blob: c19828aa1d7a47c3f5e513c51e06c22262ff9a3b [file] [log] [blame]
/*
* Copyright (c) 2017, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Intel Corporation nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com>
* Liam Girdwood <liam.r.girdwood@linux.intel.com>
* Keyon Jie <yang.jie@linux.intel.com>
*/
#include <stdint.h>
#include <stddef.h>
#include <errno.h>
#include <sof/sof.h>
#include <sof/lock.h>
#include <sof/list.h>
#include <sof/stream.h>
#include <sof/alloc.h>
#include <sof/work.h>
#include <sof/clock.h>
#include <sof/audio/component.h>
#include <sof/audio/pipeline.h>
#include <sof/math/numbers.h>
#include <uapi/ipc.h>
#include "src_config.h"
#include "src.h"
#if SRC_SHORT
#include <sof/audio/coefficients/src/src_tiny_int16_define.h>
#include <sof/audio/coefficients/src/src_tiny_int16_table.h>
#else
#include <sof/audio/coefficients/src/src_std_int32_define.h>
#include <sof/audio/coefficients/src/src_std_int32_table.h>
#endif
#ifdef MODULE_TEST
#include <stdio.h>
#endif
#define trace_src(__e) trace_event(TRACE_CLASS_SRC, __e)
#define tracev_src(__e) tracev_event(TRACE_CLASS_SRC, __e)
#define trace_src_error(__e) trace_error(TRACE_CLASS_SRC, __e)
/* The FIR maximum lengths are per channel so need to multiply them */
#define MAX_FIR_DELAY_SIZE_XNCH (PLATFORM_MAX_CHANNELS * MAX_FIR_DELAY_SIZE)
#define MAX_OUT_DELAY_SIZE_XNCH (PLATFORM_MAX_CHANNELS * MAX_OUT_DELAY_SIZE)
/* src component private data */
struct comp_data {
struct polyphase_src src;
struct src_param param;
int32_t *delay_lines;
uint32_t sink_rate;
uint32_t source_rate;
int32_t *sbuf_w_ptr;
int32_t *sbuf_r_ptr;
int sbuf_avail;
void (*src_func)(struct comp_dev *dev,
struct comp_buffer *source,
struct comp_buffer *sink,
size_t *consumed,
size_t *produced);
void (*polyphase_func)(struct src_stage_prm *s);
};
/* Calculate ceil() for integer division */
int src_ceil_divide(int a, int b)
{
int c;
c = a / b;
if (c * b < a)
c++;
return c;
}
/* Calculates the needed FIR delay line length */
static int src_fir_delay_length(struct src_stage *s)
{
return s->subfilter_length + (s->num_of_subfilters - 1) * s->idm
+ s->blk_in;
}
/* Calculates the FIR output delay line length */
static int src_out_delay_length(struct src_stage *s)
{
return 1 + (s->num_of_subfilters - 1) * s->odm;
}
/* Returns index of a matching sample rate */
static int src_find_fs(int fs_list[], int list_length, int fs)
{
int i;
for (i = 0; i < list_length; i++) {
if (fs_list[i] == fs)
return i;
}
return -EINVAL;
}
/* Calculates buffers to allocate for a SRC mode */
int src_buffer_lengths(struct src_param *a, int fs_in, int fs_out, int nch,
int frames, int frames_is_for_source)
{
struct src_stage *stage1;
struct src_stage *stage2;
int q;
int den;
int num;
int frames2;
if (nch > PLATFORM_MAX_CHANNELS) {
trace_src_error("che");
tracev_value(nch);
return -EINVAL;
}
a->nch = nch;
a->idx_in = src_find_fs(src_in_fs, NUM_IN_FS, fs_in);
a->idx_out = src_find_fs(src_out_fs, NUM_OUT_FS, fs_out);
/* Check that both in and out rates are supported */
if (a->idx_in < 0 || a->idx_out < 0) {
trace_src_error("us1");
tracev_value(fs_in);
tracev_value(fs_out);
return -EINVAL;
}
stage1 = src_table1[a->idx_out][a->idx_in];
stage2 = src_table2[a->idx_out][a->idx_in];
/* Check from stage1 parameter for a deleted in/out rate combination.*/
if (stage1->filter_length < 1) {
trace_src_error("us2");
tracev_value(fs_in);
tracev_value(fs_out);
return -EINVAL;
}
a->fir_s1 = nch * src_fir_delay_length(stage1);
a->out_s1 = nch * src_out_delay_length(stage1);
/* Find out how many additional times the SRC can be executed
* while having block size less or equal to max_frames.
*/
if (frames_is_for_source) {
/* Times that stage1 needs to run to input length of frames */
a->stage1_times_max = src_ceil_divide(frames, stage1->blk_in);
q = frames / stage1->blk_in;
a->stage1_times = MAX(q, 1);
a->blk_in = a->stage1_times * stage1->blk_in;
/* Times that stage2 needs to run */
den = stage2->blk_in * stage1->blk_in;
num = frames * stage2->blk_out * stage1->blk_out;
frames2 = src_ceil_divide(num, den);
a->stage2_times_max = src_ceil_divide(frames2, stage2->blk_out);
q = frames2 / stage2->blk_out;
a->stage2_times = MAX(q, 1);
a->blk_out = a->stage2_times * stage2->blk_out;
} else {
/* Times that stage2 needs to run to output length of frames */
a->stage2_times_max = src_ceil_divide(frames, stage2->blk_out);
q = frames / stage2->blk_out;
a->stage2_times = MAX(q, 1);
a->blk_out = a->stage2_times * stage2->blk_out;
/* Times that stage1 needs to run */
num = frames * stage2->blk_in * stage1->blk_in;
den = stage2->blk_out * stage1->blk_out;
frames2 = src_ceil_divide(num, den);
a->stage1_times_max = src_ceil_divide(frames2, stage1->blk_in);
q = frames2 / stage1->blk_in;
a->stage1_times = MAX(q, 1);
a->blk_in = a->stage1_times * stage1->blk_in;
}
if (stage2->filter_length == 1) {
a->fir_s2 = 0;
a->out_s2 = 0;
a->stage2_times = 0;
a->stage2_times_max = 0;
a->sbuf_length = 0;
} else {
a->fir_s2 = nch * src_fir_delay_length(stage2);
a->out_s2 = nch * src_out_delay_length(stage2);
/* 2x is an empirically tested length. Since the sink buffer
* capability to receive samples varies a shorter stage 2 output
* block will create a peak in internal buffer usage.
*/
/* TODO 1: Equation for needed length */
a->sbuf_length = 2 * nch * stage1->blk_out
* a->stage1_times_max;
}
a->src_multich = a->fir_s1 + a->fir_s2 + a->out_s1 + a->out_s2;
a->total = a->sbuf_length + a->src_multich;
return 0;
}
static void src_state_reset(struct src_state *state)
{
state->fir_delay_size = 0;
state->out_delay_size = 0;
}
static int init_stages(struct src_stage *stage1, struct src_stage *stage2,
struct polyphase_src *src, struct src_param *p,
int n, int32_t *delay_lines_start)
{
/* Clear FIR state */
src_state_reset(&src->state1);
src_state_reset(&src->state2);
src->number_of_stages = n;
src->stage1 = stage1;
src->stage2 = stage2;
if (n == 1 && stage1->blk_out == 0)
return -EINVAL;
/* Optimized SRC requires subfilter length multiple of 4 */
if (stage1->filter_length > 1 && (stage1->subfilter_length & 0x3) > 0)
return -EINVAL;
if (stage2->filter_length > 1 && (stage2->subfilter_length & 0x3) > 0)
return -EINVAL;
/* Delay line sizes */
src->state1.fir_delay_size = p->fir_s1;
src->state1.out_delay_size = p->out_s1;
src->state1.fir_delay = delay_lines_start;
src->state1.out_delay =
src->state1.fir_delay + src->state1.fir_delay_size;
/* Initialize to last ensures that circular wrap cannot happen
* mid-frame. The size is multiple of channels count.
*/
src->state1.fir_wp = &src->state1.fir_delay[p->fir_s1 - 1];
src->state1.out_rp = src->state1.out_delay;
if (n > 1) {
src->state2.fir_delay_size = p->fir_s2;
src->state2.out_delay_size = p->out_s2;
src->state2.fir_delay =
src->state1.out_delay + src->state1.out_delay_size;
src->state2.out_delay =
src->state2.fir_delay + src->state2.fir_delay_size;
/* Initialize to last ensures that circular wrap cannot happen
* mid-frame. The size is multiple of channels count.
*/
src->state2.fir_wp = &src->state2.fir_delay[p->fir_s2 - 1];
src->state2.out_rp = src->state2.out_delay;
} else {
src->state2.fir_delay_size = 0;
src->state2.out_delay_size = 0;
src->state2.fir_delay = NULL;
src->state2.out_delay = NULL;
}
/* Check the sizes are less than MAX */
if (src->state1.fir_delay_size > MAX_FIR_DELAY_SIZE_XNCH ||
src->state1.out_delay_size > MAX_OUT_DELAY_SIZE_XNCH ||
src->state2.fir_delay_size > MAX_FIR_DELAY_SIZE_XNCH ||
src->state2.out_delay_size > MAX_OUT_DELAY_SIZE_XNCH) {
src->state1.fir_delay = NULL;
src->state1.out_delay = NULL;
src->state2.fir_delay = NULL;
src->state2.out_delay = NULL;
return -EINVAL;
}
return 0;
}
void src_polyphase_reset(struct polyphase_src *src)
{
src->number_of_stages = 0;
src->stage1 = NULL;
src->stage2 = NULL;
src_state_reset(&src->state1);
src_state_reset(&src->state2);
}
int src_polyphase_init(struct polyphase_src *src, struct src_param *p,
int32_t *delay_lines_start)
{
struct src_stage *stage1;
struct src_stage *stage2;
int n_stages;
int ret;
if (p->idx_in < 0 || p->idx_out < 0)
return -EINVAL;
/* Get setup for 2 stage conversion */
stage1 = src_table1[p->idx_out][p->idx_in];
stage2 = src_table2[p->idx_out][p->idx_in];
ret = init_stages(stage1, stage2, src, p, 2, delay_lines_start);
if (ret < 0)
return -EINVAL;
/* Get number of stages used for optimize opportunity. 2nd
* stage length is one if conversion needs only one stage.
* If input and output rate is the same return 0 to
* use a simple copy function instead of 1 stage FIR with one
* tap.
*/
n_stages = (src->stage2->filter_length == 1) ? 1 : 2;
if (p->idx_in == p->idx_out)
n_stages = 0;
/* If filter length for first stage is zero this is a deleted
* mode from in/out matrix. Computing of such SRC mode needs
* to be prevented.
*/
if (src->stage1->filter_length == 0)
return -EINVAL;
return n_stages;
}
/* Fallback function */
static void src_fallback(struct comp_dev *dev, struct comp_buffer *source,
struct comp_buffer *sink, size_t *bytes_read, size_t *bytes_written)
{
*bytes_read = 0;
*bytes_written = 0;
}
/* Normal 2 stage SRC */
static void src_2s_s32_default(struct comp_dev *dev,
struct comp_buffer *source, struct comp_buffer *sink,
size_t *bytes_read, size_t *bytes_written)
{
struct src_stage_prm s1;
struct src_stage_prm s2;
int s1_blk_in;
int s1_blk_out;
int s2_blk_in;
int s2_blk_out;
struct comp_data *cd = comp_get_drvdata(dev);
int32_t *dest = (int32_t *)sink->w_ptr;
int32_t *src = (int32_t *)source->r_ptr;
int32_t *sbuf_addr = cd->delay_lines;
int32_t *sbuf_end_addr = &cd->delay_lines[cd->param.sbuf_length];
int32_t sbuf_size = cd->param.sbuf_length * sizeof(int32_t);
int nch = dev->params.channels;
int sbuf_free = cd->param.sbuf_length - cd->sbuf_avail;
int n_read = 0;
int n_written = 0;
int n1 = 0;
int n2 = 0;
int avail_b = source->avail;
int free_b = sink->free;
int sz = sizeof(int32_t);
s1.x_end_addr = source->end_addr;
s1.x_size = source->size;
s1.y_addr = sbuf_addr;
s1.y_end_addr = sbuf_end_addr;
s1.y_size = sbuf_size;
s1.state = &cd->src.state1;
s1.stage = cd->src.stage1;
s1.x_rptr = src;
s1.y_wptr = cd->sbuf_w_ptr;
s1.nch = nch;
s2.x_end_addr = sbuf_end_addr;
s2.x_size = sbuf_size;
s2.y_addr = sink->addr;
s2.y_end_addr = sink->end_addr;
s2.y_size = sink->size;
s2.state = &cd->src.state2;
s2.stage = cd->src.stage2;
s2.x_rptr = cd->sbuf_r_ptr;
s2.y_wptr = dest;
s2.nch = nch;
/* Test if 1st stage can be run with default block length to reach
* the period length or just under it.
*/
s1.times = cd->param.stage1_times;
s1_blk_in = s1.times * cd->src.stage1->blk_in * nch;
s1_blk_out = s1.times * cd->src.stage1->blk_out * nch;
if (avail_b >= s1_blk_in * sz && sbuf_free >= s1_blk_out) {
cd->polyphase_func(&s1);
cd->sbuf_w_ptr = s1.y_wptr;
cd->sbuf_avail += s1_blk_out;
n_read += s1_blk_in;
avail_b -= s1_blk_in * sz;
sbuf_free -= s1_blk_out;
n1 = s1.times;
}
/* Run one block at time the remaining data for 1st stage. */
s1.times = 1;
s1_blk_in = cd->src.stage1->blk_in * nch;
s1_blk_out = cd->src.stage1->blk_out * nch;
while (n1 < cd->param.stage1_times_max &&
avail_b >= s1_blk_in * sz &&
sbuf_free >= s1_blk_out) {
cd->polyphase_func(&s1);
cd->sbuf_w_ptr = s1.y_wptr;
cd->sbuf_avail += s1_blk_out;
n_read += s1_blk_in;
avail_b -= s1_blk_in * sz;
sbuf_free -= s1_blk_out;
n1 += s1.times;
}
/* Test if 2nd stage can be run with default block length. */
s2.times = cd->param.stage2_times;
s2_blk_in = s2.times * cd->src.stage2->blk_in * nch;
s2_blk_out = s2.times * cd->src.stage2->blk_out * nch;
if (cd->sbuf_avail >= s2_blk_in && free_b >= s2_blk_out * sz) {
cd->polyphase_func(&s2);
cd->sbuf_r_ptr = s2.x_rptr;
cd->sbuf_avail -= s2_blk_in;
free_b -= s2_blk_out * sz;
n_written += s2_blk_out;
n2 = s2.times;
}
/* Run one block at time the remaining 2nd stage output */
s2.times = 1;
s2_blk_in = cd->src.stage2->blk_in * nch;
s2_blk_out = cd->src.stage2->blk_out * nch;
while (n2 < cd->param.stage2_times_max &&
cd->sbuf_avail >= s2_blk_in &&
free_b >= s2_blk_out * sz) {
cd->polyphase_func(&s2);
cd->sbuf_r_ptr = s2.x_rptr;
cd->sbuf_avail -= s2_blk_in;
free_b -= s2_blk_out * sz;
n_written += s2_blk_out;
n2 += s2.times;
}
*bytes_read = sizeof(int32_t) * n_read;
*bytes_written = sizeof(int32_t) * n_written;
}
/* 1 stage SRC for simple conversions */
static void src_1s_s32_default(struct comp_dev *dev,
struct comp_buffer *source, struct comp_buffer *sink,
size_t *bytes_read, size_t *bytes_written)
{
struct src_stage_prm s1;
struct comp_data *cd = comp_get_drvdata(dev);
int nch = dev->params.channels;
int n_read = 0;
int n_written = 0;
s1.times = cd->param.stage1_times;
s1.x_rptr = (int32_t *)source->r_ptr;
s1.x_end_addr = source->end_addr;
s1.x_size = source->size;
s1.y_wptr = (int32_t *)sink->w_ptr;
s1.y_end_addr = sink->end_addr;
s1.y_size = sink->size;
s1.state = &cd->src.state1;
s1.stage = cd->src.stage1;
s1.nch = dev->params.channels;
cd->polyphase_func(&s1);
n_read += nch * cd->param.blk_in;
n_written += nch * cd->param.blk_out;
*bytes_read = n_read * sizeof(int32_t);
*bytes_written = n_written * sizeof(int32_t);
}
/* A fast copy function for same in and out rate */
static void src_copy_s32_default(struct comp_dev *dev,
struct comp_buffer *source, struct comp_buffer *sink,
size_t *bytes_read, size_t *bytes_written)
{
struct comp_data *cd = comp_get_drvdata(dev);
int32_t *src = (int32_t *)source->r_ptr;
int32_t *snk = (int32_t *)sink->w_ptr;
int nch = dev->params.channels;
int frames = cd->param.blk_in;
int n;
int n_wrap_src;
int n_wrap_snk;
int n_wrap_min;
int n_copy;
n = frames * nch;
while (n > 0) {
n_wrap_src = (int32_t *)source->end_addr - src;
n_wrap_snk = (int32_t *)sink->end_addr - snk;
n_wrap_min = (n_wrap_src < n_wrap_snk) ?
n_wrap_src : n_wrap_snk;
n_copy = (n < n_wrap_min) ? n : n_wrap_min;
memcpy(snk, src, n_copy * sizeof(int32_t));
/* Update and check both source and destination for wrap */
n -= n_copy;
src += n_copy;
snk += n_copy;
src_circ_inc_wrap(&src, source->end_addr, source->size);
src_circ_inc_wrap(&snk, sink->end_addr, sink->size);
}
*bytes_read = frames * nch * sizeof(int32_t);
*bytes_written = frames * nch * sizeof(int32_t);
}
static struct comp_dev *src_new(struct sof_ipc_comp *comp)
{
struct comp_dev *dev;
struct sof_ipc_comp_src *src;
struct sof_ipc_comp_src *ipc_src = (struct sof_ipc_comp_src *)comp;
struct comp_data *cd;
trace_src("new");
/* validate init data - either SRC sink or source rate must be set */
if (ipc_src->source_rate == 0 && ipc_src->sink_rate == 0) {
trace_src_error("sn1");
return NULL;
}
dev = rzalloc(RZONE_RUNTIME, SOF_MEM_CAPS_RAM,
COMP_SIZE(struct sof_ipc_comp_src));
if (!dev)
return NULL;
src = (struct sof_ipc_comp_src *)&dev->comp;
memcpy(src, ipc_src, sizeof(struct sof_ipc_comp_src));
cd = rzalloc(RZONE_RUNTIME, SOF_MEM_CAPS_RAM, sizeof(*cd));
if (!cd) {
rfree(dev);
return NULL;
}
comp_set_drvdata(dev, cd);
cd->delay_lines = NULL;
cd->src_func = src_2s_s32_default;
cd->polyphase_func = src_polyphase_stage_cir;
src_polyphase_reset(&cd->src);
dev->state = COMP_STATE_READY;
return dev;
}
static void src_free(struct comp_dev *dev)
{
struct comp_data *cd = comp_get_drvdata(dev);
trace_src("fre");
/* Free dynamically reserved buffers for SRC algorithm */
if (!cd->delay_lines)
rfree(cd->delay_lines);
rfree(cd);
rfree(dev);
}
/* set component audio stream parameters */
static int src_params(struct comp_dev *dev)
{
struct sof_ipc_stream_params *params = &dev->params;
struct sof_ipc_comp_src *src = COMP_GET_IPC(dev, sof_ipc_comp_src);
struct sof_ipc_comp_config *config = COMP_GET_CONFIG(dev);
struct comp_data *cd = comp_get_drvdata(dev);
struct comp_buffer *sink;
struct comp_buffer *source;
size_t delay_lines_size;
uint32_t source_rate;
uint32_t sink_rate;
int32_t *buffer_start;
int n = 0;
int err;
int frames_is_for_source;
int q;
trace_src("par");
/* SRC supports S24_4LE and S32_LE formats */
switch (config->frame_fmt) {
case SOF_IPC_FRAME_S24_4LE:
cd->polyphase_func = src_polyphase_stage_cir_s24;
break;
case SOF_IPC_FRAME_S32_LE:
cd->polyphase_func = src_polyphase_stage_cir;
break;
default:
trace_src_error("sr0");
return -EINVAL;
}
/* Calculate source and sink rates, one rate will come from IPC new
* and the other from params.
*/
if (src->source_rate == 0) {
/* params rate is source rate */
source_rate = params->rate;
sink_rate = src->sink_rate;
/* re-write our params with output rate for next component */
params->rate = sink_rate;
frames_is_for_source = 0;
} else {
/* params rate is sink rate */
source_rate = src->source_rate;
sink_rate = params->rate;
/* re-write our params with output rate for next component */
params->rate = source_rate;
frames_is_for_source = 1;
}
/* Allocate needed memory for delay lines */
err = src_buffer_lengths(&cd->param, source_rate, sink_rate,
params->channels, dev->frames, frames_is_for_source);
if (err < 0) {
trace_src_error("sr1");
trace_error_value(source_rate);
trace_error_value(sink_rate);
trace_error_value(params->channels);
trace_error_value(dev->frames);
return err;
}
delay_lines_size = sizeof(int32_t) * cd->param.total;
if (delay_lines_size == 0) {
trace_src_error("sr2");
return -EINVAL;
}
/* free any existing delay lines. TODO reuse if same size */
if (!cd->delay_lines)
rfree(cd->delay_lines);
cd->delay_lines = rballoc(RZONE_RUNTIME, SOF_MEM_CAPS_RAM,
delay_lines_size);
if (!cd->delay_lines) {
trace_src_error("sr3");
trace_error_value(delay_lines_size);
return -EINVAL;
}
/* Clear all delay lines here */
memset(cd->delay_lines, 0, delay_lines_size);
buffer_start = cd->delay_lines + cd->param.sbuf_length;
/* Initialize SRC for actual sample rate */
n = src_polyphase_init(&cd->src, &cd->param, buffer_start);
/* Reset stage buffer */
cd->sbuf_r_ptr = cd->delay_lines;
cd->sbuf_w_ptr = cd->delay_lines;
cd->sbuf_avail = 0;
switch (n) {
case 0:
cd->src_func = src_copy_s32_default; /* 1:1 fast copy */
break;
case 1:
cd->src_func = src_1s_s32_default; /* Simpler 1 stage SRC */
break;
case 2:
cd->src_func = src_2s_s32_default; /* Default 2 stage SRC */
break;
default:
/* This is possibly due to missing coefficients for
* requested rates combination. Sink audio will be
* muted if copy() is run.
*/
trace_src("SFa");
cd->src_func = src_fallback;
return -EINVAL;
}
/* Calculate period size based on config. First make sure that
* frame_bytes is set.
*/
dev->frame_bytes =
dev->params.sample_container_bytes * dev->params.channels;
/* The downstream buffer must be at least length of blk_out plus
* a dev->frames and an integer multiple of dev->frames. The
* buffer_set_size will return an error if the required length would
* be too long.
*/
q = src_ceil_divide(cd->param.blk_out, (int)dev->frames) + 1;
/* Configure downstream buffer */
sink = list_first_item(&dev->bsink_list, struct comp_buffer,
source_list);
err = buffer_set_size(sink, q * dev->frames * dev->frame_bytes);
if (err < 0) {
trace_src_error("eSz");
trace_error_value(sink->alloc_size);
trace_error_value(q * dev->frames * dev->frame_bytes);
return err;
}
/* Check that source buffer has sufficient size */
source = list_first_item(&dev->bsource_list, struct comp_buffer,
sink_list);
if (source->size < cd->param.blk_in * dev->frame_bytes) {
trace_src_error("eSy");
return -EINVAL;
}
return 0;
}
static int src_ctrl_cmd(struct comp_dev *dev, struct sof_ipc_ctrl_data *cdata)
{
trace_src_error("ec1");
return -EINVAL;
}
/* used to pass standard and bespoke commands (with data) to component */
static int src_cmd(struct comp_dev *dev, int cmd, void *data)
{
struct sof_ipc_ctrl_data *cdata = data;
int ret = 0;
trace_src("cmd");
if (cmd == COMP_CMD_SET_VALUE)
ret = src_ctrl_cmd(dev, cdata);
return ret;
}
static int src_trigger(struct comp_dev *dev, int cmd)
{
trace_src("trg");
return comp_set_state(dev, cmd);
}
/* copy and process stream data from source to sink buffers */
static int src_copy(struct comp_dev *dev)
{
struct comp_data *cd = comp_get_drvdata(dev);
struct comp_buffer *source;
struct comp_buffer *sink;
int need_source;
int need_sink;
size_t consumed = 0;
size_t produced = 0;
trace_src("SRC");
/* src component needs 1 source and 1 sink buffer */
source = list_first_item(&dev->bsource_list, struct comp_buffer,
sink_list);
sink = list_first_item(&dev->bsink_list, struct comp_buffer,
source_list);
/* Calculate needed amount of source buffer and sink buffer
* for one SRC run. The blk_in and blk are minimum condition to
* call copy. Copy can consume or produce a slightly larger block
* with the rates where block sizes are not constant. E.g. for
* 1 ms scheduling the blocks can be under or above 1 ms when the
* SRC interval block size constraint prevents exact 1 ms blocks.
*/
need_source = cd->param.blk_in * dev->frame_bytes;
need_sink = cd->param.blk_out * dev->frame_bytes;
/* make sure source component buffer has enough data available and that
* the sink component buffer has enough free bytes for copy. Also
* check for XRUNs.
*/
if (source->avail < need_source) {
trace_src_error("xru");
return -EIO; /* xrun */
}
if (sink->free < need_sink) {
trace_src_error("xro");
return -EIO; /* xrun */
}
cd->src_func(dev, source, sink, &consumed, &produced);
tracev_value(consumed >> 3);
tracev_value(produced >> 3);
/* Calc new free and available if data was processed. These
* functions must not be called with 0 consumed/produced.
*/
if (consumed > 0)
comp_update_buffer_consume(source, consumed);
if (produced > 0) {
comp_update_buffer_produce(sink, produced);
return cd->param.blk_out;
}
/* produced no data */
return 0;
}
static int src_prepare(struct comp_dev *dev)
{
trace_src("pre");
return comp_set_state(dev, COMP_TRIGGER_PREPARE);
}
static int src_reset(struct comp_dev *dev)
{
struct comp_data *cd = comp_get_drvdata(dev);
trace_src("SRe");
cd->src_func = src_2s_s32_default;
src_polyphase_reset(&cd->src);
comp_set_state(dev, COMP_TRIGGER_RESET);
return 0;
}
struct comp_driver comp_src = {
.type = SOF_COMP_SRC,
.ops = {
.new = src_new,
.free = src_free,
.params = src_params,
.cmd = src_cmd,
.trigger = src_trigger,
.copy = src_copy,
.prepare = src_prepare,
.reset = src_reset,
},
};
void sys_comp_src_init(void)
{
comp_register(&comp_src);
}