| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "blorp_nir_builder.h" |
| #include "compiler/nir/nir_format_convert.h" |
| |
| #include "blorp_priv.h" |
| |
| #include "util/format_rgb9e5.h" |
| /* header-only include needed for _mesa_unorm_to_float and friends. */ |
| #include "mesa/main/format_utils.h" |
| #include "util/u_math.h" |
| |
| #define FILE_DEBUG_FLAG DEBUG_BLORP |
| |
| static const bool split_blorp_blit_debug = false; |
| |
| struct brw_blorp_blit_vars { |
| /* Input values from brw_blorp_wm_inputs */ |
| nir_variable *v_discard_rect; |
| nir_variable *v_rect_grid; |
| nir_variable *v_coord_transform; |
| nir_variable *v_src_z; |
| nir_variable *v_src_offset; |
| nir_variable *v_dst_offset; |
| nir_variable *v_src_inv_size; |
| }; |
| |
| static void |
| brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v, |
| const struct brw_blorp_blit_prog_key *key) |
| { |
| #define LOAD_INPUT(name, type)\ |
| v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type); |
| |
| LOAD_INPUT(discard_rect, glsl_vec4_type()) |
| LOAD_INPUT(rect_grid, glsl_vec4_type()) |
| LOAD_INPUT(coord_transform, glsl_vec4_type()) |
| LOAD_INPUT(src_z, glsl_float_type()) |
| LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2)) |
| LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2)) |
| LOAD_INPUT(src_inv_size, glsl_vector_type(GLSL_TYPE_FLOAT, 2)) |
| |
| #undef LOAD_INPUT |
| } |
| |
| static nir_ssa_def * |
| blorp_blit_get_frag_coords(nir_builder *b, |
| const struct brw_blorp_blit_prog_key *key, |
| struct brw_blorp_blit_vars *v) |
| { |
| nir_ssa_def *coord = nir_f2i32(b, nir_load_frag_coord(b)); |
| |
| /* Account for destination surface intratile offset |
| * |
| * Transformation parameters giving translation from destination to source |
| * coordinates don't take into account possible intra-tile destination |
| * offset. Therefore it has to be first subtracted from the incoming |
| * coordinates. Vertices are set up based on coordinates containing the |
| * intra-tile offset. |
| */ |
| if (key->need_dst_offset) |
| coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset)); |
| |
| if (key->persample_msaa_dispatch) { |
| return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1), |
| nir_load_sample_id(b)); |
| } else { |
| return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1)); |
| } |
| } |
| |
| /** |
| * Emit code to translate from destination (X, Y) coordinates to source (X, Y) |
| * coordinates. |
| */ |
| static nir_ssa_def * |
| blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos, |
| struct brw_blorp_blit_vars *v) |
| { |
| nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform); |
| |
| nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1), |
| nir_channel(b, coord_transform, 3)); |
| nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0), |
| nir_channel(b, coord_transform, 2)); |
| |
| return nir_fadd(b, nir_fmul(b, src_pos, mul), offset); |
| } |
| |
| static inline void |
| blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos, |
| struct brw_blorp_blit_vars *v) |
| { |
| nir_ssa_def *c0, *c1, *c2, *c3; |
| nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect); |
| nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0); |
| nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1); |
| nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2); |
| nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3); |
| |
| c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0); |
| c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1); |
| c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0); |
| c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1); |
| |
| nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3)); |
| nir_discard_if(b, oob); |
| } |
| |
| static nir_tex_instr * |
| blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v, |
| nir_texop op, nir_ssa_def *pos, unsigned num_srcs, |
| nir_alu_type dst_type) |
| { |
| nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs); |
| |
| tex->op = op; |
| |
| tex->dest_type = dst_type | 32; |
| tex->is_array = false; |
| tex->is_shadow = false; |
| |
| /* Blorp only has one texture and it's bound at unit 0 */ |
| tex->texture_index = 0; |
| tex->sampler_index = 0; |
| |
| /* To properly handle 3-D and 2-D array textures, we pull the Z component |
| * from an input. TODO: This is a bit magic; we should probably make this |
| * more explicit in the future. |
| */ |
| assert(pos->num_components >= 2); |
| if (op == nir_texop_txf || op == nir_texop_txf_ms || op == nir_texop_txf_ms_mcs) { |
| pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1), |
| nir_f2i32(b, nir_load_var(b, v->v_src_z))); |
| } else { |
| pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1), |
| nir_load_var(b, v->v_src_z)); |
| } |
| |
| tex->src[0].src_type = nir_tex_src_coord; |
| tex->src[0].src = nir_src_for_ssa(pos); |
| tex->coord_components = 3; |
| |
| nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL); |
| |
| return tex; |
| } |
| |
| static nir_ssa_def * |
| blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v, |
| const struct brw_blorp_blit_prog_key *key, nir_ssa_def *pos) |
| { |
| if (key->need_src_offset) |
| pos = nir_fadd(b, pos, nir_i2f32(b, nir_load_var(b, v->v_src_offset))); |
| |
| /* If the sampler requires normalized coordinates, we need to compensate. */ |
| if (key->src_coords_normalized) |
| pos = nir_fmul(b, pos, nir_load_var(b, v->v_src_inv_size)); |
| |
| nir_tex_instr *tex = |
| blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, |
| key->texture_data_type); |
| |
| assert(pos->num_components == 2); |
| tex->sampler_dim = GLSL_SAMPLER_DIM_2D; |
| tex->src[1].src_type = nir_tex_src_lod; |
| tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0)); |
| |
| nir_builder_instr_insert(b, &tex->instr); |
| |
| return &tex->dest.ssa; |
| } |
| |
| static nir_ssa_def * |
| blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v, |
| nir_ssa_def *pos, nir_alu_type dst_type) |
| { |
| nir_tex_instr *tex = |
| blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type); |
| |
| tex->sampler_dim = GLSL_SAMPLER_DIM_3D; |
| tex->src[1].src_type = nir_tex_src_lod; |
| tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0)); |
| |
| nir_builder_instr_insert(b, &tex->instr); |
| |
| return &tex->dest.ssa; |
| } |
| |
| static nir_ssa_def * |
| blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v, |
| nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type) |
| { |
| nir_tex_instr *tex = |
| blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos, |
| mcs != NULL ? 3 : 2, dst_type); |
| |
| tex->sampler_dim = GLSL_SAMPLER_DIM_MS; |
| |
| tex->src[1].src_type = nir_tex_src_ms_index; |
| if (pos->num_components == 2) { |
| tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0)); |
| } else { |
| assert(pos->num_components == 3); |
| tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2)); |
| } |
| |
| if (mcs) { |
| tex->src[2].src_type = nir_tex_src_ms_mcs; |
| tex->src[2].src = nir_src_for_ssa(mcs); |
| } |
| |
| nir_builder_instr_insert(b, &tex->instr); |
| |
| return &tex->dest.ssa; |
| } |
| |
| static nir_ssa_def * |
| blorp_blit_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, |
| nir_ssa_def *pos) |
| { |
| nir_tex_instr *tex = |
| blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs, |
| pos, 1, nir_type_int); |
| |
| tex->sampler_dim = GLSL_SAMPLER_DIM_MS; |
| |
| nir_builder_instr_insert(b, &tex->instr); |
| |
| return &tex->dest.ssa; |
| } |
| |
| /** |
| * Emit code to compensate for the difference between Y and W tiling. |
| * |
| * This code modifies the X and Y coordinates according to the formula: |
| * |
| * (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S)) |
| * |
| * (See brw_blorp_build_nir_shader). |
| */ |
| static inline nir_ssa_def * |
| blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos) |
| { |
| assert(pos->num_components == 2); |
| nir_ssa_def *x_Y = nir_channel(b, pos, 0); |
| nir_ssa_def *y_Y = nir_channel(b, pos, 1); |
| |
| /* Given X and Y coordinates that describe an address using Y tiling, |
| * translate to the X and Y coordinates that describe the same address |
| * using W tiling. |
| * |
| * If we break down the low order bits of X and Y, using a |
| * single letter to represent each low-order bit: |
| * |
| * X = A << 7 | 0bBCDEFGH |
| * Y = J << 5 | 0bKLMNP (1) |
| * |
| * Then we can apply the Y tiling formula to see the memory offset being |
| * addressed: |
| * |
| * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2) |
| * |
| * If we apply the W detiling formula to this memory location, that the |
| * corresponding X' and Y' coordinates are: |
| * |
| * X' = A << 6 | 0bBCDPFH (3) |
| * Y' = J << 6 | 0bKLMNEG |
| * |
| * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'), |
| * we need to make the following computation: |
| * |
| * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4) |
| * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1 |
| */ |
| nir_ssa_def *x_W = nir_imm_int(b, 0); |
| x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1); |
| x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2); |
| x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0); |
| |
| nir_ssa_def *y_W = nir_imm_int(b, 0); |
| y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1); |
| y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2); |
| y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1); |
| |
| return nir_vec2(b, x_W, y_W); |
| } |
| |
| /** |
| * Emit code to compensate for the difference between Y and W tiling. |
| * |
| * This code modifies the X and Y coordinates according to the formula: |
| * |
| * (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S)) |
| * |
| * (See brw_blorp_build_nir_shader). |
| */ |
| static inline nir_ssa_def * |
| blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos) |
| { |
| assert(pos->num_components == 2); |
| nir_ssa_def *x_W = nir_channel(b, pos, 0); |
| nir_ssa_def *y_W = nir_channel(b, pos, 1); |
| |
| /* Applying the same logic as above, but in reverse, we obtain the |
| * formulas: |
| * |
| * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1 |
| * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2 |
| */ |
| nir_ssa_def *x_Y = nir_imm_int(b, 0); |
| x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1); |
| x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2); |
| x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1); |
| x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0); |
| |
| nir_ssa_def *y_Y = nir_imm_int(b, 0); |
| y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1); |
| y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2); |
| |
| return nir_vec2(b, x_Y, y_Y); |
| } |
| |
| /** |
| * Emit code to compensate for the difference between MSAA and non-MSAA |
| * surfaces. |
| * |
| * This code modifies the X and Y coordinates according to the formula: |
| * |
| * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S) |
| * |
| * (See brw_blorp_blit_program). |
| */ |
| static inline nir_ssa_def * |
| blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos, |
| unsigned num_samples, enum isl_msaa_layout layout) |
| { |
| assert(pos->num_components == 2 || pos->num_components == 3); |
| |
| switch (layout) { |
| case ISL_MSAA_LAYOUT_NONE: |
| assert(pos->num_components == 2); |
| return pos; |
| case ISL_MSAA_LAYOUT_ARRAY: |
| /* No translation needed */ |
| return pos; |
| case ISL_MSAA_LAYOUT_INTERLEAVED: { |
| nir_ssa_def *x_in = nir_channel(b, pos, 0); |
| nir_ssa_def *y_in = nir_channel(b, pos, 1); |
| nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) : |
| nir_channel(b, pos, 2); |
| |
| nir_ssa_def *x_out = nir_imm_int(b, 0); |
| nir_ssa_def *y_out = nir_imm_int(b, 0); |
| switch (num_samples) { |
| case 2: |
| case 4: |
| /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0) |
| * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1) |
| * Y' = Y |
| * |
| * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0) |
| * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1) |
| * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) |
| */ |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1); |
| x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1); |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0); |
| if (num_samples == 2) { |
| y_out = y_in; |
| } else { |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1); |
| y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0); |
| } |
| break; |
| |
| case 8: |
| /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0) |
| * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 |
| * | (X & 0b1) |
| * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) |
| */ |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2); |
| x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0); |
| x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1); |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1); |
| y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0); |
| break; |
| |
| case 16: |
| /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0) |
| * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 |
| * | (X & 0b1) |
| * Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10) |
| * | (Y & 0b1) |
| */ |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2); |
| x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0); |
| x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1); |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2); |
| y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1); |
| y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0); |
| break; |
| |
| default: |
| unreachable("Invalid number of samples for IMS layout"); |
| } |
| |
| return nir_vec2(b, x_out, y_out); |
| } |
| |
| default: |
| unreachable("Invalid MSAA layout"); |
| } |
| } |
| |
| /** |
| * Emit code to compensate for the difference between MSAA and non-MSAA |
| * surfaces. |
| * |
| * This code modifies the X and Y coordinates according to the formula: |
| * |
| * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S) |
| * |
| * (See brw_blorp_blit_program). |
| */ |
| static inline nir_ssa_def * |
| blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos, |
| unsigned num_samples, enum isl_msaa_layout layout) |
| { |
| assert(pos->num_components == 2 || pos->num_components == 3); |
| |
| switch (layout) { |
| case ISL_MSAA_LAYOUT_NONE: |
| /* No translation necessary, and S should already be zero. */ |
| assert(pos->num_components == 2); |
| return pos; |
| case ISL_MSAA_LAYOUT_ARRAY: |
| /* No translation necessary. */ |
| return pos; |
| case ISL_MSAA_LAYOUT_INTERLEAVED: { |
| assert(pos->num_components == 2); |
| |
| nir_ssa_def *x_in = nir_channel(b, pos, 0); |
| nir_ssa_def *y_in = nir_channel(b, pos, 1); |
| |
| nir_ssa_def *x_out = nir_imm_int(b, 0); |
| nir_ssa_def *y_out = nir_imm_int(b, 0); |
| nir_ssa_def *s_out = nir_imm_int(b, 0); |
| switch (num_samples) { |
| case 2: |
| case 4: |
| /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S) |
| * where X' = (X & ~0b11) >> 1 | (X & 0b1) |
| * S = (X & 0b10) >> 1 |
| * |
| * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S) |
| * where X' = (X & ~0b11) >> 1 | (X & 0b1) |
| * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) |
| * S = (Y & 0b10) | (X & 0b10) >> 1 |
| */ |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1); |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0); |
| if (num_samples == 2) { |
| y_out = y_in; |
| s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1); |
| } else { |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0); |
| s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1); |
| s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0); |
| } |
| break; |
| |
| case 8: |
| /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S) |
| * where X' = (X & ~0b111) >> 2 | (X & 0b1) |
| * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) |
| * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1 |
| */ |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2); |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0); |
| s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0); |
| s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0); |
| s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1); |
| break; |
| |
| case 16: |
| /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S) |
| * where X' = (X & ~0b111) >> 2 | (X & 0b1) |
| * Y' = (Y & ~0b111) >> 2 | (Y & 0b1) |
| * S = (Y & 0b100) << 1 | (X & 0b100) | |
| * (Y & 0b10) | (X & 0b10) >> 1 |
| */ |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2); |
| x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2); |
| y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0); |
| s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1); |
| s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0); |
| s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0); |
| s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1); |
| break; |
| |
| default: |
| unreachable("Invalid number of samples for IMS layout"); |
| } |
| |
| return nir_vec3(b, x_out, y_out, s_out); |
| } |
| |
| default: |
| unreachable("Invalid MSAA layout"); |
| } |
| } |
| |
| /** |
| * Count the number of trailing 1 bits in the given value. For example: |
| * |
| * count_trailing_one_bits(0) == 0 |
| * count_trailing_one_bits(7) == 3 |
| * count_trailing_one_bits(11) == 2 |
| */ |
| static inline int count_trailing_one_bits(unsigned value) |
| { |
| #ifdef HAVE___BUILTIN_CTZ |
| return __builtin_ctz(~value); |
| #else |
| return util_bitcount(value & ~(value + 1)); |
| #endif |
| } |
| |
| static nir_ssa_def * |
| blorp_nir_combine_samples(nir_builder *b, struct brw_blorp_blit_vars *v, |
| nir_ssa_def *pos, unsigned tex_samples, |
| enum isl_aux_usage tex_aux_usage, |
| nir_alu_type dst_type, |
| enum blorp_filter filter) |
| { |
| nir_variable *color = |
| nir_local_variable_create(b->impl, glsl_vec4_type(), "color"); |
| |
| nir_ssa_def *mcs = NULL; |
| if (isl_aux_usage_has_mcs(tex_aux_usage)) |
| mcs = blorp_blit_txf_ms_mcs(b, v, pos); |
| |
| nir_op combine_op; |
| switch (filter) { |
| case BLORP_FILTER_AVERAGE: |
| assert(dst_type == nir_type_float); |
| combine_op = nir_op_fadd; |
| break; |
| |
| case BLORP_FILTER_MIN_SAMPLE: |
| switch (dst_type) { |
| case nir_type_int: combine_op = nir_op_imin; break; |
| case nir_type_uint: combine_op = nir_op_umin; break; |
| case nir_type_float: combine_op = nir_op_fmin; break; |
| default: unreachable("Invalid dst_type"); |
| } |
| break; |
| |
| case BLORP_FILTER_MAX_SAMPLE: |
| switch (dst_type) { |
| case nir_type_int: combine_op = nir_op_imax; break; |
| case nir_type_uint: combine_op = nir_op_umax; break; |
| case nir_type_float: combine_op = nir_op_fmax; break; |
| default: unreachable("Invalid dst_type"); |
| } |
| break; |
| |
| default: |
| unreachable("Invalid filter"); |
| } |
| |
| /* If true, we inserted an if statement that we need to pop at at the end. |
| */ |
| bool inserted_if = false; |
| |
| /* We add together samples using a binary tree structure, e.g. for 4x MSAA: |
| * |
| * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4 |
| * |
| * This ensures that when all samples have the same value, no numerical |
| * precision is lost, since each addition operation always adds two equal |
| * values, and summing two equal floating point values does not lose |
| * precision. |
| * |
| * We perform this computation by treating the texture_data array as a |
| * stack and performing the following operations: |
| * |
| * - push sample 0 onto stack |
| * - push sample 1 onto stack |
| * - add top two stack entries |
| * - push sample 2 onto stack |
| * - push sample 3 onto stack |
| * - add top two stack entries |
| * - add top two stack entries |
| * - divide top stack entry by 4 |
| * |
| * Note that after pushing sample i onto the stack, the number of add |
| * operations we do is equal to the number of trailing 1 bits in i. This |
| * works provided the total number of samples is a power of two, which it |
| * always is for i965. |
| * |
| * For integer formats, we replace the add operations with average |
| * operations and skip the final division. |
| */ |
| nir_ssa_def *texture_data[5]; |
| texture_data[0] = NULL; /* Avoid maybe-uninitialized warning with GCC 10 */ |
| unsigned stack_depth = 0; |
| for (unsigned i = 0; i < tex_samples; ++i) { |
| assert(stack_depth == util_bitcount(i)); /* Loop invariant */ |
| |
| /* Push sample i onto the stack */ |
| assert(stack_depth < ARRAY_SIZE(texture_data)); |
| |
| nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0), |
| nir_channel(b, pos, 1), |
| nir_imm_int(b, i)); |
| texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type); |
| |
| if (i == 0 && isl_aux_usage_has_mcs(tex_aux_usage)) { |
| /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface) |
| * suggests an optimization: |
| * |
| * "A simple optimization with probable large return in |
| * performance is to compare the MCS value to zero (indicating |
| * all samples are on sample slice 0), and sample only from |
| * sample slice 0 using ld2dss if MCS is zero." |
| * |
| * Note that in the case where the MCS value is zero, sampling from |
| * sample slice 0 using ld2dss and sampling from sample 0 using |
| * ld2dms are equivalent (since all samples are on sample slice 0). |
| * Since we have already sampled from sample 0, all we need to do is |
| * skip the remaining fetches and averaging if MCS is zero. |
| * |
| * It's also trivial to detect when the MCS has the magic clear color |
| * value. In this case, the txf we did on sample 0 will return the |
| * clear color and we can skip the remaining fetches just like we do |
| * when MCS == 0. |
| */ |
| nir_ssa_def *mcs_zero = nir_ieq_imm(b, nir_channel(b, mcs, 0), 0); |
| if (tex_samples == 16) { |
| mcs_zero = nir_iand(b, mcs_zero, |
| nir_ieq_imm(b, nir_channel(b, mcs, 1), 0)); |
| } |
| nir_ssa_def *mcs_clear = |
| blorp_nir_mcs_is_clear_color(b, mcs, tex_samples); |
| |
| nir_push_if(b, nir_ior(b, mcs_zero, mcs_clear)); |
| nir_store_var(b, color, texture_data[0], 0xf); |
| |
| nir_push_else(b, NULL); |
| inserted_if = true; |
| } |
| |
| for (int j = 0; j < count_trailing_one_bits(i); j++) { |
| assert(stack_depth >= 2); |
| --stack_depth; |
| |
| texture_data[stack_depth - 1] = |
| nir_build_alu(b, combine_op, |
| texture_data[stack_depth - 1], |
| texture_data[stack_depth], |
| NULL, NULL); |
| } |
| } |
| |
| /* We should have just 1 sample on the stack now. */ |
| assert(stack_depth == 1); |
| |
| if (filter == BLORP_FILTER_AVERAGE) { |
| assert(dst_type == nir_type_float); |
| texture_data[0] = nir_fmul(b, texture_data[0], |
| nir_imm_float(b, 1.0 / tex_samples)); |
| } |
| |
| nir_store_var(b, color, texture_data[0], 0xf); |
| |
| if (inserted_if) |
| nir_pop_if(b, NULL); |
| |
| return nir_load_var(b, color); |
| } |
| |
| static nir_ssa_def * |
| blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos, |
| unsigned tex_samples, |
| const struct brw_blorp_blit_prog_key *key, |
| struct brw_blorp_blit_vars *v) |
| { |
| nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3); |
| nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid); |
| nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale); |
| |
| /* Translate coordinates to lay out the samples in a rectangular grid |
| * roughly corresponding to sample locations. |
| */ |
| pos_xy = nir_fmul(b, pos_xy, scale); |
| /* Adjust coordinates so that integers represent pixel centers rather |
| * than pixel edges. |
| */ |
| pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5)); |
| /* Clamp the X, Y texture coordinates to properly handle the sampling of |
| * texels on texture edges. |
| */ |
| pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)), |
| nir_vec2(b, nir_channel(b, rect_grid, 0), |
| nir_channel(b, rect_grid, 1))); |
| |
| /* Store the fractional parts to be used as bilinear interpolation |
| * coefficients. |
| */ |
| nir_ssa_def *frac_xy = nir_ffract(b, pos_xy); |
| /* Round the float coordinates down to nearest integer */ |
| pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale); |
| |
| nir_ssa_def *tex_data[4]; |
| for (unsigned i = 0; i < 4; ++i) { |
| float sample_off_x = (float)(i & 0x1) / key->x_scale; |
| float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale; |
| nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y); |
| |
| nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off); |
| nir_ssa_def *sample_coords_int = nir_f2i32(b, sample_coords); |
| |
| /* The MCS value we fetch has to match up with the pixel that we're |
| * sampling from. Since we sample from different pixels in each |
| * iteration of this "for" loop, the call to mcs_fetch() should be |
| * here inside the loop after computing the pixel coordinates. |
| */ |
| nir_ssa_def *mcs = NULL; |
| if (isl_aux_usage_has_mcs(key->tex_aux_usage)) |
| mcs = blorp_blit_txf_ms_mcs(b, v, sample_coords_int); |
| |
| /* Compute sample index and map the sample index to a sample number. |
| * Sample index layout shows the numbering of slots in a rectangular |
| * grid of samples with in a pixel. Sample number layout shows the |
| * rectangular grid of samples roughly corresponding to the real sample |
| * locations with in a pixel. |
| * |
| * In the case of 2x MSAA, the layout of sample indices is reversed from |
| * the layout of sample numbers: |
| * |
| * sample index layout : --------- sample number layout : --------- |
| * | 0 | 1 | | 1 | 0 | |
| * --------- --------- |
| * |
| * In case of 4x MSAA, layout of sample indices matches the layout of |
| * sample numbers: |
| * --------- |
| * | 0 | 1 | |
| * --------- |
| * | 2 | 3 | |
| * --------- |
| * |
| * In case of 8x MSAA the two layouts don't match. |
| * sample index layout : --------- sample number layout : --------- |
| * | 0 | 1 | | 3 | 7 | |
| * --------- --------- |
| * | 2 | 3 | | 5 | 0 | |
| * --------- --------- |
| * | 4 | 5 | | 1 | 2 | |
| * --------- --------- |
| * | 6 | 7 | | 4 | 6 | |
| * --------- --------- |
| * |
| * Fortunately, this can be done fairly easily as: |
| * S' = (0x17306425 >> (S * 4)) & 0xf |
| * |
| * In the case of 16x MSAA the two layouts don't match. |
| * Sample index layout: Sample number layout: |
| * --------------------- --------------------- |
| * | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 | |
| * --------------------- --------------------- |
| * | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 | |
| * --------------------- --------------------- |
| * | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 | |
| * --------------------- --------------------- |
| * | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 | |
| * --------------------- --------------------- |
| * |
| * This is equivalent to |
| * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf |
| */ |
| nir_ssa_def *frac = nir_ffract(b, sample_coords); |
| nir_ssa_def *sample = |
| nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale, |
| key->x_scale * key->y_scale)); |
| sample = nir_f2i32(b, sample); |
| |
| if (tex_samples == 2) { |
| sample = nir_isub(b, nir_imm_int(b, 1), sample); |
| } else if (tex_samples == 8) { |
| sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573), |
| nir_ishl(b, sample, nir_imm_int(b, 2))), |
| nir_imm_int(b, 0xf)); |
| } else if (tex_samples == 16) { |
| nir_ssa_def *sample_low = |
| nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af), |
| nir_ishl(b, sample, nir_imm_int(b, 2))), |
| nir_imm_int(b, 0xf)); |
| nir_ssa_def *sample_high = |
| nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c), |
| nir_ishl(b, nir_iadd(b, sample, |
| nir_imm_int(b, -8)), |
| nir_imm_int(b, 2))), |
| nir_imm_int(b, 0xf)); |
| |
| sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)), |
| sample_low, sample_high); |
| } |
| nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0), |
| nir_channel(b, sample_coords_int, 1), |
| sample); |
| tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type); |
| } |
| |
| nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0); |
| nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1); |
| return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x), |
| nir_flrp(b, tex_data[2], tex_data[3], frac_x), |
| frac_y); |
| } |
| |
| /** Perform a color bit-cast operation |
| * |
| * For copy operations involving CCS, we may need to use different formats for |
| * the source and destination surfaces. The two formats must both be UINT |
| * formats and must have the same size but may have different bit layouts. |
| * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT |
| * to R16G16_UINT. This function generates code to shuffle bits around to get |
| * us from one to the other. |
| */ |
| static nir_ssa_def * |
| bit_cast_color(struct nir_builder *b, nir_ssa_def *color, |
| const struct brw_blorp_blit_prog_key *key) |
| { |
| if (key->src_format == key->dst_format) |
| return color; |
| |
| const struct isl_format_layout *src_fmtl = |
| isl_format_get_layout(key->src_format); |
| const struct isl_format_layout *dst_fmtl = |
| isl_format_get_layout(key->dst_format); |
| |
| /* They must be formats with the same bit size */ |
| assert(src_fmtl->bpb == dst_fmtl->bpb); |
| |
| if (src_fmtl->bpb <= 32) { |
| assert(src_fmtl->channels.r.type == ISL_UINT || |
| src_fmtl->channels.r.type == ISL_UNORM); |
| assert(dst_fmtl->channels.r.type == ISL_UINT || |
| dst_fmtl->channels.r.type == ISL_UNORM); |
| |
| nir_ssa_def *packed = nir_imm_int(b, 0); |
| for (unsigned c = 0; c < 4; c++) { |
| if (src_fmtl->channels_array[c].bits == 0) |
| continue; |
| |
| const unsigned chan_start_bit = src_fmtl->channels_array[c].start_bit; |
| const unsigned chan_bits = src_fmtl->channels_array[c].bits; |
| |
| nir_ssa_def *chan = nir_channel(b, color, c); |
| if (src_fmtl->channels_array[c].type == ISL_UNORM) |
| chan = nir_format_float_to_unorm(b, chan, &chan_bits); |
| |
| packed = nir_ior(b, packed, nir_shift(b, chan, chan_start_bit)); |
| } |
| |
| nir_ssa_def *chans[4] = { }; |
| for (unsigned c = 0; c < 4; c++) { |
| if (dst_fmtl->channels_array[c].bits == 0) { |
| chans[c] = nir_imm_int(b, 0); |
| continue; |
| } |
| |
| const unsigned chan_start_bit = dst_fmtl->channels_array[c].start_bit; |
| const unsigned chan_bits = dst_fmtl->channels_array[c].bits; |
| chans[c] = nir_iand(b, nir_shift(b, packed, -(int)chan_start_bit), |
| nir_imm_int(b, BITFIELD_MASK(chan_bits))); |
| |
| if (dst_fmtl->channels_array[c].type == ISL_UNORM) |
| chans[c] = nir_format_unorm_to_float(b, chans[c], &chan_bits); |
| } |
| color = nir_vec(b, chans, 4); |
| } else { |
| /* This path only supports UINT formats */ |
| assert(src_fmtl->channels.r.type == ISL_UINT); |
| assert(dst_fmtl->channels.r.type == ISL_UINT); |
| |
| const unsigned src_bpc = src_fmtl->channels.r.bits; |
| const unsigned dst_bpc = dst_fmtl->channels.r.bits; |
| |
| assert(src_fmtl->channels.g.bits == 0 || |
| src_fmtl->channels.g.bits == src_fmtl->channels.r.bits); |
| assert(src_fmtl->channels.b.bits == 0 || |
| src_fmtl->channels.b.bits == src_fmtl->channels.r.bits); |
| assert(src_fmtl->channels.a.bits == 0 || |
| src_fmtl->channels.a.bits == src_fmtl->channels.r.bits); |
| assert(dst_fmtl->channels.g.bits == 0 || |
| dst_fmtl->channels.g.bits == dst_fmtl->channels.r.bits); |
| assert(dst_fmtl->channels.b.bits == 0 || |
| dst_fmtl->channels.b.bits == dst_fmtl->channels.r.bits); |
| assert(dst_fmtl->channels.a.bits == 0 || |
| dst_fmtl->channels.a.bits == dst_fmtl->channels.r.bits); |
| |
| /* Restrict to only the channels we actually have */ |
| const unsigned src_channels = |
| isl_format_get_num_channels(key->src_format); |
| color = nir_channels(b, color, (1 << src_channels) - 1); |
| |
| color = nir_format_bitcast_uvec_unmasked(b, color, src_bpc, dst_bpc); |
| } |
| |
| /* Blorp likes to assume that colors are vec4s */ |
| nir_ssa_def *u = nir_ssa_undef(b, 1, 32); |
| nir_ssa_def *chans[4] = { u, u, u, u }; |
| for (unsigned i = 0; i < color->num_components; i++) |
| chans[i] = nir_channel(b, color, i); |
| return nir_vec4(b, chans[0], chans[1], chans[2], chans[3]); |
| } |
| |
| static nir_ssa_def * |
| select_color_channel(struct nir_builder *b, nir_ssa_def *color, |
| nir_alu_type data_type, |
| enum isl_channel_select chan) |
| { |
| if (chan == ISL_CHANNEL_SELECT_ZERO) { |
| return nir_imm_int(b, 0); |
| } else if (chan == ISL_CHANNEL_SELECT_ONE) { |
| switch (data_type) { |
| case nir_type_int: |
| case nir_type_uint: |
| return nir_imm_int(b, 1); |
| case nir_type_float: |
| return nir_imm_float(b, 1); |
| default: |
| unreachable("Invalid data type"); |
| } |
| } else { |
| assert((unsigned)(chan - ISL_CHANNEL_SELECT_RED) < 4); |
| return nir_channel(b, color, chan - ISL_CHANNEL_SELECT_RED); |
| } |
| } |
| |
| static nir_ssa_def * |
| swizzle_color(struct nir_builder *b, nir_ssa_def *color, |
| struct isl_swizzle swizzle, nir_alu_type data_type) |
| { |
| return nir_vec4(b, |
| select_color_channel(b, color, data_type, swizzle.r), |
| select_color_channel(b, color, data_type, swizzle.g), |
| select_color_channel(b, color, data_type, swizzle.b), |
| select_color_channel(b, color, data_type, swizzle.a)); |
| } |
| |
| static nir_ssa_def * |
| convert_color(struct nir_builder *b, nir_ssa_def *color, |
| const struct brw_blorp_blit_prog_key *key) |
| { |
| /* All of our color conversions end up generating a single-channel color |
| * value that we need to write out. |
| */ |
| nir_ssa_def *value; |
| |
| if (key->dst_format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) { |
| /* The destination image is bound as R32_UINT but the data needs to be |
| * in R24_UNORM_X8_TYPELESS. The bottom 24 are the actual data and the |
| * top 8 need to be zero. We can accomplish this by simply multiplying |
| * by a factor to scale things down. |
| */ |
| unsigned factor = (1 << 24) - 1; |
| value = nir_fsat(b, nir_channel(b, color, 0)); |
| value = nir_f2i32(b, nir_fmul(b, value, nir_imm_float(b, factor))); |
| } else if (key->dst_format == ISL_FORMAT_L8_UNORM_SRGB) { |
| value = nir_format_linear_to_srgb(b, nir_channel(b, color, 0)); |
| } else if (key->dst_format == ISL_FORMAT_R8G8B8_UNORM_SRGB) { |
| value = nir_format_linear_to_srgb(b, color); |
| } else if (key->dst_format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) { |
| value = nir_format_pack_r9g9b9e5(b, color); |
| } else { |
| unreachable("Unsupported format conversion"); |
| } |
| |
| nir_ssa_def *out_comps[4]; |
| for (unsigned i = 0; i < 4; i++) { |
| if (i < value->num_components) |
| out_comps[i] = nir_channel(b, value, i); |
| else |
| out_comps[i] = nir_ssa_undef(b, 1, 32); |
| } |
| return nir_vec(b, out_comps, 4); |
| } |
| |
| /** |
| * Generator for WM programs used in BLORP blits. |
| * |
| * The bulk of the work done by the WM program is to wrap and unwrap the |
| * coordinate transformations used by the hardware to store surfaces in |
| * memory. The hardware transforms a pixel location (X, Y, S) (where S is the |
| * sample index for a multisampled surface) to a memory offset by the |
| * following formulas: |
| * |
| * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S)) |
| * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset)) |
| * |
| * For a single-sampled surface, or for a multisampled surface using |
| * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity |
| * function: |
| * |
| * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0) |
| * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0) |
| * encode_msaa(n, UMS, X, Y, S) = (X, Y, S) |
| * decode_msaa(n, UMS, X, Y, S) = (X, Y, S) |
| * |
| * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa() |
| * embeds the sample number into bit 1 of the X and Y coordinates: |
| * |
| * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0) |
| * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1) |
| * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1) |
| * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S) |
| * where X' = (X & ~0b11) >> 1 | (X & 0b1) |
| * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) |
| * S = (Y & 0b10) | (X & 0b10) >> 1 |
| * |
| * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa() |
| * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of |
| * the Y coordinate: |
| * |
| * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0) |
| * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1) |
| * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) |
| * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S) |
| * where X' = (X & ~0b111) >> 2 | (X & 0b1) |
| * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) |
| * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1 |
| * |
| * For X tiling, tile() combines together the low-order bits of the X and Y |
| * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512 |
| * bytes wide and 8 rows high: |
| * |
| * tile(x_tiled, X, Y, S) = A |
| * where A = tile_num << 12 | offset |
| * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9) |
| * offset = (Y' & 0b111) << 9 |
| * | (X & 0b111111111) |
| * X' = X * cpp |
| * Y' = Y + S * qpitch |
| * detile(x_tiled, A) = (X, Y, S) |
| * where X = X' / cpp |
| * Y = Y' % qpitch |
| * S = Y' / qpitch |
| * Y' = (tile_num / tile_pitch) << 3 |
| * | (A & 0b111000000000) >> 9 |
| * X' = (tile_num % tile_pitch) << 9 |
| * | (A & 0b111111111) |
| * |
| * (In all tiling formulas, cpp is the number of bytes occupied by a single |
| * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required |
| * to fill the width of the surface, and qpitch is the spacing (in rows) |
| * between array slices). |
| * |
| * For Y tiling, tile() combines together the low-order bits of the X and Y |
| * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128 |
| * bytes wide and 32 rows high: |
| * |
| * tile(y_tiled, X, Y, S) = A |
| * where A = tile_num << 12 | offset |
| * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7) |
| * offset = (X' & 0b1110000) << 5 |
| * | (Y' & 0b11111) << 4 |
| * | (X' & 0b1111) |
| * X' = X * cpp |
| * Y' = Y + S * qpitch |
| * detile(y_tiled, A) = (X, Y, S) |
| * where X = X' / cpp |
| * Y = Y' % qpitch |
| * S = Y' / qpitch |
| * Y' = (tile_num / tile_pitch) << 5 |
| * | (A & 0b111110000) >> 4 |
| * X' = (tile_num % tile_pitch) << 7 |
| * | (A & 0b111000000000) >> 5 |
| * | (A & 0b1111) |
| * |
| * For W tiling, tile() combines together the low-order bits of the X and Y |
| * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64 |
| * bytes wide and 64 rows high (note that W tiling is only used for stencil |
| * buffers, which always have cpp = 1 and S=0): |
| * |
| * tile(w_tiled, X, Y, S) = A |
| * where A = tile_num << 12 | offset |
| * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6) |
| * offset = (X' & 0b111000) << 6 |
| * | (Y' & 0b111100) << 3 |
| * | (X' & 0b100) << 2 |
| * | (Y' & 0b10) << 2 |
| * | (X' & 0b10) << 1 |
| * | (Y' & 0b1) << 1 |
| * | (X' & 0b1) |
| * X' = X * cpp = X |
| * Y' = Y + S * qpitch |
| * detile(w_tiled, A) = (X, Y, S) |
| * where X = X' / cpp = X' |
| * Y = Y' % qpitch = Y' |
| * S = Y / qpitch = 0 |
| * Y' = (tile_num / tile_pitch) << 6 |
| * | (A & 0b111100000) >> 3 |
| * | (A & 0b1000) >> 2 |
| * | (A & 0b10) >> 1 |
| * X' = (tile_num % tile_pitch) << 6 |
| * | (A & 0b111000000000) >> 6 |
| * | (A & 0b10000) >> 2 |
| * | (A & 0b100) >> 1 |
| * | (A & 0b1) |
| * |
| * Finally, for a non-tiled surface, tile() simply combines together the X and |
| * Y coordinates in the natural way: |
| * |
| * tile(untiled, X, Y, S) = A |
| * where A = Y * pitch + X' |
| * X' = X * cpp |
| * Y' = Y + S * qpitch |
| * detile(untiled, A) = (X, Y, S) |
| * where X = X' / cpp |
| * Y = Y' % qpitch |
| * S = Y' / qpitch |
| * X' = A % pitch |
| * Y' = A / pitch |
| * |
| * (In these formulas, pitch is the number of bytes occupied by a single row |
| * of samples). |
| */ |
| static nir_shader * |
| brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx, |
| const struct brw_blorp_blit_prog_key *key) |
| { |
| const struct intel_device_info *devinfo = blorp->isl_dev->info; |
| nir_ssa_def *src_pos, *dst_pos, *color; |
| |
| /* Sanity checks */ |
| if (key->dst_tiled_w && key->rt_samples > 1) { |
| /* If the destination image is W tiled and multisampled, then the thread |
| * must be dispatched once per sample, not once per pixel. This is |
| * necessary because after conversion between W and Y tiling, there's no |
| * guarantee that all samples corresponding to a single pixel will still |
| * be together. |
| */ |
| assert(key->persample_msaa_dispatch); |
| } |
| |
| if (key->persample_msaa_dispatch) { |
| /* It only makes sense to do persample dispatch if the render target is |
| * configured as multisampled. |
| */ |
| assert(key->rt_samples > 0); |
| } |
| |
| /* Make sure layout is consistent with sample count */ |
| assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) == |
| (key->tex_samples <= 1)); |
| assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) == |
| (key->rt_samples <= 1)); |
| assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) == |
| (key->src_samples <= 1)); |
| assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) == |
| (key->dst_samples <= 1)); |
| |
| nir_builder b; |
| blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL); |
| |
| struct brw_blorp_blit_vars v; |
| brw_blorp_blit_vars_init(&b, &v, key); |
| |
| dst_pos = blorp_blit_get_frag_coords(&b, key, &v); |
| |
| /* Render target and texture hardware don't support W tiling until Gfx8. */ |
| const bool rt_tiled_w = false; |
| const bool tex_tiled_w = devinfo->ver >= 8 && key->src_tiled_w; |
| |
| /* The address that data will be written to is determined by the |
| * coordinates supplied to the WM thread and the tiling and sample count of |
| * the render target, according to the formula: |
| * |
| * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset)) |
| * |
| * If the actual tiling and sample count of the destination surface are not |
| * the same as the configuration of the render target, then these |
| * coordinates are wrong and we have to adjust them to compensate for the |
| * difference. |
| */ |
| if (rt_tiled_w != key->dst_tiled_w || |
| key->rt_samples != key->dst_samples || |
| key->rt_layout != key->dst_layout) { |
| dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples, |
| key->rt_layout); |
| /* Now (X, Y, S) = detile(rt_tiling, offset) */ |
| if (rt_tiled_w != key->dst_tiled_w) |
| dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos); |
| /* Now (X, Y, S) = detile(rt_tiling, offset) */ |
| dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples, |
| key->dst_layout); |
| } |
| |
| nir_ssa_def *comp = NULL; |
| if (key->dst_rgb) { |
| /* The destination image is bound as a red texture three times as wide |
| * as the actual image. Our shader is effectively running one color |
| * component at a time. We need to save off the component and adjust |
| * the destination position. |
| */ |
| assert(dst_pos->num_components == 2); |
| nir_ssa_def *dst_x = nir_channel(&b, dst_pos, 0); |
| comp = nir_umod(&b, dst_x, nir_imm_int(&b, 3)); |
| dst_pos = nir_vec2(&b, nir_idiv(&b, dst_x, nir_imm_int(&b, 3)), |
| nir_channel(&b, dst_pos, 1)); |
| } |
| |
| /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)). |
| * |
| * That is: X, Y and S now contain the true coordinates and sample index of |
| * the data that the WM thread should output. |
| * |
| * If we need to kill pixels that are outside the destination rectangle, |
| * now is the time to do it. |
| */ |
| if (key->use_kill) |
| blorp_nir_discard_if_outside_rect(&b, dst_pos, &v); |
| |
| src_pos = blorp_blit_apply_transform(&b, nir_i2f32(&b, dst_pos), &v); |
| if (dst_pos->num_components == 3) { |
| /* The sample coordinate is an integer that we want left alone but |
| * blorp_blit_apply_transform() blindly applies the transform to all |
| * three coordinates. Grab the original sample index. |
| */ |
| src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0), |
| nir_channel(&b, src_pos, 1), |
| nir_channel(&b, dst_pos, 2)); |
| } |
| |
| /* If the source image is not multisampled, then we want to fetch sample |
| * number 0, because that's the only sample there is. |
| */ |
| if (key->src_samples == 1) |
| src_pos = nir_channels(&b, src_pos, 0x3); |
| |
| /* X, Y, and S are now the coordinates of the pixel in the source image |
| * that we want to texture from. Exception: if we are blending, then S is |
| * irrelevant, because we are going to fetch all samples. |
| */ |
| switch (key->filter) { |
| case BLORP_FILTER_NONE: |
| case BLORP_FILTER_NEAREST: |
| case BLORP_FILTER_SAMPLE_0: |
| /* We're going to use texelFetch, so we need integers */ |
| if (src_pos->num_components == 2) { |
| src_pos = nir_f2i32(&b, src_pos); |
| } else { |
| assert(src_pos->num_components == 3); |
| src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i32(&b, src_pos), 0), |
| nir_channel(&b, nir_f2i32(&b, src_pos), 1), |
| nir_channel(&b, src_pos, 2)); |
| } |
| |
| /* We aren't blending, which means we just want to fetch a single |
| * sample from the source surface. The address that we want to fetch |
| * from is related to the X, Y and S values according to the formula: |
| * |
| * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)). |
| * |
| * If the actual tiling and sample count of the source surface are |
| * not the same as the configuration of the texture, then we need to |
| * adjust the coordinates to compensate for the difference. |
| */ |
| if (tex_tiled_w != key->src_tiled_w || |
| key->tex_samples != key->src_samples || |
| key->tex_layout != key->src_layout) { |
| src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples, |
| key->src_layout); |
| /* Now (X, Y, S) = detile(src_tiling, offset) */ |
| if (tex_tiled_w != key->src_tiled_w) |
| src_pos = blorp_nir_retile_w_to_y(&b, src_pos); |
| /* Now (X, Y, S) = detile(tex_tiling, offset) */ |
| src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples, |
| key->tex_layout); |
| } |
| |
| if (key->need_src_offset) |
| src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset)); |
| |
| /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)). |
| * |
| * In other words: X, Y, and S now contain values which, when passed to |
| * the texturing unit, will cause data to be read from the correct |
| * memory location. So we can fetch the texel now. |
| */ |
| if (key->src_samples == 1) { |
| color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type); |
| } else { |
| nir_ssa_def *mcs = NULL; |
| if (isl_aux_usage_has_mcs(key->tex_aux_usage)) |
| mcs = blorp_blit_txf_ms_mcs(&b, &v, src_pos); |
| |
| color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type); |
| } |
| break; |
| |
| case BLORP_FILTER_BILINEAR: |
| assert(!key->src_tiled_w); |
| assert(key->tex_samples == key->src_samples); |
| assert(key->tex_layout == key->src_layout); |
| |
| if (key->src_samples == 1) { |
| color = blorp_nir_tex(&b, &v, key, src_pos); |
| } else { |
| assert(!key->use_kill); |
| color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, |
| key, &v); |
| } |
| break; |
| |
| case BLORP_FILTER_AVERAGE: |
| case BLORP_FILTER_MIN_SAMPLE: |
| case BLORP_FILTER_MAX_SAMPLE: |
| assert(!key->src_tiled_w); |
| assert(key->tex_samples == key->src_samples); |
| assert(key->tex_layout == key->src_layout); |
| |
| /* Resolves (effecively) use texelFetch, so we need integers and we |
| * don't care about the sample index if we got one. |
| */ |
| src_pos = nir_f2i32(&b, nir_channels(&b, src_pos, 0x3)); |
| |
| if (devinfo->ver == 6) { |
| /* Because gfx6 only supports 4x interleved MSAA, we can do all the |
| * blending we need with a single linear-interpolated texture lookup |
| * at the center of the sample. The texture coordinates to be odd |
| * integers so that they correspond to the center of a 2x2 block |
| * representing the four samples that maxe up a pixel. So we need |
| * to multiply our X and Y coordinates each by 2 and then add 1. |
| */ |
| assert(key->src_coords_normalized); |
| assert(key->filter == BLORP_FILTER_AVERAGE); |
| src_pos = nir_fadd(&b, |
| nir_i2f32(&b, src_pos), |
| nir_imm_float(&b, 0.5f)); |
| color = blorp_nir_tex(&b, &v, key, src_pos); |
| } else { |
| /* Gfx7+ hardware doesn't automaticaly blend. */ |
| color = blorp_nir_combine_samples(&b, &v, src_pos, key->src_samples, |
| key->tex_aux_usage, |
| key->texture_data_type, |
| key->filter); |
| } |
| break; |
| |
| default: |
| unreachable("Invalid blorp filter"); |
| } |
| |
| if (!isl_swizzle_is_identity(key->src_swizzle)) { |
| color = swizzle_color(&b, color, key->src_swizzle, |
| key->texture_data_type); |
| } |
| |
| if (!isl_swizzle_is_identity(key->dst_swizzle)) { |
| color = swizzle_color(&b, color, isl_swizzle_invert(key->dst_swizzle), |
| nir_type_int); |
| } |
| |
| if (key->format_bit_cast) { |
| assert(isl_swizzle_is_identity(key->src_swizzle)); |
| assert(isl_swizzle_is_identity(key->dst_swizzle)); |
| color = bit_cast_color(&b, color, key); |
| } else if (key->dst_format) { |
| color = convert_color(&b, color, key); |
| } else if (key->uint32_to_sint) { |
| /* Normally the hardware will take care of converting values from/to |
| * the source and destination formats. But a few cases need help. |
| * |
| * The Skylake PRM, volume 07, page 658 has a programming note: |
| * |
| * "When using SINT or UINT rendertarget surface formats, Blending |
| * must be DISABLED. The Pre-Blend Color Clamp Enable and Color |
| * Clamp Range fields are ignored, and an implied clamp to the |
| * rendertarget surface format is performed." |
| * |
| * For UINT to SINT blits, our sample operation gives us a uint32_t, |
| * but our render target write expects a signed int32_t number. If we |
| * simply passed the value along, the hardware would interpret a value |
| * with bit 31 set as a negative value, clamping it to the largest |
| * negative number the destination format could represent. But the |
| * actual source value is a positive number, so we want to clamp it |
| * to INT_MAX. To fix this, we explicitly take min(color, INT_MAX). |
| */ |
| color = nir_umin(&b, color, nir_imm_int(&b, INT32_MAX)); |
| } else if (key->sint32_to_uint) { |
| /* Similar to above, but clamping negative numbers to zero. */ |
| color = nir_imax(&b, color, nir_imm_int(&b, 0)); |
| } |
| |
| if (key->dst_rgb) { |
| /* The destination image is bound as a red texture three times as wide |
| * as the actual image. Our shader is effectively running one color |
| * component at a time. We need to pick off the appropriate component |
| * from the source color and write that to destination red. |
| */ |
| assert(dst_pos->num_components == 2); |
| |
| nir_ssa_def *color_component = |
| nir_bcsel(&b, nir_ieq_imm(&b, comp, 0), |
| nir_channel(&b, color, 0), |
| nir_bcsel(&b, nir_ieq_imm(&b, comp, 1), |
| nir_channel(&b, color, 1), |
| nir_channel(&b, color, 2))); |
| |
| nir_ssa_def *u = nir_ssa_undef(&b, 1, 32); |
| color = nir_vec4(&b, color_component, u, u, u); |
| } |
| |
| if (key->dst_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT) { |
| nir_variable *color_out = |
| nir_variable_create(b.shader, nir_var_shader_out, |
| glsl_vec4_type(), "gl_FragColor"); |
| color_out->data.location = FRAG_RESULT_COLOR; |
| nir_store_var(&b, color_out, color, 0xf); |
| } else if (key->dst_usage == ISL_SURF_USAGE_DEPTH_BIT) { |
| nir_variable *depth_out = |
| nir_variable_create(b.shader, nir_var_shader_out, |
| glsl_float_type(), "gl_FragDepth"); |
| depth_out->data.location = FRAG_RESULT_DEPTH; |
| nir_store_var(&b, depth_out, nir_channel(&b, color, 0), 0x1); |
| } else if (key->dst_usage == ISL_SURF_USAGE_STENCIL_BIT) { |
| nir_variable *stencil_out = |
| nir_variable_create(b.shader, nir_var_shader_out, |
| glsl_int_type(), "gl_FragStencilRef"); |
| stencil_out->data.location = FRAG_RESULT_STENCIL; |
| nir_store_var(&b, stencil_out, nir_channel(&b, color, 0), 0x1); |
| } else { |
| unreachable("Invalid destination usage"); |
| } |
| |
| return b.shader; |
| } |
| |
| static bool |
| brw_blorp_get_blit_kernel(struct blorp_batch *batch, |
| struct blorp_params *params, |
| const struct brw_blorp_blit_prog_key *prog_key) |
| { |
| struct blorp_context *blorp = batch->blorp; |
| |
| if (blorp->lookup_shader(batch, prog_key, sizeof(*prog_key), |
| ¶ms->wm_prog_kernel, ¶ms->wm_prog_data)) |
| return true; |
| |
| void *mem_ctx = ralloc_context(NULL); |
| |
| const unsigned *program; |
| struct brw_wm_prog_data prog_data; |
| |
| nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key); |
| nir->info.name = ralloc_strdup(nir, blorp_shader_type_to_name(prog_key->shader_type)); |
| |
| struct brw_wm_prog_key wm_key; |
| brw_blorp_init_wm_prog_key(&wm_key); |
| wm_key.base.tex.compressed_multisample_layout_mask = |
| isl_aux_usage_has_mcs(prog_key->tex_aux_usage); |
| wm_key.base.tex.msaa_16 = prog_key->tex_samples == 16; |
| wm_key.multisample_fbo = prog_key->rt_samples > 1; |
| |
| program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false, |
| &prog_data); |
| |
| bool result = |
| blorp->upload_shader(batch, MESA_SHADER_FRAGMENT, |
| prog_key, sizeof(*prog_key), |
| program, prog_data.base.program_size, |
| &prog_data.base, sizeof(prog_data), |
| ¶ms->wm_prog_kernel, ¶ms->wm_prog_data); |
| |
| ralloc_free(mem_ctx); |
| return result; |
| } |
| |
| static void |
| brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform, |
| GLfloat src0, GLfloat src1, |
| GLfloat dst0, GLfloat dst1, |
| bool mirror) |
| { |
| double scale = (double)(src1 - src0) / (double)(dst1 - dst0); |
| if (!mirror) { |
| /* When not mirroring a coordinate (say, X), we need: |
| * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale |
| * Therefore: |
| * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale |
| * |
| * blorp program uses "round toward zero" to convert the |
| * transformed floating point coordinates to integer coordinates, |
| * whereas the behaviour we actually want is "round to nearest", |
| * so 0.5 provides the necessary correction. |
| */ |
| xform->multiplier = scale; |
| xform->offset = src0 + (-(double)dst0 + 0.5) * scale; |
| } else { |
| /* When mirroring X we need: |
| * src_x - src_x0 = dst_x1 - dst_x - 0.5 |
| * Therefore: |
| * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale |
| */ |
| xform->multiplier = -scale; |
| xform->offset = src0 + ((double)dst1 - 0.5) * scale; |
| } |
| } |
| |
| static inline void |
| surf_get_intratile_offset_px(struct brw_blorp_surface_info *info, |
| uint32_t *tile_x_px, uint32_t *tile_y_px) |
| { |
| if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) { |
| struct isl_extent2d px_size_sa = |
| isl_get_interleaved_msaa_px_size_sa(info->surf.samples); |
| assert(info->tile_x_sa % px_size_sa.width == 0); |
| assert(info->tile_y_sa % px_size_sa.height == 0); |
| *tile_x_px = info->tile_x_sa / px_size_sa.width; |
| *tile_y_px = info->tile_y_sa / px_size_sa.height; |
| } else { |
| *tile_x_px = info->tile_x_sa; |
| *tile_y_px = info->tile_y_sa; |
| } |
| } |
| |
| void |
| blorp_surf_convert_to_single_slice(const struct isl_device *isl_dev, |
| struct brw_blorp_surface_info *info) |
| { |
| bool ok UNUSED; |
| |
| /* It would be insane to try and do this on a compressed surface */ |
| assert(info->aux_usage == ISL_AUX_USAGE_NONE); |
| |
| /* Just bail if we have nothing to do. */ |
| if (info->surf.dim == ISL_SURF_DIM_2D && |
| info->view.base_level == 0 && info->view.base_array_layer == 0 && |
| info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1) |
| return; |
| |
| /* If this gets triggered then we've gotten here twice which. This |
| * shouldn't happen thanks to the above early return. |
| */ |
| assert(info->tile_x_sa == 0 && info->tile_y_sa == 0); |
| |
| uint32_t layer = 0, z = 0; |
| if (info->surf.dim == ISL_SURF_DIM_3D) |
| z = info->view.base_array_layer + info->z_offset; |
| else |
| layer = info->view.base_array_layer; |
| |
| uint32_t byte_offset; |
| isl_surf_get_image_surf(isl_dev, &info->surf, |
| info->view.base_level, layer, z, |
| &info->surf, |
| &byte_offset, &info->tile_x_sa, &info->tile_y_sa); |
| info->addr.offset += byte_offset; |
| |
| uint32_t tile_x_px, tile_y_px; |
| surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px); |
| |
| /* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we place |
| * the image at the tile boundary and offset our sampling or rendering. |
| * For this reason, we need to grow the image by the offset to ensure that |
| * the hardware doesn't think we've gone past the edge. |
| */ |
| info->surf.logical_level0_px.w += tile_x_px; |
| info->surf.logical_level0_px.h += tile_y_px; |
| info->surf.phys_level0_sa.w += info->tile_x_sa; |
| info->surf.phys_level0_sa.h += info->tile_y_sa; |
| |
| /* The view is also different now. */ |
| info->view.base_level = 0; |
| info->view.levels = 1; |
| info->view.base_array_layer = 0; |
| info->view.array_len = 1; |
| info->z_offset = 0; |
| } |
| |
| void |
| blorp_surf_fake_interleaved_msaa(const struct isl_device *isl_dev, |
| struct brw_blorp_surface_info *info) |
| { |
| assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED); |
| |
| /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */ |
| blorp_surf_convert_to_single_slice(isl_dev, info); |
| |
| info->surf.logical_level0_px = info->surf.phys_level0_sa; |
| info->surf.samples = 1; |
| info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE; |
| } |
| |
| void |
| blorp_surf_retile_w_to_y(const struct isl_device *isl_dev, |
| struct brw_blorp_surface_info *info) |
| { |
| assert(info->surf.tiling == ISL_TILING_W); |
| |
| /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */ |
| blorp_surf_convert_to_single_slice(isl_dev, info); |
| |
| /* On gfx7+, we don't have interleaved multisampling for color render |
| * targets so we have to fake it. |
| * |
| * TODO: Are we sure we don't also need to fake it on gfx6? |
| */ |
| if (isl_dev->info->ver > 6 && |
| info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) { |
| blorp_surf_fake_interleaved_msaa(isl_dev, info); |
| } |
| |
| if (isl_dev->info->ver == 6) { |
| /* Gfx6 stencil buffers have a very large alignment coming in from the |
| * miptree. It's out-of-bounds for what the surface state can handle. |
| * Since we have a single layer and level, it doesn't really matter as |
| * long as we don't pass a bogus value into isl_surf_fill_state(). |
| */ |
| info->surf.image_alignment_el = isl_extent3d(4, 2, 1); |
| } |
| |
| /* Now that we've converted everything to a simple 2-D surface with only |
| * one miplevel, we can go about retiling it. |
| */ |
| const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4; |
| info->surf.tiling = ISL_TILING_Y0; |
| info->surf.logical_level0_px.width = |
| ALIGN(info->surf.logical_level0_px.width, x_align) * 2; |
| info->surf.logical_level0_px.height = |
| ALIGN(info->surf.logical_level0_px.height, y_align) / 2; |
| info->tile_x_sa *= 2; |
| info->tile_y_sa /= 2; |
| } |
| |
| static bool |
| can_shrink_surface(const struct brw_blorp_surface_info *surf) |
| { |
| /* The current code doesn't support offsets into the aux buffers. This |
| * should be possible, but we need to make sure the offset is page |
| * aligned for both the surface and the aux buffer surface. Generally |
| * this mean using the page aligned offset for the aux buffer. |
| * |
| * Currently the cases where we must split the blit are limited to cases |
| * where we don't have a aux buffer. |
| */ |
| if (surf->aux_addr.buffer != NULL) |
| return false; |
| |
| /* We can't support splitting the blit for gen <= 7, because the qpitch |
| * size is calculated by the hardware based on the surface height for |
| * gen <= 7. In gen >= 8, the qpitch is controlled by the driver. |
| */ |
| if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY) |
| return false; |
| |
| return true; |
| } |
| |
| static unsigned |
| get_max_surface_size(const struct intel_device_info *devinfo, |
| const struct brw_blorp_surface_info *surf) |
| { |
| const unsigned max = devinfo->ver >= 7 ? 16384 : 8192; |
| if (split_blorp_blit_debug && can_shrink_surface(surf)) |
| return max >> 4; /* A smaller restriction when debug is enabled */ |
| else |
| return max; |
| } |
| |
| struct blt_axis { |
| double src0, src1, dst0, dst1; |
| bool mirror; |
| }; |
| |
| struct blt_coords { |
| struct blt_axis x, y; |
| }; |
| |
| static enum isl_format |
| get_red_format_for_rgb_format(enum isl_format format) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(format); |
| |
| switch (fmtl->channels.r.bits) { |
| case 8: |
| switch (fmtl->channels.r.type) { |
| case ISL_UNORM: |
| return ISL_FORMAT_R8_UNORM; |
| case ISL_SNORM: |
| return ISL_FORMAT_R8_SNORM; |
| case ISL_UINT: |
| return ISL_FORMAT_R8_UINT; |
| case ISL_SINT: |
| return ISL_FORMAT_R8_SINT; |
| default: |
| unreachable("Invalid 8-bit RGB channel type"); |
| } |
| case 16: |
| switch (fmtl->channels.r.type) { |
| case ISL_UNORM: |
| return ISL_FORMAT_R16_UNORM; |
| case ISL_SNORM: |
| return ISL_FORMAT_R16_SNORM; |
| case ISL_SFLOAT: |
| return ISL_FORMAT_R16_FLOAT; |
| case ISL_UINT: |
| return ISL_FORMAT_R16_UINT; |
| case ISL_SINT: |
| return ISL_FORMAT_R16_SINT; |
| default: |
| unreachable("Invalid 8-bit RGB channel type"); |
| } |
| case 32: |
| switch (fmtl->channels.r.type) { |
| case ISL_SFLOAT: |
| return ISL_FORMAT_R32_FLOAT; |
| case ISL_UINT: |
| return ISL_FORMAT_R32_UINT; |
| case ISL_SINT: |
| return ISL_FORMAT_R32_SINT; |
| default: |
| unreachable("Invalid 8-bit RGB channel type"); |
| } |
| default: |
| unreachable("Invalid number of red channel bits"); |
| } |
| } |
| |
| void |
| surf_fake_rgb_with_red(const struct isl_device *isl_dev, |
| struct brw_blorp_surface_info *info) |
| { |
| blorp_surf_convert_to_single_slice(isl_dev, info); |
| |
| info->surf.logical_level0_px.width *= 3; |
| info->surf.phys_level0_sa.width *= 3; |
| info->tile_x_sa *= 3; |
| |
| enum isl_format red_format = |
| get_red_format_for_rgb_format(info->view.format); |
| |
| assert(isl_format_get_layout(red_format)->channels.r.type == |
| isl_format_get_layout(info->view.format)->channels.r.type); |
| assert(isl_format_get_layout(red_format)->channels.r.bits == |
| isl_format_get_layout(info->view.format)->channels.r.bits); |
| |
| info->surf.format = info->view.format = red_format; |
| } |
| |
| enum blit_shrink_status { |
| BLIT_NO_SHRINK = 0, |
| BLIT_SRC_WIDTH_SHRINK = (1 << 0), |
| BLIT_DST_WIDTH_SHRINK = (1 << 1), |
| BLIT_SRC_HEIGHT_SHRINK = (1 << 2), |
| BLIT_DST_HEIGHT_SHRINK = (1 << 3), |
| }; |
| |
| /* Try to blit. If the surface parameters exceed the size allowed by hardware, |
| * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is |
| * returned, then the blit was successful. |
| */ |
| static enum blit_shrink_status |
| try_blorp_blit(struct blorp_batch *batch, |
| struct blorp_params *params, |
| struct brw_blorp_blit_prog_key *wm_prog_key, |
| struct blt_coords *coords) |
| { |
| const struct intel_device_info *devinfo = batch->blorp->isl_dev->info; |
| |
| if (params->dst.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) { |
| if (devinfo->ver >= 7) { |
| /* We can render as depth on Gfx5 but there's no real advantage since |
| * it doesn't support MSAA or HiZ. On Gfx4, we can't always render |
| * to depth due to issues with depth buffers and mip-mapping. On |
| * Gfx6, we can do everything but we have weird offsetting for HiZ |
| * and stencil. It's easier to just render using the color pipe |
| * on those platforms. |
| */ |
| wm_prog_key->dst_usage = ISL_SURF_USAGE_DEPTH_BIT; |
| } else { |
| wm_prog_key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT; |
| } |
| } else if (params->dst.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) { |
| assert(params->dst.surf.format == ISL_FORMAT_R8_UINT); |
| if (devinfo->ver >= 9) { |
| wm_prog_key->dst_usage = ISL_SURF_USAGE_STENCIL_BIT; |
| } else { |
| wm_prog_key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT; |
| } |
| } else { |
| wm_prog_key->dst_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT; |
| } |
| |
| if (isl_format_has_sint_channel(params->src.view.format)) { |
| wm_prog_key->texture_data_type = nir_type_int; |
| } else if (isl_format_has_uint_channel(params->src.view.format)) { |
| wm_prog_key->texture_data_type = nir_type_uint; |
| } else { |
| wm_prog_key->texture_data_type = nir_type_float; |
| } |
| |
| /* src_samples and dst_samples are the true sample counts */ |
| wm_prog_key->src_samples = params->src.surf.samples; |
| wm_prog_key->dst_samples = params->dst.surf.samples; |
| |
| wm_prog_key->tex_aux_usage = params->src.aux_usage; |
| |
| /* src_layout and dst_layout indicate the true MSAA layout used by src and |
| * dst. |
| */ |
| wm_prog_key->src_layout = params->src.surf.msaa_layout; |
| wm_prog_key->dst_layout = params->dst.surf.msaa_layout; |
| |
| /* Round floating point values to nearest integer to avoid "off by one texel" |
| * kind of errors when blitting. |
| */ |
| params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0); |
| params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0); |
| params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1); |
| params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1); |
| |
| brw_blorp_setup_coord_transform(¶ms->wm_inputs.coord_transform[0], |
| coords->x.src0, coords->x.src1, |
| coords->x.dst0, coords->x.dst1, |
| coords->x.mirror); |
| brw_blorp_setup_coord_transform(¶ms->wm_inputs.coord_transform[1], |
| coords->y.src0, coords->y.src1, |
| coords->y.dst0, coords->y.dst1, |
| coords->y.mirror); |
| |
| |
| if (devinfo->ver == 4) { |
| /* The MinLOD and MinimumArrayElement don't work properly for cube maps. |
| * Convert them to a single slice on gfx4. |
| */ |
| if (params->dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT) { |
| blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, ¶ms->dst); |
| wm_prog_key->need_dst_offset = true; |
| } |
| |
| if (params->src.surf.usage & ISL_SURF_USAGE_CUBE_BIT) { |
| blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, ¶ms->src); |
| wm_prog_key->need_src_offset = true; |
| } |
| } |
| |
| if (devinfo->ver > 6 && |
| !isl_surf_usage_is_depth_or_stencil(wm_prog_key->dst_usage) && |
| params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) { |
| assert(params->dst.surf.samples > 1); |
| |
| /* We must expand the rectangle we send through the rendering pipeline, |
| * to account for the fact that we are mapping the destination region as |
| * single-sampled when it is in fact multisampled. We must also align |
| * it to a multiple of the multisampling pattern, because the |
| * differences between multisampled and single-sampled surface formats |
| * will mean that pixels are scrambled within the multisampling pattern. |
| * TODO: what if this makes the coordinates too large? |
| * |
| * Note: this only works if the destination surface uses the IMS layout. |
| * If it's UMS, then we have no choice but to set up the rendering |
| * pipeline as multisampled. |
| */ |
| struct isl_extent2d px_size_sa = |
| isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples); |
| params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width; |
| params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height; |
| params->x1 = ALIGN(params->x1, 2) * px_size_sa.width; |
| params->y1 = ALIGN(params->y1, 2) * px_size_sa.height; |
| |
| blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, ¶ms->dst); |
| |
| wm_prog_key->use_kill = true; |
| wm_prog_key->need_dst_offset = true; |
| } |
| |
| if (params->dst.surf.tiling == ISL_TILING_W && |
| wm_prog_key->dst_usage != ISL_SURF_USAGE_STENCIL_BIT) { |
| /* We must modify the rectangle we send through the rendering pipeline |
| * (and the size and x/y offset of the destination surface), to account |
| * for the fact that we are mapping it as Y-tiled when it is in fact |
| * W-tiled. |
| * |
| * Both Y tiling and W tiling can be understood as organizations of |
| * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels |
| * is different, but the layout of the 32-byte sub-tiles within the 4k |
| * tile is the same (8 sub-tiles across by 16 sub-tiles down, in |
| * column-major order). In Y tiling, the sub-tiles are 16 bytes wide |
| * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high. |
| * |
| * Therefore, to account for the layout differences within the 32-byte |
| * sub-tiles, we must expand the rectangle so the X coordinates of its |
| * edges are multiples of 8 (the W sub-tile width), and its Y |
| * coordinates of its edges are multiples of 4 (the W sub-tile height). |
| * Then we need to scale the X and Y coordinates of the rectangle to |
| * account for the differences in aspect ratio between the Y and W |
| * sub-tiles. We need to modify the layer width and height similarly. |
| * |
| * A correction needs to be applied when MSAA is in use: since |
| * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4, |
| * we need to align the Y coordinates to multiples of 8, so that when |
| * they are divided by two they are still multiples of 4. |
| * |
| * Note: Since the x/y offset of the surface will be applied using the |
| * SURFACE_STATE command packet, it will be invisible to the swizzling |
| * code in the shader; therefore it needs to be in a multiple of the |
| * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8 |
| * pixels wide and 4 pixels high (when viewed as a W-tiled stencil |
| * buffer), and the miplevel alignment used for stencil buffers is 8 |
| * pixels horizontally and either 4 or 8 pixels vertically (see |
| * intel_horizontal_texture_alignment_unit() and |
| * intel_vertical_texture_alignment_unit()). |
| * |
| * Note: Also, since the SURFACE_STATE command packet can only apply |
| * offsets that are multiples of 4 pixels horizontally and 2 pixels |
| * vertically, it is important that the offsets will be multiples of |
| * these sizes after they are converted into Y-tiled coordinates. |
| * Fortunately they will be, since we know from above that the offsets |
| * are a multiple of the 32-byte sub-tile size, and in Y-tiled |
| * coordinates the sub-tile is 16 pixels wide and 2 pixels high. |
| * |
| * TODO: what if this makes the coordinates (or the texture size) too |
| * large? |
| */ |
| const unsigned x_align = 8; |
| const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4; |
| params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2; |
| params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2; |
| params->x1 = ALIGN(params->x1, x_align) * 2; |
| params->y1 = ALIGN(params->y1, y_align) / 2; |
| |
| /* Retile the surface to Y-tiled */ |
| blorp_surf_retile_w_to_y(batch->blorp->isl_dev, ¶ms->dst); |
| |
| wm_prog_key->dst_tiled_w = true; |
| wm_prog_key->use_kill = true; |
| wm_prog_key->need_dst_offset = true; |
| |
| if (params->dst.surf.samples > 1) { |
| /* If the destination surface is a W-tiled multisampled stencil |
| * buffer that we're mapping as Y tiled, then we need to arrange for |
| * the WM program to run once per sample rather than once per pixel, |
| * because the memory layout of related samples doesn't match between |
| * W and Y tiling. |
| */ |
| wm_prog_key->persample_msaa_dispatch = true; |
| } |
| } |
| |
| if (devinfo->ver < 8 && params->src.surf.tiling == ISL_TILING_W) { |
| /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled. |
| * Broadwell adds support for sampling from stencil. |
| * |
| * See the comments above concerning x/y offset alignment for the |
| * destination surface. |
| * |
| * TODO: what if this makes the texture size too large? |
| */ |
| blorp_surf_retile_w_to_y(batch->blorp->isl_dev, ¶ms->src); |
| |
| wm_prog_key->src_tiled_w = true; |
| wm_prog_key->need_src_offset = true; |
| } |
| |
| /* tex_samples and rt_samples are the sample counts that are set up in |
| * SURFACE_STATE. |
| */ |
| wm_prog_key->tex_samples = params->src.surf.samples; |
| wm_prog_key->rt_samples = params->dst.surf.samples; |
| |
| /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will |
| * use to access the source and destination surfaces. |
| */ |
| wm_prog_key->tex_layout = params->src.surf.msaa_layout; |
| wm_prog_key->rt_layout = params->dst.surf.msaa_layout; |
| |
| if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) { |
| /* We are blitting from a multisample buffer to a multisample buffer, so |
| * we must preserve samples within a pixel. This means we have to |
| * arrange for the WM program to run once per sample rather than once |
| * per pixel. |
| */ |
| wm_prog_key->persample_msaa_dispatch = true; |
| } |
| |
| params->num_samples = params->dst.surf.samples; |
| |
| if ((wm_prog_key->filter == BLORP_FILTER_AVERAGE || |
| wm_prog_key->filter == BLORP_FILTER_BILINEAR) && |
| batch->blorp->isl_dev->info->ver <= 6) { |
| /* Gfx4-5 don't support non-normalized texture coordinates */ |
| wm_prog_key->src_coords_normalized = true; |
| params->wm_inputs.src_inv_size[0] = |
| 1.0f / minify(params->src.surf.logical_level0_px.width, |
| params->src.view.base_level); |
| params->wm_inputs.src_inv_size[1] = |
| 1.0f / minify(params->src.surf.logical_level0_px.height, |
| params->src.view.base_level); |
| } |
| |
| if (isl_format_get_layout(params->dst.view.format)->bpb % 3 == 0) { |
| /* We can't render to RGB formats natively because they aren't a |
| * power-of-two size. Instead, we fake them by using a red format |
| * with the same channel type and size and emitting shader code to |
| * only write one channel at a time. |
| */ |
| params->x0 *= 3; |
| params->x1 *= 3; |
| |
| /* If it happens to be sRGB, we need to force a conversion */ |
| if (params->dst.view.format == ISL_FORMAT_R8G8B8_UNORM_SRGB) |
| wm_prog_key->dst_format = ISL_FORMAT_R8G8B8_UNORM_SRGB; |
| |
| surf_fake_rgb_with_red(batch->blorp->isl_dev, ¶ms->dst); |
| |
| wm_prog_key->dst_rgb = true; |
| wm_prog_key->need_dst_offset = true; |
| } else if (isl_format_is_rgbx(params->dst.view.format)) { |
| /* We can handle RGBX formats easily enough by treating them as RGBA */ |
| params->dst.view.format = |
| isl_format_rgbx_to_rgba(params->dst.view.format); |
| } else if (params->dst.view.format == ISL_FORMAT_R24_UNORM_X8_TYPELESS && |
| wm_prog_key->dst_usage != ISL_SURF_USAGE_DEPTH_BIT) { |
| wm_prog_key->dst_format = params->dst.view.format; |
| params->dst.view.format = ISL_FORMAT_R32_UINT; |
| } else if (params->dst.view.format == ISL_FORMAT_A4B4G4R4_UNORM) { |
| params->dst.view.swizzle = |
| isl_swizzle_compose(params->dst.view.swizzle, |
| ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE)); |
| params->dst.view.format = ISL_FORMAT_B4G4R4A4_UNORM; |
| } else if (params->dst.view.format == ISL_FORMAT_L8_UNORM_SRGB) { |
| wm_prog_key->dst_format = params->dst.view.format; |
| params->dst.view.format = ISL_FORMAT_R8_UNORM; |
| } else if (params->dst.view.format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) { |
| wm_prog_key->dst_format = params->dst.view.format; |
| params->dst.view.format = ISL_FORMAT_R32_UINT; |
| } |
| |
| if (devinfo->ver <= 7 && !devinfo->is_haswell && |
| !isl_swizzle_is_identity(params->src.view.swizzle)) { |
| wm_prog_key->src_swizzle = params->src.view.swizzle; |
| params->src.view.swizzle = ISL_SWIZZLE_IDENTITY; |
| } else { |
| wm_prog_key->src_swizzle = ISL_SWIZZLE_IDENTITY; |
| } |
| |
| if (!isl_swizzle_supports_rendering(devinfo, params->dst.view.swizzle)) { |
| wm_prog_key->dst_swizzle = params->dst.view.swizzle; |
| params->dst.view.swizzle = ISL_SWIZZLE_IDENTITY; |
| } else { |
| wm_prog_key->dst_swizzle = ISL_SWIZZLE_IDENTITY; |
| } |
| |
| if (params->src.tile_x_sa || params->src.tile_y_sa) { |
| assert(wm_prog_key->need_src_offset); |
| surf_get_intratile_offset_px(¶ms->src, |
| ¶ms->wm_inputs.src_offset.x, |
| ¶ms->wm_inputs.src_offset.y); |
| } |
| |
| if (params->dst.tile_x_sa || params->dst.tile_y_sa) { |
| assert(wm_prog_key->need_dst_offset); |
| surf_get_intratile_offset_px(¶ms->dst, |
| ¶ms->wm_inputs.dst_offset.x, |
| ¶ms->wm_inputs.dst_offset.y); |
| params->x0 += params->wm_inputs.dst_offset.x; |
| params->y0 += params->wm_inputs.dst_offset.y; |
| params->x1 += params->wm_inputs.dst_offset.x; |
| params->y1 += params->wm_inputs.dst_offset.y; |
| } |
| |
| /* For some texture types, we need to pass the layer through the sampler. */ |
| params->wm_inputs.src_z = params->src.z_offset; |
| |
| if (!brw_blorp_get_blit_kernel(batch, params, wm_prog_key)) |
| return 0; |
| |
| if (!blorp_ensure_sf_program(batch, params)) |
| return 0; |
| |
| unsigned result = 0; |
| unsigned max_src_surface_size = get_max_surface_size(devinfo, ¶ms->src); |
| if (params->src.surf.logical_level0_px.width > max_src_surface_size) |
| result |= BLIT_SRC_WIDTH_SHRINK; |
| if (params->src.surf.logical_level0_px.height > max_src_surface_size) |
| result |= BLIT_SRC_HEIGHT_SHRINK; |
| |
| unsigned max_dst_surface_size = get_max_surface_size(devinfo, ¶ms->dst); |
| if (params->dst.surf.logical_level0_px.width > max_dst_surface_size) |
| result |= BLIT_DST_WIDTH_SHRINK; |
| if (params->dst.surf.logical_level0_px.height > max_dst_surface_size) |
| result |= BLIT_DST_HEIGHT_SHRINK; |
| |
| if (result == 0) { |
| if (wm_prog_key->dst_usage == ISL_SURF_USAGE_DEPTH_BIT) { |
| params->depth = params->dst; |
| memset(¶ms->dst, 0, sizeof(params->dst)); |
| } else if (wm_prog_key->dst_usage == ISL_SURF_USAGE_STENCIL_BIT) { |
| params->stencil = params->dst; |
| params->stencil_mask = 0xff; |
| memset(¶ms->dst, 0, sizeof(params->dst)); |
| } |
| |
| batch->blorp->exec(batch, params); |
| } |
| |
| return result; |
| } |
| |
| /* Adjust split blit source coordinates for the current destination |
| * coordinates. |
| */ |
| static void |
| adjust_split_source_coords(const struct blt_axis *orig, |
| struct blt_axis *split_coords, |
| double scale) |
| { |
| /* When scale is greater than 0, then we are growing from the start, so |
| * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the |
| * source range shrinks from the end. In that case src0 is adjusted by |
| * delta1, and src1 is adjusted by delta0. |
| */ |
| double delta0 = scale * (split_coords->dst0 - orig->dst0); |
| double delta1 = scale * (split_coords->dst1 - orig->dst1); |
| split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1); |
| split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0); |
| } |
| |
| static struct isl_extent2d |
| get_px_size_sa(const struct isl_surf *surf) |
| { |
| static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 }; |
| |
| if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED) |
| return one_to_one; |
| else |
| return isl_get_interleaved_msaa_px_size_sa(surf->samples); |
| } |
| |
| static void |
| shrink_surface_params(const struct isl_device *dev, |
| struct brw_blorp_surface_info *info, |
| double *x0, double *x1, double *y0, double *y1) |
| { |
| uint32_t byte_offset, x_offset_sa, y_offset_sa, size; |
| struct isl_extent2d px_size_sa; |
| int adjust; |
| |
| blorp_surf_convert_to_single_slice(dev, info); |
| |
| px_size_sa = get_px_size_sa(&info->surf); |
| |
| /* Because this gets called after we lower compressed images, the tile |
| * offsets may be non-zero and we need to incorporate them in our |
| * calculations. |
| */ |
| x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa; |
| y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa; |
| isl_tiling_get_intratile_offset_sa(info->surf.tiling, |
| info->surf.format, info->surf.row_pitch_B, |
| x_offset_sa, y_offset_sa, |
| &byte_offset, |
| &info->tile_x_sa, &info->tile_y_sa); |
| |
| info->addr.offset += byte_offset; |
| |
| adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0; |
| *x0 += adjust; |
| *x1 += adjust; |
| info->tile_x_sa = 0; |
| |
| adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0; |
| *y0 += adjust; |
| *y1 += adjust; |
| info->tile_y_sa = 0; |
| |
| size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width); |
| info->surf.logical_level0_px.width = size; |
| info->surf.phys_level0_sa.width = size * px_size_sa.w; |
| |
| size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height); |
| info->surf.logical_level0_px.height = size; |
| info->surf.phys_level0_sa.height = size * px_size_sa.h; |
| } |
| |
| static void |
| do_blorp_blit(struct blorp_batch *batch, |
| const struct blorp_params *orig_params, |
| struct brw_blorp_blit_prog_key *wm_prog_key, |
| const struct blt_coords *orig) |
| { |
| struct blorp_params params; |
| struct blt_coords blit_coords; |
| struct blt_coords split_coords = *orig; |
| double w = orig->x.dst1 - orig->x.dst0; |
| double h = orig->y.dst1 - orig->y.dst0; |
| double x_scale = (orig->x.src1 - orig->x.src0) / w; |
| double y_scale = (orig->y.src1 - orig->y.src0) / h; |
| if (orig->x.mirror) |
| x_scale = -x_scale; |
| if (orig->y.mirror) |
| y_scale = -y_scale; |
| |
| enum blit_shrink_status shrink = BLIT_NO_SHRINK; |
| if (split_blorp_blit_debug) { |
| if (can_shrink_surface(&orig_params->src)) |
| shrink |= BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK; |
| if (can_shrink_surface(&orig_params->dst)) |
| shrink |= BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK; |
| } |
| |
| bool x_done, y_done; |
| do { |
| params = *orig_params; |
| blit_coords = split_coords; |
| |
| if (shrink & (BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK)) { |
| shrink_surface_params(batch->blorp->isl_dev, ¶ms.src, |
| &blit_coords.x.src0, &blit_coords.x.src1, |
| &blit_coords.y.src0, &blit_coords.y.src1); |
| wm_prog_key->need_src_offset = false; |
| } |
| |
| if (shrink & (BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK)) { |
| shrink_surface_params(batch->blorp->isl_dev, ¶ms.dst, |
| &blit_coords.x.dst0, &blit_coords.x.dst1, |
| &blit_coords.y.dst0, &blit_coords.y.dst1); |
| wm_prog_key->need_dst_offset = false; |
| } |
| |
| enum blit_shrink_status result = |
| try_blorp_blit(batch, ¶ms, wm_prog_key, &blit_coords); |
| |
| if (result & (BLIT_SRC_WIDTH_SHRINK | BLIT_SRC_HEIGHT_SHRINK)) |
| assert(can_shrink_surface(&orig_params->src)); |
| |
| if (result & (BLIT_DST_WIDTH_SHRINK | BLIT_DST_HEIGHT_SHRINK)) |
| assert(can_shrink_surface(&orig_params->dst)); |
| |
| if (result & (BLIT_SRC_WIDTH_SHRINK | BLIT_DST_WIDTH_SHRINK)) { |
| w /= 2.0; |
| assert(w >= 1.0); |
| split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1); |
| adjust_split_source_coords(&orig->x, &split_coords.x, x_scale); |
| } |
| if (result & (BLIT_SRC_HEIGHT_SHRINK | BLIT_DST_HEIGHT_SHRINK)) { |
| h /= 2.0; |
| assert(h >= 1.0); |
| split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1); |
| adjust_split_source_coords(&orig->y, &split_coords.y, y_scale); |
| } |
| |
| if (result) { |
| /* We may get less bits set on result than we had already, so make |
| * sure we remember all the ways in which a resize is required. |
| */ |
| shrink |= result; |
| continue; |
| } |
| |
| y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5); |
| x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5); |
| if (x_done) { |
| break; |
| } else if (y_done) { |
| split_coords.x.dst0 += w; |
| split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1); |
| split_coords.y.dst0 = orig->y.dst0; |
| split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1); |
| adjust_split_source_coords(&orig->x, &split_coords.x, x_scale); |
| } else { |
| split_coords.y.dst0 += h; |
| split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1); |
| adjust_split_source_coords(&orig->y, &split_coords.y, y_scale); |
| } |
| } while (true); |
| } |
| |
| void |
| blorp_blit(struct blorp_batch *batch, |
| const struct blorp_surf *src_surf, |
| unsigned src_level, float src_layer, |
| enum isl_format src_format, struct isl_swizzle src_swizzle, |
| const struct blorp_surf *dst_surf, |
| unsigned dst_level, unsigned dst_layer, |
| enum isl_format dst_format, struct isl_swizzle dst_swizzle, |
| float src_x0, float src_y0, |
| float src_x1, float src_y1, |
| float dst_x0, float dst_y0, |
| float dst_x1, float dst_y1, |
| enum blorp_filter filter, |
| bool mirror_x, bool mirror_y) |
| { |
| struct blorp_params params; |
| blorp_params_init(¶ms); |
| params.snapshot_type = INTEL_SNAPSHOT_BLIT; |
| |
| /* We cannot handle combined depth and stencil. */ |
| if (src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) |
| assert(src_surf->surf->format == ISL_FORMAT_R8_UINT); |
| if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) |
| assert(dst_surf->surf->format == ISL_FORMAT_R8_UINT); |
| |
| if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) { |
| assert(src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT); |
| /* Prior to Broadwell, we can't render to R8_UINT */ |
| if (batch->blorp->isl_dev->info->ver < 8) { |
| src_format = ISL_FORMAT_R8_UNORM; |
| dst_format = ISL_FORMAT_R8_UNORM; |
| } |
| } |
| |
| brw_blorp_surface_info_init(batch->blorp, ¶ms.src, src_surf, src_level, |
| src_layer, src_format, false); |
| brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, dst_surf, dst_level, |
| dst_layer, dst_format, true); |
| |
| params.src.view.swizzle = src_swizzle; |
| params.dst.view.swizzle = dst_swizzle; |
| |
| const struct isl_format_layout *src_fmtl = |
| isl_format_get_layout(params.src.view.format); |
| |
| struct brw_blorp_blit_prog_key wm_prog_key = { |
| .shader_type = BLORP_SHADER_TYPE_BLIT, |
| .filter = filter, |
| .sint32_to_uint = src_fmtl->channels.r.bits == 32 && |
| isl_format_has_sint_channel(params.src.view.format) && |
| isl_format_has_uint_channel(params.dst.view.format), |
| .uint32_to_sint = src_fmtl->channels.r.bits == 32 && |
| isl_format_has_uint_channel(params.src.view.format) && |
| isl_format_has_sint_channel(params.dst.view.format), |
| }; |
| |
| /* Scaling factors used for bilinear filtering in multisample scaled |
| * blits. |
| */ |
| if (params.src.surf.samples == 16) |
| wm_prog_key.x_scale = 4.0f; |
| else |
| wm_prog_key.x_scale = 2.0f; |
| wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale; |
| |
| params.wm_inputs.rect_grid.x1 = |
| minify(params.src.surf.logical_level0_px.width, src_level) * |
| wm_prog_key.x_scale - 1.0f; |
| params.wm_inputs.rect_grid.y1 = |
| minify(params.src.surf.logical_level0_px.height, src_level) * |
| wm_prog_key.y_scale - 1.0f; |
| |
| struct blt_coords coords = { |
| .x = { |
| .src0 = src_x0, |
| .src1 = src_x1, |
| .dst0 = dst_x0, |
| .dst1 = dst_x1, |
| .mirror = mirror_x |
| }, |
| .y = { |
| .src0 = src_y0, |
| .src1 = src_y1, |
| .dst0 = dst_y0, |
| .dst1 = dst_y1, |
| .mirror = mirror_y |
| } |
| }; |
| |
| do_blorp_blit(batch, ¶ms, &wm_prog_key, &coords); |
| } |
| |
| static enum isl_format |
| get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb) |
| { |
| /* The choice of UNORM and UINT formats is very intentional here. Most |
| * of the time, we want to use a UINT format to avoid any rounding error |
| * in the blit. For stencil blits, R8_UINT is required by the hardware. |
| * (It's the only format allowed in conjunction with W-tiling.) Also we |
| * intentionally use the 4-channel formats whenever we can. This is so |
| * that, when we do a RGB <-> RGBX copy, the two formats will line up |
| * even though one of them is 3/4 the size of the other. The choice of |
| * UNORM vs. UINT is also very intentional because we don't have 8 or |
| * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there. |
| * Fortunately, the only time we should ever use two different formats in |
| * the table below is for RGB -> RGBA blits and so we will never have any |
| * UNORM/UINT mismatch. |
| */ |
| if (ISL_GFX_VER(isl_dev) >= 9) { |
| switch (bpb) { |
| case 8: return ISL_FORMAT_R8_UINT; |
| case 16: return ISL_FORMAT_R8G8_UINT; |
| case 24: return ISL_FORMAT_R8G8B8_UINT; |
| case 32: return ISL_FORMAT_R8G8B8A8_UINT; |
| case 48: return ISL_FORMAT_R16G16B16_UINT; |
| case 64: return ISL_FORMAT_R16G16B16A16_UINT; |
| case 96: return ISL_FORMAT_R32G32B32_UINT; |
| case 128:return ISL_FORMAT_R32G32B32A32_UINT; |
| default: |
| unreachable("Unknown format bpb"); |
| } |
| } else { |
| switch (bpb) { |
| case 8: return ISL_FORMAT_R8_UINT; |
| case 16: return ISL_FORMAT_R8G8_UINT; |
| case 24: return ISL_FORMAT_R8G8B8_UNORM; |
| case 32: return ISL_FORMAT_R8G8B8A8_UNORM; |
| case 48: return ISL_FORMAT_R16G16B16_UNORM; |
| case 64: return ISL_FORMAT_R16G16B16A16_UNORM; |
| case 96: return ISL_FORMAT_R32G32B32_UINT; |
| case 128:return ISL_FORMAT_R32G32B32A32_UINT; |
| default: |
| unreachable("Unknown format bpb"); |
| } |
| } |
| } |
| |
| /** Returns a UINT format that is CCS-compatible with the given format |
| * |
| * The PRM's say absolutely nothing about how render compression works. The |
| * only thing they provide is a list of formats on which it is and is not |
| * supported. Empirical testing indicates that the compression is only based |
| * on the bit-layout of the format and the channel encoding doesn't matter. |
| * So, while texture views don't work in general, you can create a view as |
| * long as the bit-layout of the formats are the same. |
| * |
| * Fortunately, for every render compression capable format, the UINT format |
| * with the same bit layout also supports render compression. This means that |
| * we only need to handle UINT formats for copy operations. In order to do |
| * copies between formats with different bit layouts, we attach both with a |
| * UINT format and use bit_cast_color() to generate code to do the bit-cast |
| * operation between the two bit layouts. |
| */ |
| static enum isl_format |
| get_ccs_compatible_copy_format(const struct isl_format_layout *fmtl) |
| { |
| switch (fmtl->format) { |
| case ISL_FORMAT_R32G32B32A32_FLOAT: |
| case ISL_FORMAT_R32G32B32A32_SINT: |
| case ISL_FORMAT_R32G32B32A32_UINT: |
| case ISL_FORMAT_R32G32B32A32_UNORM: |
| case ISL_FORMAT_R32G32B32A32_SNORM: |
| case ISL_FORMAT_R32G32B32X32_FLOAT: |
| return ISL_FORMAT_R32G32B32A32_UINT; |
| |
| case ISL_FORMAT_R16G16B16A16_UNORM: |
| case ISL_FORMAT_R16G16B16A16_SNORM: |
| case ISL_FORMAT_R16G16B16A16_SINT: |
| case ISL_FORMAT_R16G16B16A16_UINT: |
| case ISL_FORMAT_R16G16B16A16_FLOAT: |
| case ISL_FORMAT_R16G16B16X16_UNORM: |
| case ISL_FORMAT_R16G16B16X16_FLOAT: |
| return ISL_FORMAT_R16G16B16A16_UINT; |
| |
| case ISL_FORMAT_R32G32_FLOAT: |
| case ISL_FORMAT_R32G32_SINT: |
| case ISL_FORMAT_R32G32_UINT: |
| case ISL_FORMAT_R32G32_UNORM: |
| case ISL_FORMAT_R32G32_SNORM: |
| return ISL_FORMAT_R32G32_UINT; |
| |
| case ISL_FORMAT_B8G8R8A8_UNORM: |
| case ISL_FORMAT_B8G8R8A8_UNORM_SRGB: |
| case ISL_FORMAT_R8G8B8A8_UNORM: |
| case ISL_FORMAT_R8G8B8A8_UNORM_SRGB: |
| case ISL_FORMAT_R8G8B8A8_SNORM: |
| case ISL_FORMAT_R8G8B8A8_SINT: |
| case ISL_FORMAT_R8G8B8A8_UINT: |
| case ISL_FORMAT_B8G8R8X8_UNORM: |
| case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: |
| case ISL_FORMAT_R8G8B8X8_UNORM: |
| case ISL_FORMAT_R8G8B8X8_UNORM_SRGB: |
| return ISL_FORMAT_R8G8B8A8_UINT; |
| |
| case ISL_FORMAT_R16G16_UNORM: |
| case ISL_FORMAT_R16G16_SNORM: |
| case ISL_FORMAT_R16G16_SINT: |
| case ISL_FORMAT_R16G16_UINT: |
| case ISL_FORMAT_R16G16_FLOAT: |
| return ISL_FORMAT_R16G16_UINT; |
| |
| case ISL_FORMAT_R32_SINT: |
| case ISL_FORMAT_R32_UINT: |
| case ISL_FORMAT_R32_FLOAT: |
| case ISL_FORMAT_R32_UNORM: |
| case ISL_FORMAT_R32_SNORM: |
| return ISL_FORMAT_R32_UINT; |
| |
| case ISL_FORMAT_B10G10R10A2_UNORM: |
| case ISL_FORMAT_B10G10R10A2_UNORM_SRGB: |
| case ISL_FORMAT_R10G10B10A2_UNORM: |
| case ISL_FORMAT_R10G10B10A2_UNORM_SRGB: |
| case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM: |
| case ISL_FORMAT_R10G10B10A2_UINT: |
| return ISL_FORMAT_R10G10B10A2_UINT; |
| |
| case ISL_FORMAT_R16_UNORM: |
| case ISL_FORMAT_R16_SNORM: |
| case ISL_FORMAT_R16_SINT: |
| case ISL_FORMAT_R16_UINT: |
| case ISL_FORMAT_R16_FLOAT: |
| return ISL_FORMAT_R16_UINT; |
| |
| case ISL_FORMAT_R8G8_UNORM: |
| case ISL_FORMAT_R8G8_SNORM: |
| case ISL_FORMAT_R8G8_SINT: |
| case ISL_FORMAT_R8G8_UINT: |
| return ISL_FORMAT_R8G8_UINT; |
| |
| case ISL_FORMAT_B5G5R5X1_UNORM: |
| case ISL_FORMAT_B5G5R5X1_UNORM_SRGB: |
| case ISL_FORMAT_B5G5R5A1_UNORM: |
| case ISL_FORMAT_B5G5R5A1_UNORM_SRGB: |
| return ISL_FORMAT_B5G5R5A1_UNORM; |
| |
| case ISL_FORMAT_A4B4G4R4_UNORM: |
| case ISL_FORMAT_B4G4R4A4_UNORM: |
| case ISL_FORMAT_B4G4R4A4_UNORM_SRGB: |
| return ISL_FORMAT_B4G4R4A4_UNORM; |
| |
| case ISL_FORMAT_B5G6R5_UNORM: |
| case ISL_FORMAT_B5G6R5_UNORM_SRGB: |
| return ISL_FORMAT_B5G6R5_UNORM; |
| |
| case ISL_FORMAT_A1B5G5R5_UNORM: |
| return ISL_FORMAT_A1B5G5R5_UNORM; |
| |
| case ISL_FORMAT_A8_UNORM: |
| case ISL_FORMAT_R8_UNORM: |
| case ISL_FORMAT_R8_SNORM: |
| case ISL_FORMAT_R8_SINT: |
| case ISL_FORMAT_R8_UINT: |
| return ISL_FORMAT_R8_UINT; |
| |
| default: |
| unreachable("Not a compressible format"); |
| } |
| } |
| |
| void |
| blorp_surf_convert_to_uncompressed(const struct isl_device *isl_dev, |
| struct brw_blorp_surface_info *info, |
| uint32_t *x, uint32_t *y, |
| uint32_t *width, uint32_t *height) |
| { |
| const struct isl_format_layout *fmtl = |
| isl_format_get_layout(info->surf.format); |
| |
| assert(fmtl->bw > 1 || fmtl->bh > 1); |
| |
| /* This is a compressed surface. We need to convert it to a single |
| * slice (because compressed layouts don't perfectly match uncompressed |
| * ones with the same bpb) and divide x, y, width, and height by the |
| * block size. |
| */ |
| blorp_surf_convert_to_single_slice(isl_dev, info); |
| |
| if (width && height) { |
| #ifndef NDEBUG |
| uint32_t right_edge_px = info->tile_x_sa + *x + *width; |
| uint32_t bottom_edge_px = info->tile_y_sa + *y + *height; |
| assert(*width % fmtl->bw == 0 || |
| right_edge_px == info->surf.logical_level0_px.width); |
| assert(*height % fmtl->bh == 0 || |
| bottom_edge_px == info->surf.logical_level0_px.height); |
| #endif |
| *width = DIV_ROUND_UP(*width, fmtl->bw); |
| *height = DIV_ROUND_UP(*height, fmtl->bh); |
| } |
| |
| if (x && y) { |
| assert(*x % fmtl->bw == 0); |
| assert(*y % fmtl->bh == 0); |
| *x /= fmtl->bw; |
| *y /= fmtl->bh; |
| } |
| |
| info->surf.logical_level0_px = isl_surf_get_logical_level0_el(&info->surf); |
| info->surf.phys_level0_sa = isl_surf_get_phys_level0_el(&info->surf); |
| |
| assert(info->tile_x_sa % fmtl->bw == 0); |
| assert(info->tile_y_sa % fmtl->bh == 0); |
| info->tile_x_sa /= fmtl->bw; |
| info->tile_y_sa /= fmtl->bh; |
| |
| /* It's now an uncompressed surface so we need an uncompressed format */ |
| info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb); |
| } |
| |
| void |
| blorp_copy(struct blorp_batch *batch, |
| const struct blorp_surf *src_surf, |
| unsigned src_level, unsigned src_layer, |
| const struct blorp_surf *dst_surf, |
| unsigned dst_level, unsigned dst_layer, |
| uint32_t src_x, uint32_t src_y, |
| uint32_t dst_x, uint32_t dst_y, |
| uint32_t src_width, uint32_t src_height) |
| { |
| const struct isl_device *isl_dev = batch->blorp->isl_dev; |
| struct blorp_params params; |
| |
| if (src_width == 0 || src_height == 0) |
| return; |
| |
| blorp_params_init(¶ms); |
| params.snapshot_type = INTEL_SNAPSHOT_COPY; |
| brw_blorp_surface_info_init(batch->blorp, ¶ms.src, src_surf, src_level, |
| src_layer, ISL_FORMAT_UNSUPPORTED, false); |
| brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, dst_surf, dst_level, |
| dst_layer, ISL_FORMAT_UNSUPPORTED, true); |
| |
| struct brw_blorp_blit_prog_key wm_prog_key = { |
| .shader_type = BLORP_SHADER_TYPE_COPY, |
| .filter = BLORP_FILTER_NONE, |
| .need_src_offset = src_surf->tile_x_sa || src_surf->tile_y_sa, |
| .need_dst_offset = dst_surf->tile_x_sa || dst_surf->tile_y_sa, |
| }; |
| |
| const struct isl_format_layout *src_fmtl = |
| isl_format_get_layout(params.src.surf.format); |
| const struct isl_format_layout *dst_fmtl = |
| isl_format_get_layout(params.dst.surf.format); |
| |
| assert(params.src.aux_usage == ISL_AUX_USAGE_NONE || |
| params.src.aux_usage == ISL_AUX_USAGE_HIZ || |
| params.src.aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT || |
| params.src.aux_usage == ISL_AUX_USAGE_MCS || |
| params.src.aux_usage == ISL_AUX_USAGE_MCS_CCS || |
| params.src.aux_usage == ISL_AUX_USAGE_CCS_E || |
| params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E || |
| params.src.aux_usage == ISL_AUX_USAGE_STC_CCS); |
| |
| if (isl_aux_usage_has_hiz(params.src.aux_usage)) { |
| /* In order to use HiZ, we have to use the real format for the source. |
| * Depth <-> Color copies are not allowed. |
| */ |
| params.src.view.format = params.src.surf.format; |
| params.dst.view.format = params.src.surf.format; |
| } else if ((params.dst.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) && |
| isl_dev->info->ver >= 7) { |
| /* On Gfx7 and higher, we use actual depth writes for blits into depth |
| * buffers so we need the real format. |
| */ |
| params.src.view.format = params.dst.surf.format; |
| params.dst.view.format = params.dst.surf.format; |
| } else if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E || |
| params.dst.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) { |
| params.dst.view.format = get_ccs_compatible_copy_format(dst_fmtl); |
| if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E || |
| params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) { |
| params.src.view.format = get_ccs_compatible_copy_format(src_fmtl); |
| } else if (src_fmtl->bpb == dst_fmtl->bpb) { |
| params.src.view.format = params.dst.view.format; |
| } else { |
| params.src.view.format = |
| get_copy_format_for_bpb(isl_dev, src_fmtl->bpb); |
| } |
| } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E || |
| params.src.aux_usage == ISL_AUX_USAGE_GFX12_CCS_E) { |
| params.src.view.format = get_ccs_compatible_copy_format(src_fmtl); |
| if (src_fmtl->bpb == dst_fmtl->bpb) { |
| params.dst.view.format = params.src.view.format; |
| } else { |
| params.dst.view.format = |
| get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb); |
| } |
| } else { |
| params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb); |
| params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb); |
| } |
| |
| if (params.src.view.format != params.dst.view.format) { |
| enum isl_format src_cast_format = params.src.view.format; |
| enum isl_format dst_cast_format = params.dst.view.format; |
| |
| /* The BLORP bitcast code gets confused by RGB formats. Just treat them |
| * as RGBA and then everything will be happy. This is perfectly safe |
| * because BLORP likes to treat things as if they have vec4 colors all |
| * the time anyway. |
| */ |
| if (isl_format_get_layout(src_cast_format)->bpb % 3 == 0) |
| src_cast_format = isl_format_rgb_to_rgba(src_cast_format); |
| if (isl_format_get_layout(dst_cast_format)->bpb % 3 == 0) |
| dst_cast_format = isl_format_rgb_to_rgba(dst_cast_format); |
| |
| if (src_cast_format != dst_cast_format) { |
| wm_prog_key.format_bit_cast = true; |
| wm_prog_key.src_format = src_cast_format; |
| wm_prog_key.dst_format = dst_cast_format; |
| } |
| } |
| |
| if (src_fmtl->bw > 1 || src_fmtl->bh > 1) { |
| blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, ¶ms.src, |
| &src_x, &src_y, |
| &src_width, &src_height); |
| wm_prog_key.need_src_offset = true; |
| } |
| |
| if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) { |
| blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, ¶ms.dst, |
| &dst_x, &dst_y, NULL, NULL); |
| wm_prog_key.need_dst_offset = true; |
| } |
| |
| /* Once both surfaces are stompped to uncompressed as needed, the |
| * destination size is the same as the source size. |
| */ |
| uint32_t dst_width = src_width; |
| uint32_t dst_height = src_height; |
| |
| struct blt_coords coords = { |
| .x = { |
| .src0 = src_x, |
| .src1 = src_x + src_width, |
| .dst0 = dst_x, |
| .dst1 = dst_x + dst_width, |
| .mirror = false |
| }, |
| .y = { |
| .src0 = src_y, |
| .src1 = src_y + src_height, |
| .dst0 = dst_y, |
| .dst1 = dst_y + dst_height, |
| .mirror = false |
| } |
| }; |
| |
| do_blorp_blit(batch, ¶ms, &wm_prog_key, &coords); |
| } |
| |
| static enum isl_format |
| isl_format_for_size(unsigned size_B) |
| { |
| switch (size_B) { |
| case 1: return ISL_FORMAT_R8_UINT; |
| case 2: return ISL_FORMAT_R8G8_UINT; |
| case 4: return ISL_FORMAT_R8G8B8A8_UINT; |
| case 8: return ISL_FORMAT_R16G16B16A16_UINT; |
| case 16: return ISL_FORMAT_R32G32B32A32_UINT; |
| default: |
| unreachable("Not a power-of-two format size"); |
| } |
| } |
| |
| /** |
| * Returns the greatest common divisor of a and b that is a power of two. |
| */ |
| static uint64_t |
| gcd_pow2_u64(uint64_t a, uint64_t b) |
| { |
| assert(a > 0 || b > 0); |
| |
| unsigned a_log2 = ffsll(a) - 1; |
| unsigned b_log2 = ffsll(b) - 1; |
| |
| /* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which |
| * case, the MIN2() will take the other one. If both are 0 then we will |
| * hit the assert above. |
| */ |
| return 1 << MIN2(a_log2, b_log2); |
| } |
| |
| static void |
| do_buffer_copy(struct blorp_batch *batch, |
| struct blorp_address *src, |
| struct blorp_address *dst, |
| int width, int height, int block_size) |
| { |
| /* The actual format we pick doesn't matter as blorp will throw it away. |
| * The only thing that actually matters is the size. |
| */ |
| enum isl_format format = isl_format_for_size(block_size); |
| |
| UNUSED bool ok; |
| struct isl_surf surf; |
| ok = isl_surf_init(batch->blorp->isl_dev, &surf, |
| .dim = ISL_SURF_DIM_2D, |
| .format = format, |
| .width = width, |
| .height = height, |
| .depth = 1, |
| .levels = 1, |
| .array_len = 1, |
| .samples = 1, |
| .row_pitch_B = width * block_size, |
| .usage = ISL_SURF_USAGE_TEXTURE_BIT | |
| ISL_SURF_USAGE_RENDER_TARGET_BIT, |
| .tiling_flags = ISL_TILING_LINEAR_BIT); |
| assert(ok); |
| |
| struct blorp_surf src_blorp_surf = { |
| .surf = &surf, |
| .addr = *src, |
| }; |
| |
| struct blorp_surf dst_blorp_surf = { |
| .surf = &surf, |
| .addr = *dst, |
| }; |
| |
| blorp_copy(batch, &src_blorp_surf, 0, 0, &dst_blorp_surf, 0, 0, |
| 0, 0, 0, 0, width, height); |
| } |
| |
| void |
| blorp_buffer_copy(struct blorp_batch *batch, |
| struct blorp_address src, |
| struct blorp_address dst, |
| uint64_t size) |
| { |
| const struct intel_device_info *devinfo = batch->blorp->isl_dev->info; |
| uint64_t copy_size = size; |
| |
| /* This is maximum possible width/height our HW can handle */ |
| uint64_t max_surface_dim = 1 << (devinfo->ver >= 7 ? 14 : 13); |
| |
| /* First, we compute the biggest format that can be used with the |
| * given offsets and size. |
| */ |
| int bs = 16; |
|