], &chan_bits);
}
color = nir_vec(b, chans, 4);
} else {
/* This path only supports UINT formats */
assert(src_fmtl->channels.r.type == ISL_UINT);
assert(dst_fmtl->channels.r.type == ISL_UINT);
const unsigned src_bpc = src_fmtl->channels.r.bits;
const unsigned dst_bpc = dst_fmtl->channels.r.bits;
assert(src_fmtl->channels.g.bits == 0 ||
src_fmtl->channels.g.bits == src_fmtl->channels.r.bits);
assert(src_fmtl->channels.b.bits == 0 ||
src_fmtl->channels.b.bits == src_fmtl->channels.r.bits);
assert(src_fmtl->channels.a.bits == 0 ||
src_fmtl->channels.a.bits == src_fmtl->channels.r.bits);
assert(dst_fmtl->channels.g.bits == 0 ||
dst_fmtl->channels.g.bits == dst_fmtl->channels.r.bits);
assert(dst_fmtl->channels.b.bits == 0 ||
dst_fmtl->channels.b.bits == dst_fmtl->channels.r.bits);
assert(dst_fmtl->channels.a.bits == 0 ||
dst_fmtl->channels.a.bits == dst_fmtl->channels.r.bits);
/* Restrict to only the channels we actually have */
const unsigned src_channels =
isl_format_get_num_channels(key->src_format);
color = nir_channels(b, color, (1 << src_channels) - 1);
color = nir_format_bitcast_uvec_unmasked(b, color, src_bpc, dst_bpc);
}
/* Blorp likes to assume that colors are vec4s */
nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
nir_ssa_def *chans[4] = { u, u, u, u };
for (unsigned i = 0; i < color->num_components; i++)
chans[i] = nir_channel(b, color, i);
return nir_vec4(b, chans[0], chans[1], chans[2], chans[3]);
}
static nir_ssa_def *
select_color_channel(struct nir_builder *b, nir_ssa_def *color,
nir_alu_type data_type,
enum isl_channel_select chan)
{
if (chan == ISL_CHANNEL_SELECT_ZERO) {
return nir_imm_int(b, 0);
} else if (chan == ISL_CHANNEL_SELECT_ONE) {
switch (data_type) {
case nir_type_int:
case nir_type_uint:
return nir_imm_int(b, 1);
case nir_type_float:
return nir_imm_float(b, 1);
default:
unreachable("Invalid data type");
}
} else {
assert((unsigned)(chan - ISL_CHANNEL_SELECT_RED) < 4);
return nir_channel(b, color, chan - ISL_CHANNEL_SELECT_RED);
}
}
static nir_ssa_def *
swizzle_color(struct nir_builder *b, nir_ssa_def *color,
struct isl_swizzle swizzle, nir_alu_type data_type)
{
return nir_vec4(b,
select_color_channel(b, color, data_type, swizzle.r),
select_color_channel(b, color, data_type, swizzle.g),
select_color_channel(b, color, data_type, swizzle.b),
select_color_channel(b, color, data_type, swizzle.a));
}
static nir_ssa_def *
convert_color(struct nir_builder *b, nir_ssa_def *color,
const struct brw_blorp_blit_prog_key *key)
{
/* All of our color conversions end up generating a single-channel color
* value that we need to write out.
*/
nir_ssa_def *value;
if (key->dst_format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) {
/* The destination image is bound as R32_UINT but the data needs to be
* in R24_UNORM_X8_TYPELESS. The bottom 24 are the actual data and the
* top 8 need to be zero. We can accomplish this by simply multiplying
* by a factor to scale things down.
*/
unsigned factor = (1 << 24) - 1;
value = nir_fsat(b, nir_channel(b, color, 0));
value = nir_f2i32(b, nir_fmul(b, value, nir_imm_float(b, factor)));
} else if (key->dst_format == ISL_FORMAT_L8_UNORM_SRGB) {
value = nir_format_linear_to_srgb(b, nir_channel(b, color, 0));
} else if (key->dst_format == ISL_FORMAT_R8G8B8_UNORM_SRGB) {
value = nir_format_linear_to_srgb(b, color);
} else if (key->dst_format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
value = nir_format_pack_r9g9b9e5(b, color);
} else {
unreachable("Unsupported format conversion");
}
nir_ssa_def *out_comps[4];
for (unsigned i = 0; i < 4; i++) {
if (i < value->num_components)
out_comps[i] = nir_channel(b, value, i);
else
out_comps[i] = nir_ssa_undef(b, 1, 32);
}
return nir_vec(b, out_comps, 4);
}
/**
* Generator for WM programs used in BLORP blits.
*
* The bulk of the work done by the WM program is to wrap and unwrap the
* coordinate transformations used by the hardware to store surfaces in
* memory. The hardware transforms a pixel location (X, Y, S) (where S is the
* sample index for a multisampled surface) to a memory offset by the
* following formulas:
*
* offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
* (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
*
* For a single-sampled surface, or for a multisampled surface using
* INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
* function:
*
* encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
* decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
* encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
* decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
*
* For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
* embeds the sample number into bit 1 of the X and Y coordinates:
*
* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (Y & 0b10) | (X & 0b10) >> 1
*
* For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
* embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
* the Y coordinate:
*
* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
*
* For X tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
* bytes wide and 8 rows high:
*
* tile(x_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
* offset = (Y' & 0b111) << 9
* | (X & 0b111111111)
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(x_tiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* Y' = (tile_num / tile_pitch) << 3
* | (A & 0b111000000000) >> 9
* X' = (tile_num % tile_pitch) << 9
* | (A & 0b111111111)
*
* (In all tiling formulas, cpp is the number of bytes occupied by a single
* sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
* to fill the width of the surface, and qpitch is the spacing (in rows)
* between array slices).
*
* For Y tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
* bytes wide and 32 rows high:
*
* tile(y_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
* offset = (X' & 0b1110000) << 5
* | (Y' & 0b11111) << 4
* | (X' & 0b1111)
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(y_tiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* Y' = (tile_num / tile_pitch) << 5
* | (A & 0b111110000) >> 4
* X' = (tile_num % tile_pitch) << 7
* | (A & 0b111000000000) >> 5
* | (A & 0b1111)
*
* For W tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
* bytes wide and 64 rows high (note that W tiling is only used for stencil
* buffers, which always have cpp = 1 and S=0):
*
* tile(w_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
* offset = (X' & 0b111000) << 6
* | (Y' & 0b111100) << 3
* | (X' & 0b100) << 2
* | (Y' & 0b10) << 2
* | (X' & 0b10) << 1
* | (Y' & 0b1) << 1
* | (X' & 0b1)
* X' = X * cpp = X
* Y' = Y + S * qpitch
* detile(w_tiled, A) = (X, Y, S)
* where X = X' / cpp = X'
* Y = Y' % qpitch = Y'
* S = Y / qpitch = 0
* Y' = (tile_num / tile_pitch) << 6
* | (A & 0b111100000) >> 3
* | (A & 0b1000) >> 2
* | (A & 0b10) >> 1
* X' = (tile_num % tile_pitch) << 6
* | (A & 0b111000000000) >> 6
* | (A & 0b10000) >> 2
* | (A & 0b100) >> 1
* | (A & 0b1)
*
* Finally, for a non-tiled surface, tile() simply combines together the X and
* Y coordinates in the natural way:
*
* tile(untiled, X, Y, S) = A
* where A = Y * pitch + X'
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(untiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* X' = A % pitch
* Y' = A / pitch
*
* (In these formulas, pitch is the number of bytes occupied by a single row
* of samples).
*/
static nir_shader *
brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
const struct brw_blorp_blit_prog_key *key)
{
const struct intel_device_info *devinfo = blorp->isl_dev->info;
nir_ssa_def *src_pos, *dst_pos, *color;
/* Sanity checks */
if (key->dst_tiled_w && key->rt_samples > 1) {
/* If the destination image is W tiled and multisampled, then the thread
* must be dispatched once per sample, not once per pixel. This is
* necessary because after conversion between W and Y tiling, there's no
* guarantee that all samples corresponding to a single pixel will still
* be together.
*/
assert(key->persample_msaa_dispatch);
}
if (key->persample_msaa_dispatch) {
/* It only makes sense to do persample dispatch if the render target is
* configured as multisampled.
*/
assert(key->rt_samples > 0);
}
/* Make sure layout is consistent with sample count */
assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
(key->tex_samples <= 1));
assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
(key->rt_samples <= 1));
assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
(key->src_samples <= 1));
assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
(key->dst_samples <= 1));
nir_builder b;
blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
struct brw_blorp_blit_vars v;
brw_blorp_blit_vars_init(&b, &v, key);
dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
/* Render target and texture hardware don't support W tiling until Gfx8. */
const bool rt_tiled_w = false;
const bool tex_tiled_w = devinfo->ver >= 8 && key->src_tiled_w;
/* The address that data will be written to is determined by the
* coordinates supplied to the WM thread and the tiling and sample count of
* the render target, according to the formula:
*
* (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
*
* If the actual tiling and sample count of the destination surface are not
* the same as the configuration of the render target, then these
* coordinates are wrong and we have to adjust them to compensate for the
* difference.
*/
if (rt_tiled_w != key->dst_tiled_w ||
key->rt_samples != key->dst_samples ||
key->rt_layout != key->dst_layout) {
dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
key->rt_layout);
/* Now (X, Y, S) = detile(rt_tiling, offset) */
if (rt_tiled_w != key->dst_tiled_w)
dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
/* Now (X, Y, S) = detile(rt_tiling, offset) */
dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
key->dst_layout);
}
nir_ssa_def *comp = NULL;
if (key->dst_rgb) {
/* The destination image is bound as a red texture three times as wide
* as the actual image. Our shader is effectively running one color
* component at a time. We need to save off the component and adjust
* the destination position.
*/
assert(dst_pos->num_components == 2);
nir_ssa_def *dst_x = nir_channel(&b, dst_pos, 0);
comp = nir_umod(&b, dst_x, nir_imm_int(&b, 3));
dst_pos = nir_vec2(&b, nir_idiv(&b, dst_x, nir_imm_int(&b, 3)),
nir_channel(&b, dst_pos, 1));
}
/* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
*
* That is: X, Y and S now contain the true coordinates and sample index of
* the data that the WM thread should output.
*
* If we need to kill pixels that are outside the destination rectangle,
* now is the time to do it.
*/
if (key->use_kill)
blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
src_pos = blorp_blit_apply_transform(&b, nir_i2f32(&b, dst_pos), &v);
if (dst_pos->num_components == 3) {
/* The sample coordinate is an integer that we want left alone but
* blorp_blit_apply_transform() blindly applies the transform to all
* three coordinates. Grab the original sample index.
*/
src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
nir_channel(&b, src_pos, 1),
nir_channel(&b, dst_pos, 2));
}
/* If the source image is not multisampled, then we want to fetch sample
* number 0, because that's the only sample there is.
*/
if (key->src_samples == 1)
src_pos = nir_channels(&b, src_pos, 0x3);
/* X, Y, and S are now the coordinates of the pixel in the source image
* that we want to texture from. Exception: if we are blending, then S is
* irrelevant, because we are going to fetch all samples.
*/
switch (key->filter) {
case BLORP_FILTER_NONE:
case BLORP_FILTER_NEAREST:
case BLORP_FILTER_SAMPLE_0:
/* We're going to use texelFetch, so we need integers */
if (src_pos->num_components == 2) {
src_pos = nir_f2i32(&b, src_pos);
} else {
assert(src_pos->num_components == 3);
src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i32(&b, src_pos), 0),
nir_channel(&b, nir_f2i32(&b, src_pos), 1),
nir_channel(&b, src_pos, 2));
}
/* We aren't blending, which means we just want to fetch a single
* sample from the source surface. The address that we want to fetch
* from is related to the X, Y and S values according to the formula:
*
* (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
*
* If the actual tiling and sample count of the source surface are
* not the same as the configuration of the texture, then we need to
* adjust the coordinates to compensate for the difference.
*/
if (tex_tiled_w != key->src_tiled_w ||
key->tex_samples != key->src_samples ||
key->tex_layout != key->src_layout) {
src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
key->src_layout);
/* Now (X, Y, S) = detile(src_tiling, offset) */
if (tex_tiled_w != key->src_tiled_w)
src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
/* Now (X, Y, S) = detile(tex_tiling, offset) */
src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
key->tex_layout);
}
if (key->need_src_offset)
src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
/* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
*
* In other words: X, Y, and S now contain values which, when passed to
* the texturing unit, will cause data to be read from the correct
* memory location. So we can fetch the texel now.
*/
if (key->src_samples == 1) {
color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
} else {
nir_ssa_def *mcs = NULL;
if (isl_aux_usage_has_mcs(key->tex_aux_usage))
mcs = blorp_blit_txf_ms_mcs(&b, &v, src_pos);
color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
}
break;
case BLORP_FILTER_BILINEAR:
assert(!key->src_tiled_w);
assert(key->tex_samples == key->src_samples);
assert(key->tex_layout == key->src_layout);
if (key->src_samples == 1) {
color = blorp_nir_tex(&b, &v, key, src_pos);
} else {
assert(!key->use_kill);
color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples,
key, &v);
}
break;
case BLORP_FILTER_AVERAGE:
case BLORP_FILTER_MIN_SAMPLE:
case BLORP_FILTER_MAX_SAMPLE:
assert(!key->src_tiled_w);
assert(key->tex_samples == key->src_samples);
assert(key->tex_layout == key->src_layout);
/* Resolves (effecively) use texelFetch, so we need integers and we
* don't care about the sample index if we got one.
*/
src_pos = nir_f2i32(&b, nir_channels(&b, src_pos, 0x3));
if (devinfo->ver == 6) {
/* Because gfx6 only supports 4x interleved MSAA, we can do all the
* blending we need with a single linear-interpolated texture lookup
* at the center of the sample. The texture coordinates to be odd
* integers so that they correspond to the center of a 2x2 block
* representing the four samples that maxe up a pixel. So we need
* to multiply our X and Y coordinates each by 2 and then add 1.
*/
assert(key->src_coords_normalized);
assert(key->filter == BLORP_FILTER_AVERAGE);
src_pos = nir_fadd(&b,
nir_i2f32(&b, src_pos),
nir_imm_float(&b, 0.5f));
color = blorp_nir_tex(&b, &v, key, src_pos);
} else {
/* Gfx7+ hardware doesn't automaticaly blend. */
color = blorp_nir_combine_samples(&b, &v, src_pos, key->src_samples,
key->tex_aux_usage,
key->texture_data_type,
key->filter);
}
break;
default:
unreachable("Invalid blorp filter");
}
if (!isl_swizzle_is_identity(key->src_swizzle)) {
color = swizzle_color(&b, color, key->src_swizzle,
key->texture_data_type);
}
if (!isl_swizzle_is_identity(key->dst_swizzle)) {
color = swizzle_color(&b, color, isl_swizzle_invert(key->dst_swizzle),
nir_type_int);
}
if (key->format_bit_cast) {
assert(isl_swizzle_is_identity(key->src_swizzle));
assert(isl_swizzle_is_identity(key->dst_swizzle));
color = bit_cast_color(&b, color, key);
} else if (key->dst_format) {
color = convert_color(&b, color, key);
} else if (key->uint32_to_sint) {
/* Normally the hardware will take care of converting values from/to
* the source and destination formats. But a few cases need help.
*
* The Skylake PRM, volume 07, page 658 has a programming note:
*
* "When using SINT or UINT rendertarget surface formats, Blending
* must be DISABLED. The Pre-Blend Color Clamp Enable and Color
* Clamp Range fields are ignored, and an implied clamp to the
* rendertarget surface format is performed."
*
* For UINT to SINT blits, our sample operation gives us a uint32_t,
* but our render target write expects a signed int32_t number. If we
* simply passed the value along, the hardware would interpret a value
* with bit 31 set as a negative value, clamping it to the largest
* negative number the destination format could represent. But the
* actual source value is a positive number, so we want to clamp it
* to INT_MAX. To fix this, we explicitly take min(color, INT_MAX).
*/
color = nir_umin(&b, color, nir_imm_int(&b, INT32_MAX));
} else if (key->sint32_to_uint) {
/* Similar to above, but clamping negative numbers to zero. */
color = nir_imax(&b, color, nir_imm_int(&b, 0));
}
if (key->dst_rgb) {
/* The destination image is bound as a red texture three times as wide
* as the actual image. Our shader is effectively running one color
* component at a time. We need to pick off the appropriate component
* from the source color and write that to destination red.
*/
assert(dst_pos->num_components == 2);
nir_ssa_def *color_component =
nir_bcsel(&b, nir_ieq_imm(&b, comp, 0),
nir_channel(&b, color, 0),
nir_bcsel(&b, nir_ieq_imm(&b, comp, 1),
nir_channel(&b, color, 1),
nir_channel(&b, color, 2)));
nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
color = nir_vec4(&b, color_component, u, u, u);
}
if (key->dst_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT) {
nir_variable *color_out =
nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(), "gl_FragColor");
color_out->data.location = FRAG_RESULT_COLOR;
nir_store_var(&b, color_out, color, 0xf);
} else if (key->dst_usage == ISL_SURF_USAGE_DEPTH_BIT) {
nir_variable *depth_out =
nir_variable_create(b.shader, nir_var_shader_out,
glsl_float_type(), "gl_FragDepth");
depth_out->data.location = FRAG_RESULT_DEPTH;
nir_store_var(&b, depth_out, nir_channel(&b, color, 0), 0x1);
} else if (key->dst_usage == ISL_SURF_USAGE_STENCIL_BIT) {
nir_variable *stencil_out =
nir_variable_create(b.shader, nir_var_shader_out,
glsl_int_type(), "gl_FragStencilRef");
stencil_out->data.location = FRAG_RESULT_STENCIL;
nir_store_var(&b, stencil_out, nir_channel(&b, color, 0), 0x1);
} else {
unreachable("Invalid destination usage");
}
return b.shader;
}
static bool
brw_blorp_get_blit_kernel(struct blorp_batch *batch,
struct blorp_params *params,
const struct brw_blorp_blit_prog_key *prog_key)
{
struct blorp_context *blorp = batch->blorp;
if (blorp->lookup_shader(batch, prog_key, sizeof(*prog_key),
&params->wm_prog_kernel, &params->wm_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
const unsigned *program;
struct brw_wm_prog_data prog_data;
nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
nir->info.name = ralloc_strdup(nir, blorp_shader_type_to_name(prog_key->shader_type));
struct brw_wm_prog_key wm_key;
brw_blorp_init_wm_prog_key(&wm_key);
wm_key.base.tex.compressed_multisample_layout_mask =
isl_aux_usage_has_mcs(prog_key->tex_aux_usage);
wm_key.base.tex.msaa_16 = prog_key->tex_samples == 16;
wm_key.multisample_fbo = prog_key->rt_samples > 1;
program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
&prog_data);
bool result =
blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
prog_key, sizeof(*prog_key),
program, prog_data.base.program_size,
&prog_data.base, sizeof(prog_data),
&params->wm_prog_kernel, &params->wm_prog_data);
ralloc_free(mem_ctx);
return result;
}
static void
brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
GLfloat src0, GLfloat src1,
GLfloat dst0, GLfloat dst1,
bool mirror)
{
double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
if (!mirror) {
/* When not mirroring a coordinate (say, X), we need:
* src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
* Therefore:
* src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
*
* blorp program uses "round toward zero" to convert the
* transformed floating point coordinates to integer coordinates,
* whereas the behaviour we actually want is "round to nearest",
* so 0.5 provides the necessary correction.
*/
xform->multiplier = scale;
xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
} else {
/* When mirroring X we need:
* src_x - src_x0 = dst_x1 - dst_x - 0.5
* Therefore:
* src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
*/
xform->multiplier = -scale;
xform->offset = src0 + ((double)dst1 - 0.5) * scale;
}
}
static inline void
surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
uint32_t *tile_x_px, uint32_t *tile_y_px)
{
if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
struct isl_extent2d px_size_sa =
isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
assert(info->tile_x_sa % px_size_sa.width == 0);
assert(info->tile_y_sa % px_size_sa.height == 0);
*tile_x_px = info->tile_x_sa / px_size_sa.width;
*tile_y_px = info->tile_y_sa / px_size_sa.height;
} else {
*tile_x_px = info->tile_x_sa;
*tile_y_px = info->tile_y_sa;
}
}
void
blorp_surf_convert_to_single_slice(const struct isl_device *isl_dev,
struct brw_blorp_surface_info *info)
{
bool ok UNUSED;
/* It would be insane to try and do this on a compressed surface */
assert(info->aux_usage == ISL_AUX_USAGE_NONE);
/* Just bail if we have nothing to do. */
if (info->surf.dim == ISL_SURF_DIM_2D &&
info->view.base_level == 0 && info->view.base_array_layer == 0 &&
info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
return;
/* If this gets triggered then we've gotten here twice which. This
* shouldn't happen thanks to the above early return.
*/
assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
uint32_t layer = 0, z = 0;
if (info->surf.dim == ISL_SURF_DIM_3D)
z = info->view.base_array_layer + info->z_offset;
else
layer = info->view.base_array_layer;
uint32_t byte_offset;
isl_surf_get_image_surf(isl_dev, &info->surf,
info->view.base_level, layer, z,
&info->surf,
&byte_offset, &info->tile_x_sa, &info->tile_y_sa);
info->addr.offset += byte_offset;
uint32_t tile_x_px, tile_y_px;
surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
/* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we place
* the image at the tile boundary and offset our sampling or rendering.
* For this reason, we need to grow the image by the offset to ensure that
* the hardware doesn't think we've gone past the edge.
*/
info->surf.logical_level0_px.w += tile_x_px;
info->surf.logical_level0_px.h += tile_y_px;
info->surf.phys_level0_sa.w += info->tile_x_sa;
info->surf.phys_level0_sa.h += info->tile_y_sa;
/* The view is also different now. */
info->view.base_level = 0;
info->view.levels = 1;
info->view.base_array_layer = 0;
info->view.array_len = 1;
info->z_offset = 0;
}
void
blorp_surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
struct brw_blorp_surface_info *info)
{
assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
/* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
blorp_surf_convert_to_single_slice(isl_dev, info);
info->surf.logical_level0_px = info->surf.phys_level0_sa;
info->surf.samples = 1;
info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
}
void
blorp_surf_retile_w_to_y(const struct isl_device *isl_dev,
struct brw_blorp_surface_info *info)
{
assert(info->surf.tiling == ISL_TILING_W);
/* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
blorp_surf_convert_to_single_slice(isl_dev, info);
/* On gfx7+, we don't have interleaved multisampling for color render
* targets so we have to fake it.
*
* TODO: Are we sure we don't also need to fake it on gfx6?
*/
if (isl_dev->info->ver > 6 &&
info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
blorp_surf_fake_interleaved_msaa(isl_dev, info);
}
if (isl_dev->info->ver == 6) {
/* Gfx6 stencil buffers have a very large alignment coming in from the
* miptree. It's out-of-bounds for what the surface state can handle.
* Since we have a single layer and level, it doesn't really matter as
* long as we don't pass a bogus value into isl_surf_fill_state().
*/
info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
}
/* Now that we've converted everything to a simple 2-D surface with only
* one miplevel, we can go about retiling it.
*/
const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
info->surf.tiling = ISL_TILING_Y0;
info->surf.logical_level0_px.width =
ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
info->surf.logical_level0_px.height =
ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
info->tile_x_sa *= 2;
info->tile_y_sa /= 2;
}
static bool
can_shrink_surface(const struct brw_blorp_surface_info *surf)
{
/* The current code doesn't support offsets into the aux buffers. This
* should be possible, but we need to make sure the offset is page
* aligned for both the surface and the aux buffer surface. Generally
* this mean using the page aligned offset for the aux buffer.
*
* Currently the cases where we must split the blit are limited to cases
* where we don't have a aux buffer.
*/
if (surf->aux_addr.buffer != NULL)
return false;
/* We can't support splitting the blit for gen <= 7, because the qpitch
* size is calculated by the hardware based on the surface height for
* gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
*/
if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
return false;
return true;
}
static unsigned
get_max_surface_size(const struct intel_device_info *devinfo,
const struct brw_blorp_surface_info *surf)
{
const unsigned max = devinfo->ver >= 7 ? 16384 : 8192;
if (split_blorp_blit_debug && can_shrink_surface(surf))
return max >> 4; /* A smaller restriction when debug is enabled */
else
return max;
}
struct blt_axis {
double src0, src1, dst0, dst1;
bool mirror;
};
struct blt_coords {
struct blt_axis x, y;
};
static enum isl_format
get_red_format_for_rgb_format(enum isl_format format)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
switch (fmtl->channels.r.bits) {
case 8:
switch (fmtl->channels.r.type) {
case ISL_UNORM:
return ISL_FORMAT_R8_UNORM;
case ISL_SNORM:
return ISL_FORMAT_R8_SNORM;
case ISL_UINT:
return ISL_FORMAT_R8_UINT;
case ISL_SINT:
return ISL_FORMAT_R8_SINT;
default:
unreachable("Invalid 8-bit RGB channel type");
}
case 16:
switch (fmtl->channels.r.type) {
case ISL_UNORM:
return ISL_FORMAT_R16_UNORM;
case ISL_SNORM:
return ISL_FORMAT_R16_SNORM;
case ISL_SFLOAT:
return ISL_FORMAT_R16_FLOAT;
case ISL_UINT:
return ISL_FORMAT_R16_UINT;
case ISL_SINT:
return ISL_FORMAT_R16_SINT;
default:
unreachable("Invalid 8-bit RGB channel type");
}
case 32:
switch (fmtl->channels.r.type) {
case ISL_SFLOAT:
return ISL_FORMAT_R32_FLOAT;
case ISL_UINT:
return ISL_FORMAT_R32_UINT;
case ISL_SINT:
return ISL_FORMAT_R32_SINT;
default:
unreachable("Invalid 8-bit RGB channel type");
}
default:
unreachable("Invalid number of red channel bits");
}
}
void
surf_fake_rgb_with_red(const struct isl_device *isl_dev,
struct brw_blorp_surface_info *info)
{
blorp_surf_convert_to_single_slice(isl_dev, info);
info->surf.logical_level0_px.width *= 3;
info->surf.phys_level0_sa.width *= 3;
info->tile_x_sa *= 3;
enum isl_format red_format =
get_red_format_for_rgb_format(info->view.format);
assert(isl_format_get_layout(red_format)->channels.r.type ==
isl_format_get_layout(info->view.format)->channels.r.type);
assert(isl_format_get_layout(red_format)->channels.r.bits ==
isl_format_get_layout(info->view.format)->channels.r.bits);
info->surf.format = info->view.format = red_format;
}
enum blit_shrink_status {
BLIT_NO_SHRINK = 0,
BLIT_SRC_WIDTH_SHRINK = (1 << 0),
BLIT_DST_WIDTH_SHRINK = (1 << 1),
BLIT_SRC_HEIGHT_SHRINK = (1 << 2),
BLIT_DST_HEIGHT_SHRINK = (1 << 3),
};
/* Try to blit. If the surface parameters exceed the size allowed by hardware,
* then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
* returned, then the blit was successful.
*/
static enum blit_shrink_status
try_blorp_blit(struct blorp_batch *batch,
struct blorp_params *params,
struct brw_blorp_blit_prog_key *wm_prog_key,
struct blt_coords *coords)
{
const struct intel_device_info *devinfo = batch->blorp->isl_dev->info;
if (params->dst.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) {
if (devinfo->ver >= 7) {
/* We can render as depth on Gfx5 but there's no real advantage since
* it doesn't support MSAA or HiZ. On Gfx4, we can't always render
* to depth due to issues with depth buffers and mip-mapping. On
* Gfx6, we can do everything but we have weird offsetting for HiZ
* and stencil. It's easier to just render using the color pipe
* on those platforms.
*/
wm_prog_key->dst_usage = ISL_SURF_USAGE_DEPTH_BIT;
} else {
wm_prog_key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
}
} else if (params->dst.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) {
assert(params->dst.surf.format == ISL_FORMAT_R8_UINT);
if (devinfo->ver >= 9) {
wm_prog_key->dst_usage = ISL_SURF_USAGE_STENCIL_BIT;
} else {
wm_prog_key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
}
} else {
wm_prog_key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
}
if (isl_format_has_sint_channel(params->src.view.format)) {
wm_prog_key->texture_data_type = nir_type_int;
} else if (isl_format_has_uint_channel(params->src.view.format)) {
wm_prog_key->texture_data_type = nir_type_uint;
} else {
wm_prog_key->texture_data_type = nir_type_float;
}
/* src_samples and dst_samples are the true sample counts */
wm_prog_key->src_samples = params->src.surf.samples;
wm_prog_key->dst_samples = params->dst.surf.samples;
wm_prog_key->tex_aux_usage = params->src.aux_usage;
/* src_layout and dst_layout indicate the true MSAA layout used by src and
* dst.
*/
wm_prog_key->src_layout = params->src.surf.msaa_layout;
wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
/* Round floating point values to nearest integer to avoid "off by one texel"
* kind of errors when blitting.
*/
params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
coords->x.src0, coords->x.src1,
coords->x.dst0, coords->x.dst1,
coords->x.mirror);
brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
coords->y.src0, coords->y.src1,
coords->y.dst0, coords->y.dst1,
coords->y.mirror);
if (devinfo->ver == 4) {
/* The MinLOD and MinimumArrayElement don't work properly for cube maps.
* Convert them to a single slice on gfx4.
*/
if (params->dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->dst);
wm_prog_key->need_dst_offset = true;
}
if (params->src.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->src);
wm_prog_key->need_src_offset = true;
}
}
if (devinfo->ver > 6 &&
!isl_surf_usage_is_depth_or_stencil(wm_prog_key->dst_usage) &&
params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
assert(params->dst.surf.samples > 1);
/* We must expand the rectangle we send through the rendering pipeline,
* to account for the fact that we are mapping the destination region as
* single-sampled when it is in fact multisampled. We must also align
* it to a multiple of the multisampling pattern, because the
* differences between multisampled and single-sampled surface formats
* will mean that pixels are scrambled within the multisampling pattern.
* TODO: what if this makes the coordinates too large?
*
* Note: this only works if the destination surface uses the IMS layout.
* If it's UMS, then we have no choice but to set up the rendering
* pipeline as multisampled.
*/
struct isl_extent2d px_size_sa =
isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
wm_prog_key->use_kill = true;
wm_prog_key->need_dst_offset = true;
}
if (params->dst.surf.tiling == ISL_TILING_W &&
wm_prog_key->dst_usage != ISL_SURF_USAGE_STENCIL_BIT) {
/* We must modify the rectangle we send through the rendering pipeline
* (and the size and x/y offset of the destination surface), to account
* for the fact that we are mapping it as Y-tiled when it is in fact
* W-tiled.
*
* Both Y tiling and W tiling can be understood as organizations of
* 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
* is different, but the layout of the 32-byte sub-tiles within the 4k
* tile is the same (8 sub-tiles across by 16 sub-tiles down, in
* column-major order). In Y tiling, the sub-tiles are 16 bytes wide
* and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
*
* Therefore, to account for the layout differences within the 32-byte
* sub-tiles, we must expand the rectangle so the X coordinates of its
* edges are multiples of 8 (the W sub-tile width), and its Y
* coordinates of its edges are multiples of 4 (the W sub-tile height).
* Then we need to scale the X and Y coordinates of the rectangle to
* account for the differences in aspect ratio between the Y and W
* sub-tiles. We need to modify the layer width and height similarly.
*
* A correction needs to be applied when MSAA is in use: since
* INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
* we need to align the Y coordinates to multiples of 8, so that when
* they are divided by two they are still multiples of 4.
*
* Note: Since the x/y offset of the surface will be applied using the
* SURFACE_STATE command packet, it will be invisible to the swizzling
* code in the shader; therefore it needs to be in a multiple of the
* 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
* pixels wide and 4 pixels high (when viewed as a W-tiled stencil
* buffer), and the miplevel alignment used for stencil buffers is 8
* pixels horizontally and either 4 or 8 pixels vertically (see
* intel_horizontal_texture_alignment_unit() and
* intel_vertical_texture_alignment_unit()).
*
* Note: Also, since the SURFACE_STATE command packet can only apply
* offsets that are multiples of 4 pixels horizontally and 2 pixels
* vertically, it is important that the offsets will be multiples of
* these sizes after they are converted into Y-tiled coordinates.
* Fortunately they will be, since we know from above that the offsets
* are a multiple of the 32-byte sub-tile size, and in Y-tiled
* coordinates the sub-tile is 16 pixels wide and 2 pixels high.
*
* TODO: what if this makes the coordinates (or the texture size) too
* large?
*/
const unsigned x_align = 8;
const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
params->x1 = ALIGN(params->x1, x_align) * 2;
params->y1 = ALIGN(params->y1, y_align) / 2;
/* Retile the surface to Y-tiled */
blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
wm_prog_key->dst_tiled_w = true;
wm_prog_key->use_kill = true;
wm_prog_key->need_dst_offset = true;
if (params->dst.surf.samples > 1) {
/* If the destination surface is a W-tiled multisampled stencil
* buffer that we're mapping as Y tiled, then we need to arrange for
* the WM program to run once per sample rather than once per pixel,
* because the memory layout of related samples doesn't match between
* W and Y tiling.
*/
wm_prog_key->persample_msaa_dispatch = true;
}
}
if (devinfo->ver < 8 && params->src.surf.tiling == ISL_TILING_W) {
/* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
* Broadwell adds support for sampling from stencil.
*
* See the comments above concerning x/y offset alignment for the
* destination surface.
*
* TODO: what if this makes the texture size too large?
*/
blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
wm_prog_key->src_tiled_w = true;
wm_prog_key->need_src_offset = true;
}
/* tex_samples and rt_samples are the sample counts that are set up in
* SURFACE_STATE.
*/
wm_prog_key->tex_samples = params->src.surf.samples;
wm_prog_key->rt_samples = params->dst.surf.samples;
/* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
* use to access the source and destination surfaces.
*/
wm_prog_key->tex_layout = params->src.surf.msaa_layout;
wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
/* We are blitting from a multisample buffer to a multisample buffer, so
* we must preserve samples within a pixel. This means we have to
* arrange for the WM program to run once per sample rather than once
* per pixel.
*/
wm_prog_key->persample_msaa_dispatch = true;
}
params->num_samples = params->dst.surf.samples;
if ((wm_prog_key->filter == BLORP_FILTER_AVERAGE ||
wm_prog_key->filter == BLORP_FILTER_BILINEAR) &&
batch->blorp->isl_dev->info->ver <= 6) {
/* Gfx4-5 don't support non-normalized texture coordinates */
wm_prog_key->src_coords_normalized = true;
params->wm_inputs.src_inv_size[0] =
1.0f / minify(params->src.surf.logical_level0_px.width,
params->src.view.base_level);
params->wm_inputs.src_inv_size[1] =
1.0f / minify(params->src.surf.logical_level0_px.height,
params->src.view.base_level);
}
if (isl_format_get_layout(params->dst.view.format)->bpb % 3 == 0) {
/* We can't render to RGB formats natively because they aren't a
* power-of-two size. Instead, we fake them by using a red format
* with the same channel type and size and emitting shader code to
* only write one channel at a time.
*/
params->x0 *= 3;
params->x1 *= 3;
/* If it happens to be sRGB, we need to force a conversion */
if (params->dst.view.format == ISL_FORMAT_R8G8B8_UNORM_SRGB)
wm_prog_key->dst_format = ISL_FORMAT_R8G8B8_UNORM_SRGB;
surf_fake_rgb_with_red(batch->blorp->isl_dev, &params->dst);
wm_prog_key->dst_rgb = true;
wm_prog_key->need_dst_offset = true;
} else if (isl_format_is_rgbx(params->dst.view.format)) {
/* We can handle RGBX formats easily enough by treating them as RGBA */
params->dst.view.format =
isl_format_rgbx_to_rgba(params->dst.view.format);
} else if (params->dst.view.format == ISL_FORMAT_R24_UNORM_X8_TYPELESS &&
wm_prog_key->dst_usage != ISL_SURF_USAGE_DEPTH_BIT) {
wm_prog_key->dst_format = params->dst.view.format;
params->dst.view.format = ISL_FORMAT_R32_UINT;
} else if (params->dst.view.format == ISL_FORMAT_A4B4G4R4_UNORM) {
params->dst.view.swizzle =
isl_swizzle_compose(params->dst.view.swizzle,
ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE));
params->dst.view.format = ISL_FORMAT_B4G4R4A4_UNORM;
} else if (params->dst.view.format == ISL_FORMAT_L8_UNORM_SRGB) {
wm_prog_key->dst_format = params->dst.view.format;
params->dst.view.format = ISL_FORMAT_R8_UNORM;
} else if (params->dst.view.format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
wm_prog_key->dst_format = params->dst.view.format;
params->dst.view.format = ISL_FORMAT_R32_UINT;
}
if (devinfo->ver <= 7 && !devinfo->is_haswell &&
!isl_swizzle_is_identity(params->src.view.swizzle)) {
wm_prog_key->src_swizzle = params->src.view.swizzle;
params->src.view.swizzle = ISL_SWIZZLE_IDENTITY;
} else {
wm_prog_key->src_swizzle = ISL_SWIZZLE_IDENTITY;
}
if (!isl_swizzle_supports_rendering(devinfo, params->dst.view.swizzle)) {
wm_prog_key->dst_swizzle = params->dst.view.swizzle;
params->dst.view.swizzle = ISL_SWIZZLE_IDENTITY;
} else {
wm_prog_key->dst_swizzle = ISL_SWIZZLE_IDENTITY;
}
if (params->src.tile_x_sa || params->src.tile_y_sa) {
assert(wm_prog_key->need_src_offset);
surf_get_intratile_offset_px(&params->src,
&params->wm_inputs.src_offset.x,
&params->wm_inputs.src_offset.y);
}
if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
assert(wm_prog_key->need_dst_offset);
surf_get_intratile_offset_px(&params->dst,
&params->wm_inputs.dst_offset.x,
&params->wm_inputs.dst_offset.y);
params->x0 += params->wm_inputs.dst_offset.x;
params->y0 += params->wm_inputs.dst_offset.y;
params->x1 += params->wm_inputs.dst_offset.x;
params->y1 += params->wm_inputs.dst_offset.y;
}
/* For some texture types, we need to pass the layer through the sampler. */
params->wm_inputs.src_z = params->src.z_offset;
if (!brw_blorp_get_blit_kernel(batch, params, wm_prog_key))
return 0;
if (!blorp_ensure_sf_program(batch, params))
return 0;
unsigned result = 0;
unsigned max_src_surface_size = get_max_surface_size(devinfo, &params->src);
if (params->src.surf.logical_level0_px.width > max_src_surface_size)
result |= BLIT_SRC_WIDTH_SHRINK;
if (params->src.surf.logical_level0_px.height > max_src_surface_size)
result |= BLIT_SRC_HEIGHT_SHRINK;
unsigned max_dst_surface_size = get_max_surface_size(devinfo, &params->dst);
if (params->dst.surf.logical_level0_px.width > max_dst_surface_size)
result |= BLIT_DST_WIDTH_SHRINK;
if (params->dst.surf.logical_level0_px.height > max_dst_surface_size)
result |= BLIT_DST_HEIGHT_SHRINK;
if (result == 0) {
if (wm_prog_key->dst_usage == ISL_SURF_USAGE_DEPTH_BIT) {
params->depth = params->dst;
memset(&params->dst, 0, sizeof(params->dst));
} else if (wm_prog_key->dst_usage == ISL_SURF_USAGE_STENCIL_BIT) {
params->stencil = params->dst;
params->stencil_mask = 0xff;
memset(&params->dst, 0, sizeof(params->dst));
}
batch->blorp->exec(batch, params);
}
return result;
}
/* Adjust split blit source coordinates for the current destination
* coordinates.
*/
static void
adjust_split_source_coords(const struct blt_axis *orig,
struct blt_axis *split_coords,
double scale)
{
/* When scale is greater than 0, then we are growing from the start, so
* src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
* source range shrinks from the end. In that case src0 is adjusted by
* delta1, and src1 is adjusted by delta0.
*/
double delta0 = scale * (split_coords->dst0 - orig->dst0);
double delta1 = scale * (split_coords->dst1 - orig->dst1);
split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
}
static struct isl_extent2d
get_px_size_sa(const struct isl_surf *surf)
{
static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
return one_to_one;
else
return isl_get_interleaved_msaa_px_size_sa(surf->samples);
}
static void
shrink_surface_params(const struct isl_device *dev,
struct brw_blorp_surface_info *info,
double *x0, double *x1, double *y0, double *y1)
{
uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
struct isl_extent2d px_size_sa;
int adjust;
blorp_surf_convert_to_single_slice(dev, info);
px_size_sa = get_px_size_sa(&info->surf);
/* Because this gets called after we lower compressed images, the tile
* offsets may be non-zero and we need to incorporate them in our
* calculations.
*/
x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
isl_tiling_get_intratile_offset_sa(info->surf.tiling,
info->surf.format, info->surf.row_pitch_B,
x_offset_sa, y_offset_sa,
&byte_offset,
&info->tile_x_sa, &info->tile_y_sa);
info->addr.offset += byte_offset;
adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
*x0 += adjust;
*x1 += adjust;
info->tile_x_sa = 0;
adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
*y0 += adjust;
*y1 += adjust;
info->tile_y_sa = 0;
size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
info->surf.logical_level0_px.width = size;
info->surf.phys_level0_sa.width = size * px_size_sa.w;
size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
info->surf.logical_level0_px.height = size;
info->surf.phys_level0_sa.height = size * px_size_sa.h;
}
static void
do_blorp_blit(struct blorp_batch *batch,
const struct blorp_params *orig_params,
struct brw_blorp_blit_prog_key *wm_prog_key,
const struct blt_coords *orig)
{
struct blorp_params params;
struct blt_coords blit_coords;
struct blt_coords split_coords = *orig;
double w = orig->x.dst1 - orig->x.dst0;
double h = orig->y.dst1 - orig->y.dst0;
double x_scale = (orig->x.src1 - orig->x.src0) / w;
double y_scale = (orig->y.src1 - orig->y.src0) / h;
if (orig->x.mirror)
x_scale = -x_scale;
if (orig->y.mirror)
y_scale = -y_scale;
enum blit_shrink_status shrink = BLIT_NO_SHRINK;
if (split_blorp_blit_debug) {
if (can_shrink_surface(&orig_params->src))
shrink |= BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK;
if (can_shrink_surface(&orig_params->dst))
shrink |= BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK;
}
bool x_done, y_done;
do {
params = *orig_params;
blit_coords = split_coords;
if (shrink & (BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK)) {
shrink_surface_params(batch->blorp->isl_dev, &params.src,
&blit_coords.x.src0, &blit_coords.x.src1,
&blit_coords.y.src0, &blit_coords.y.src1);
wm_prog_key->need_src_offset = false;
}
if (shrink & (BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK)) {
shrink_surface_params(batch->blorp->isl_dev, &params.dst,
&blit_coords.x.dst0, &blit_coords.x.dst1,
&blit_coords.y.dst0, &blit_coords.y.dst1);
wm_prog_key->need_dst_offset = false;
}
enum blit_shrink_status result =
try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
if (result & (BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK))
assert(can_shrink_surface(&orig_params->src));
if (result & (BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK))
assert(can_shrink_surface(&orig_params->dst));
if (result & (BLIT_SRC_WIDTH_SHRINK | BLIT_DST_WIDTH_SHRINK)) {
w /= 2.0;
assert(w >= 1.0);
split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
}
if (result & (BLIT_SRC_HEIGHT_SHRINK | BLIT_DST_HEIGHT_SHRINK)) {
h /= 2.0;
assert(h >= 1.0);
split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
}
if (result) {
/* We may get less bits set on result than we had already, so make
* sure we remember all the ways in which a resize is required.
*/
shrink |= result;
continue;
}
y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
if (x_done) {
break;
} else if (y_done) {
split_coords.x.dst0 += w;
split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
split_coords.y.dst0 = orig->y.dst0;
split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
} else {
split_coords.y.dst0 += h;
split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
}
} while (true);
}
void
blorp_blit(struct blorp_batch *batch,
const struct blorp_surf *src_surf,
unsigned src_level, float src_layer,
enum isl_format src_format, struct isl_swizzle src_swizzle,
const struct blorp_surf *dst_surf,
unsigned dst_level, unsigned dst_layer,
enum isl_format dst_format, struct isl_swizzle dst_swizzle,
float src_x0, float src_y0,
float src_x1, float src_y1,
float dst_x0, float dst_y0,
float dst_x1, float dst_y1,
enum blorp_filter filter,
bool mirror_x, bool mirror_y)
{
struct blorp_params params;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_BLIT;
/* We cannot handle combined depth and stencil. */
if (src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
assert(src_surf->surf->format == ISL_FORMAT_R8_UINT);
if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
assert(dst_surf->surf->format == ISL_FORMAT_R8_UINT);
if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) {
assert(src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT);
/* Prior to Broadwell, we can't render to R8_UINT */
if (batch->blorp->isl_dev->info->ver < 8) {
src_format = ISL_FORMAT_R8_UNORM;
dst_format = ISL_FORMAT_R8_UNORM;
}
}
brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
src_layer, src_format, false);
brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
dst_layer, dst_format, true);
params.src.view.swizzle = src_swizzle;
params.dst.view.swizzle = dst_swizzle;
const struct isl_format_layout *src_fmtl =
isl_format_get_layout(params.src.view.format);
struct brw_blorp_blit_prog_key wm_prog_key = {
.shader_type = BLORP_SHADER_TYPE_BLIT,
.filter = filter,
.sint32_to_uint = src_fmtl->channels.r.bits == 32 &&
isl_format_has_sint_channel(params.src.view.format) &&
isl_format_has_uint_channel(params.dst.view.format),
.uint32_to_sint = src_fmtl->channels.r.bits == 32 &&
isl_format_has_uint_channel(params.src.view.format) &&
isl_format_has_sint_channel(params.dst.view.format),
};
/* Scaling factors used for bilinear filtering in multisample scaled
* blits.
*/
if (params.src.surf.samples == 16)
wm_prog_key.x_scale = 4.0f;
else
wm_prog_key.x_scale = 2.0f;
wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
params.wm_inputs.rect_grid.x1 =
minify(params.src.surf.logical_level0_px.width, src_level) *
wm_prog_key.x_scale - 1.0f;
params.wm_inputs.rect_grid.y1 =
minify(params.src.surf.logical_level0_px.height, src_level) *
wm_prog_key.y_scale - 1.0f;
struct blt_coords coords = {
.x = {
.src0 = src_x0,
.src1 = src_x1,
.dst0 = dst_x0,
.dst1 = dst_x1,
.mirror = mirror_x
},
.y = {
.src0 = src_y0,
.src1 = src_y1,
.dst0 = dst_y0,
.dst1 = dst_y1,
.mirror = mirror_y
}
};
do_blorp_blit(batch, &params, &wm_prog_key, &coords);
}
static enum isl_format
get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
{
/* The choice of UNORM and UINT formats is very intentional here. Most
* of the time, we want to use a UINT format to avoid any rounding error
* in the blit. For stencil blits, R8_UINT is required by the hardware.
* (It's the only format allowed in conjunction with W-tiling.) Also we
* intentionally use the 4-channel formats whenever we can. This is so
* that, when we do a RGB <-> RGBX copy, the two formats will line up
* even though one of them is 3/4 the size of the other. The choice of
* UNORM vs. UINT is also very intentional because we don't have 8 or
* 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
* Fortunately, the only time we should ever use two different formats in
* the table below is for RGB -> RGBA blits and so we will never have any
* UNORM/UINT mismatch.
*/
if (ISL_GFX_VER(isl_dev) >= 9) {
switch (bpb) {
case 8: return ISL_FORMAT_R8_UINT;
case 16: return ISL_FORMAT_R8G8_UINT;
case 24: return ISL_FORMAT_R8G8B8_UINT;
case 32: return ISL_FORMAT_R8G8B8A8_UINT;
case 48: return ISL_FORMAT_R16G16B16_UINT;
case 64: return ISL_FORMAT_R16G16B16A16_UINT;
case 96: return ISL_FORMAT_R32G32B32_UINT;
case 128:return ISL_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Unknown format bpb");
}
} else {
switch (bpb) {
case 8: return ISL_FORMAT_R8_UINT;
case 16: return ISL_FORMAT_R8G8_UINT;
case 24: return ISL_FORMAT_R8G8B8_UNORM;
case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
case 48: return ISL_FORMAT_R16G16B16_UNORM;
case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
case 96: return ISL_FORMAT_R32G32B32_UINT;
case 128:return ISL_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Unknown format bpb");
}
}
}
/** Returns a UINT format that is CCS-compatible with the given format
*
* The PRM's say absolutely nothing about how render compression works. The
* only thing they provide is a list of formats on which it is and is not
* supported. Empirical testing indicates that the compression is only based
* on the bit-layout of the format and the channel encoding doesn't matter.
* So, while texture views don't work in general, you can create a view as
* long as the bit-layout of the formats are the same.
*
* Fortunately, for every render compression capable format, the UINT format
* with the same bit layout also supports render compression. This means that
* we only need to handle UINT formats for copy operations. In order to do
* copies between formats with different bit layouts, we attach both with a
* UINT format and use bit_cast_color() to generate code to do the bit-cast
* operation between the two bit layouts.
*/
static enum isl_format
get_ccs_compatible_copy_format(const struct isl_format_layout *fmtl)
{
switch (fmtl->format) {
case ISL_FORMAT_R32G32B32A32_FLOAT:
case ISL_FORMAT_R32G32B32A32_SINT:
case ISL_FORMAT_R32G32B32A32_UINT:
case ISL_FORMAT_R32G32B32A32_UNORM:
case ISL_FORMAT_R32G32B32A32_SNORM:
case ISL_FORMAT_R32G32B32X32_FLOAT:
return ISL_FORMAT_R32G32B32A32_UINT;
case ISL_FORMAT_R16G16B16A16_UNORM:
case ISL_FORMAT_R16G16B16A16_SNORM:
case ISL_FORMAT_R16G16B16A16_SINT:
case ISL_FORMAT_R16G16B16A16_UINT:
case ISL_FORMAT_R16G16B16A16_FLOAT:
case ISL_FORMAT_R16G16B16X16_UNORM:
case ISL_FORMAT_R16G16B16X16_FLOAT:
return ISL_FORMAT_R16G16B16A16_UINT;
case ISL_FORMAT_R32G32_FLOAT:
case ISL_FORMAT_R32G32_SINT:
case ISL_FORMAT_R32G32_UINT:
case ISL_FORMAT_R32G32_UNORM:
case ISL_FORMAT_R32G32_SNORM:
return ISL_FORMAT_R32G32_UINT;
case ISL_FORMAT_B8G8R8A8_UNORM:
case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
case ISL_FORMAT_R8G8B8A8_UNORM:
case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
case ISL_FORMAT_R8G8B8A8_SNORM:
case ISL_FORMAT_R8G8B8A8_SINT:
case ISL_FORMAT_R8G8B8A8_UINT:
case ISL_FORMAT_B8G8R8X8_UNORM:
case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
case ISL_FORMAT_R8G8B8X8_UNORM:
case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
return ISL_FORMAT_R8G8B8A8_UINT;
case ISL_FORMAT_R16G16_UNORM:
case ISL_FORMAT_R16G16_SNORM:
case ISL_FORMAT_R16G16_SINT:
case ISL_FORMAT_R16G16_UINT:
case ISL_FORMAT_R16G16_FLOAT:
return ISL_FORMAT_R16G16_UINT;
case ISL_FORMAT_R32_SINT:
case ISL_FORMAT_R32_UINT:
case ISL_FORMAT_R32_FLOAT:
case ISL_FORMAT_R32_UNORM:
case ISL_FORMAT_R32_SNORM:
return ISL_FORMAT_R32_UINT;
case ISL_FORMAT_B10G10R10A2_UNORM:
case ISL_FORMAT_B10G10R10A2_UNORM_SRGB:
case ISL_FORMAT_R10G10B10A2_UNORM:
case ISL_FORMAT_R10G10B10A2_UNORM_SRGB:
case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM:
case ISL_FORMAT_R10G10B10A2_UINT:
return ISL_FORMAT_R10G10B10A2_UINT;
case ISL_FORMAT_R16_UNORM:
case ISL_FORMAT_R16_SNORM:
case ISL_FORMAT_R16_SINT:
case ISL_FORMAT_R16_UINT:
case ISL_FORMAT_R16_FLOAT:
return ISL_FORMAT_R16_UINT;
case ISL_FORMAT_R8G8_UNORM:
case ISL_FORMAT_R8G8_SNORM:
case ISL_FORMAT_R8G8_SINT:
case ISL_FORMAT_R8G8_UINT:
return ISL_FORMAT_R8G8_UINT;
case ISL_FORMAT_B5G5R5X1_UNORM:
case ISL_FORMAT_B5G5R5X1_UNORM_SRGB:
case ISL_FORMAT_B5G5R5A1_UNORM:
case ISL_FORMAT_B5G5R5A1_UNORM_SRGB:
return ISL_FORMAT_B5G5R5A1_UNORM;
case ISL_FORMAT_A4B4G4R4_UNORM:
case ISL_FORMAT_B4G4R4A4_UNORM:
case ISL_FORMAT_B4G4R4A4_UNORM_SRGB:
return ISL_FORMAT_B4G4R4A4_UNORM;
case ISL_FORMAT_B5G6R5_UNORM:
case ISL_FORMAT_B5G6R5_UNORM_SRGB:
return ISL_FORMAT_B5G6R5_UNORM;
case ISL_FORMAT_A1B5G5R5_UNORM:
return ISL_FORMAT_A1B5G5R5_UNORM;
case ISL_FORMAT_A8_UNORM:
case ISL_FORMAT_R8_UNORM:
case ISL_FORMAT_R8_SNORM:
case ISL_FORMAT_R8_SINT:
case ISL_FORMAT_R8_UINT:
return ISL_FORMAT_R8_UINT;
default:
unreachable("Not a compressible format");
}
}
void
blorp_surf_convert_to_uncompressed(const struct isl_device *isl_dev,
struct brw_blorp_surface_info *info,
uint32_t *x, uint32_t *y,
uint32_t *width, uint32_t *height)
{
const struct isl_format_layout *fmtl =
isl_format_get_layout(info->surf.format);
assert(fmtl->bw > 1 || fmtl->bh > 1);
/* This is a compressed surface. We need to convert it to a single
* slice (because compressed layouts don't perfectly match uncompressed
* ones with the same bpb) and divide x, y, width, and height by the
* block size.
*/
blorp_surf_convert_to_single_slice(isl_dev, info);
if (width && height) {
#ifndef NDEBUG
uint32_t right_edge_px = info->tile_x_sa + *x + *width;
uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
assert(*width % fmtl->bw == 0 ||
right_edge_px == info->surf.logical_level0_px.width);
assert(*height % fmtl->bh == 0 ||
bottom_edge_px == info->surf.logical_level0_px.height);
#endif
*width = DIV_ROUND_UP(*width, fmtl->bw);
*height = DIV_ROUND_UP(*height, fmtl->bh);
}
if (x && y) {
assert(*x % fmtl->bw == 0);
assert(*y % fmtl->bh == 0);
*x /= fmtl->bw;
*y /= fmtl->bh;
}
info->surf.logical_level0_px = isl_surf_get_logical_level0_el(&info->surf);
info->surf.phys_level0_sa = isl_surf_get_phys_level0_el(&info->surf);
assert(info->tile_x_sa % fmtl->bw == 0);
assert(info->tile_y_sa % fmtl->bh == 0);
info->tile_x_sa /= fmtl->bw;
info->tile_y_sa /= fmtl->bh;
/* It's now an uncompressed surface so we need an uncompressed format */
info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
}
void
blorp_copy(struct blorp_batch *batch,
const struct blorp_surf *src_surf,
unsigned src_level, unsigned src_layer,
const struct blorp_surf *dst_surf,
unsigned dst_level, unsigned dst_layer,
uint32_t src_x, uint32_t src_y,
uint32_t dst_x, uint32_t dst_y,
uint32_t src_width, uint32_t src_height)
{
const struct isl_device *isl_dev = batch->blorp->isl_dev;
struct blorp_params params;
if (src_width == 0 || src_height == 0)
return;
blorp_params_init(&params);
params.snapshot_type = INTEL_SNAPSHOT_COPY;
brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
src_layer, ISL_FORMAT_UNSUPPORTED, false);
brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
dst_layer, ISL_FORMAT_UNSUPPORTED, true);
struct brw_blorp_blit_prog_key wm_prog_key = {
.shader_type = BLORP_SHADER_TYPE_COPY,
.filter = BLORP_FILTER_NONE,
.need_src_offset = src_surf->tile_x_sa || src_surf->tile_y_sa,
.need_dst_offset = dst_surf->tile_x_sa || dst_surf->tile_y_sa,
};
const struct isl_format_layout *src_fmtl =
isl_format_get_layout(params.src.surf.format);
const struct isl_format_layout *dst_fmtl =
isl_format_get_layout(params.dst.surf.format);
assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
params.src.aux_usage == ISL_AUX_USAGE_HIZ ||
params.src.aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
params.src.aux_usage == ISL_AUX_USAGE_MCS ||
params.src.aux_usage == ISL_AUX_USAGE_MCS_CCS ||
params.src.aux_usage == ISL_AUX_USAGE_CCS_E ||
params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E ||
params.src.aux_usage == ISL_AUX_USAGE_STC_CCS);
if (isl_aux_usage_has_hiz(params.src.aux_usage)) {
/* In order to use HiZ, we have to use the real format for the source.
* Depth <-> Color copies are not allowed.
*/
params.src.view.format = params.src.surf.format;
params.dst.view.format = params.src.surf.format;
} else if ((params.dst.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) &&
isl_dev->info->ver >= 7) {
/* On Gfx7 and higher, we use actual depth writes for blits into depth
* buffers so we need the real format.
*/
params.src.view.format = params.dst.surf.format;
params.dst.view.format = params.dst.surf.format;
} else if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E ||
params.dst.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) {
params.dst.view.format = get_ccs_compatible_copy_format(dst_fmtl);
if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E ||
params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) {
params.src.view.format = get_ccs_compatible_copy_format(src_fmtl);
} else if (src_fmtl->bpb == dst_fmtl->bpb) {
params.src.view.format = params.dst.view.format;
} else {
params.src.view.format =
get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
}
} else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E ||
params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) {
params.src.view.format = get_ccs_compatible_copy_format(src_fmtl);
if (src_fmtl->bpb == dst_fmtl->bpb) {
params.dst.view.format = params.src.view.format;
} else {
params.dst.view.format =
get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
}
} else {
params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
}
if (params.src.view.format != params.dst.view.format) {
enum isl_format src_cast_format = params.src.view.format;
enum isl_format dst_cast_format = params.dst.view.format;
/* The BLORP bitcast code gets confused by RGB formats. Just treat them
* as RGBA and then everything will be happy. This is perfectly safe
* because BLORP likes to treat things as if they have vec4 colors all
* the time anyway.
*/
if (isl_format_get_layout(src_cast_format)->bpb % 3 == 0)
src_cast_format = isl_format_rgb_to_rgba(src_cast_format);
if (isl_format_get_layout(dst_cast_format)->bpb % 3 == 0)
dst_cast_format = isl_format_rgb_to_rgba(dst_cast_format);
if (src_cast_format != dst_cast_format) {
wm_prog_key.format_bit_cast = true;
wm_prog_key.src_format = src_cast_format;
wm_prog_key.dst_format = dst_cast_format;
}
}
if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
&src_x, &src_y,
&src_width, &src_height);
wm_prog_key.need_src_offset = true;
}
if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
&dst_x, &dst_y, NULL, NULL);
wm_prog_key.need_dst_offset = true;
}
/* Once both surfaces are stompped to uncompressed as needed, the
* destination size is the same as the source size.
*/
uint32_t dst_width = src_width;
uint32_t dst_height = src_height;
struct blt_coords coords = {
.x = {
.src0 = src_x,
.src1 = src_x + src_width,
.dst0 = dst_x,
.dst1 = dst_x + dst_width,
.mirror = false
},
.y = {
.src0 = src_y,
.src1 = src_y + src_height,
.dst0 = dst_y,
.dst1 = dst_y + dst_height,
.mirror = false
}
};
do_blorp_blit(batch, &params, &wm_prog_key, &coords);
}
static enum isl_format
isl_format_for_size(unsigned size_B)
{
switch (size_B) {
case 1: return ISL_FORMAT_R8_UINT;
case 2: return ISL_FORMAT_R8G8_UINT;
case 4: return ISL_FORMAT_R8G8B8A8_UINT;
case 8: return ISL_FORMAT_R16G16B16A16_UINT;
case 16: return ISL_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Not a power-of-two format size");
}
}
/**
* Returns the greatest common divisor of a and b that is a power of two.
*/
static uint64_t
gcd_pow2_u64(uint64_t a, uint64_t b)
{
assert(a > 0 || b > 0);
unsigned a_log2 = ffsll(a) - 1;
unsigned b_log2 = ffsll(b) - 1;
/* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
* case, the MIN2() will take the other one. If both are 0 then we will
* hit the assert above.
*/
return 1 << MIN2(a_log2, b_log2);
}
static void
do_buffer_copy(struct blorp_batch *batch,
struct blorp_address *src,
struct blorp_address *dst,
int width, int height, int block_size)
{
/* The actual format we pick doesn't matter as blorp will throw it away.
* The only thing that actually matters is the size.
*/
enum isl_format format = isl_format_for_size(block_size);
UNUSED bool ok;
struct isl_surf surf;
ok = isl_surf_init(batch->blorp->isl_dev, &surf,
.dim = ISL_SURF_DIM_2D,
.format = format,
.width = width,
.height = height,
.depth = 1,
.levels = 1,
.array_len = 1,
.samples = 1,
.row_pitch_B = width * block_size,
.usage = ISL_SURF_USAGE_TEXTURE_BIT |
ISL_SURF_USAGE_RENDER_TARGET_BIT,
.tiling_flags = ISL_TILING_LINEAR_BIT);
assert(ok);
struct blorp_surf src_blorp_surf = {
.surf = &surf,
.addr = *src,
};
struct blorp_surf dst_blorp_surf = {
.surf = &surf,
.addr = *dst,
};
blorp_copy(batch, &src_blorp_surf, 0, 0, &dst_blorp_surf, 0, 0,
0, 0, 0, 0, width, height);
}
void
blorp_buffer_copy(struct blorp_batch *batch,
struct blorp_address src,
struct blorp_address dst,
uint64_t size)
{
const struct intel_device_info *devinfo = batch->blorp->isl_dev->info;
uint64_t copy_size = size;
/* This is maximum possible width/height our HW can handle */
uint64_t max_surface_dim = 1 << (devinfo->ver >= 7 ? 14 : 13);
/* First, we compute the biggest format that can be used with the
* given offsets and size.
*/
int bs = 16;