blob: c2f03b63cfa6ef7fd6777a37cd95c479bd22d8ff [file] [log] [blame]
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file tests string processing functions related to numeric values.
#include "absl/strings/numbers.h"
#include <sys/types.h>
#include <cfenv> // NOLINT(build/c++11)
#include <cinttypes>
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <numeric>
#include <random>
#include <set>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/random/distributions.h"
#include "absl/random/random.h"
#include "absl/strings/internal/numbers_test_common.h"
#include "absl/strings/internal/ostringstream.h"
#include "absl/strings/internal/pow10_helper.h"
#include "absl/strings/str_cat.h"
namespace {
using absl::numbers_internal::kSixDigitsToBufferSize;
using absl::numbers_internal::safe_strto32_base;
using absl::numbers_internal::safe_strto64_base;
using absl::numbers_internal::safe_strtou32_base;
using absl::numbers_internal::safe_strtou64_base;
using absl::numbers_internal::SixDigitsToBuffer;
using absl::strings_internal::Itoa;
using absl::strings_internal::strtouint32_test_cases;
using absl::strings_internal::strtouint64_test_cases;
using absl::SimpleAtoi;
using testing::Eq;
using testing::MatchesRegex;
// Number of floats to test with.
// 5,000,000 is a reasonable default for a test that only takes a few seconds.
// 1,000,000,000+ triggers checking for all possible mantissa values for
// double-precision tests. 2,000,000,000+ triggers checking for every possible
// single-precision float.
const int kFloatNumCases = 5000000;
// This is a slow, brute-force routine to compute the exact base-10
// representation of a double-precision floating-point number. It
// is useful for debugging only.
std::string PerfectDtoa(double d) {
if (d == 0) return "0";
if (d < 0) return "-" + PerfectDtoa(-d);
// Basic theory: decompose d into mantissa and exp, where
// d = mantissa * 2^exp, and exp is as close to zero as possible.
int64_t mantissa, exp = 0;
while (d >= 1ULL << 63) ++exp, d *= 0.5;
while ((mantissa = d) != d) --exp, d *= 2.0;
// Then convert mantissa to ASCII, and either double it (if
// exp > 0) or halve it (if exp < 0) repeatedly. "halve it"
// in this case means multiplying it by five and dividing by 10.
constexpr int maxlen = 1100; // worst case is actually 1030 or so.
char buf[maxlen + 5];
for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {
buf[pos] = '0' + (num % 10);
num /= 10;
}
char* begin = &buf[0];
char* end = buf + maxlen;
for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {
int carry = 0;
for (char* p = end; --p != begin;) {
int dig = *p - '0';
dig = dig * (exp > 0 ? 2 : 5) + carry;
carry = dig / 10;
dig %= 10;
*p = '0' + dig;
}
}
if (exp < 0) {
// "dividing by 10" above means we have to add the decimal point.
memmove(end + 1 + exp, end + exp, 1 - exp);
end[exp] = '.';
++end;
}
while (*begin == '0' && begin[1] != '.') ++begin;
return {begin, end};
}
TEST(ToString, PerfectDtoa) {
EXPECT_THAT(PerfectDtoa(1), Eq("1"));
EXPECT_THAT(PerfectDtoa(0.1),
Eq("0.1000000000000000055511151231257827021181583404541015625"));
EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));
EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));
for (int i = 0; i < 100; ++i) {
for (double multiplier :
{1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {
double d = multiplier * i;
std::string s = PerfectDtoa(d);
EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr));
}
}
}
template <typename integer>
struct MyInteger {
integer i;
explicit constexpr MyInteger(integer i) : i(i) {}
constexpr operator integer() const { return i; }
constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }
constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }
constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }
constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }
constexpr bool operator<(MyInteger other) const { return i < other.i; }
constexpr bool operator<=(MyInteger other) const { return i <= other.i; }
constexpr bool operator==(MyInteger other) const { return i == other.i; }
constexpr bool operator>=(MyInteger other) const { return i >= other.i; }
constexpr bool operator>(MyInteger other) const { return i > other.i; }
constexpr bool operator!=(MyInteger other) const { return i != other.i; }
integer as_integer() const { return i; }
};
typedef MyInteger<int64_t> MyInt64;
typedef MyInteger<uint64_t> MyUInt64;
void CheckInt32(int32_t x) {
char buffer[absl::numbers_internal::kFastToBufferSize];
char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
std::string expected = std::to_string(x);
EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
}
void CheckInt64(int64_t x) {
char buffer[absl::numbers_internal::kFastToBufferSize + 3];
buffer[0] = '*';
buffer[23] = '*';
buffer[24] = '*';
char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
std::string expected = std::to_string(x);
EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
EXPECT_EQ(buffer[0], '*');
EXPECT_EQ(buffer[23], '*');
EXPECT_EQ(buffer[24], '*');
char* my_actual =
absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);
EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
}
void CheckUInt32(uint32_t x) {
char buffer[absl::numbers_internal::kFastToBufferSize];
char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
std::string expected = std::to_string(x);
EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
}
void CheckUInt64(uint64_t x) {
char buffer[absl::numbers_internal::kFastToBufferSize + 1];
char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
std::string expected = std::to_string(x);
EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
EXPECT_EQ(expected, std::string(&buffer[1], generic_actual))
<< " Input " << x;
char* my_actual =
absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);
EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
}
void CheckHex64(uint64_t v) {
char expected[16 + 1];
std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));
snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));
EXPECT_EQ(expected, actual) << " Input " << v;
actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16));
snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v));
EXPECT_EQ(expected, actual) << " Input " << v;
}
TEST(Numbers, TestFastPrints) {
for (int i = -100; i <= 100; i++) {
CheckInt32(i);
CheckInt64(i);
}
for (int i = 0; i <= 100; i++) {
CheckUInt32(i);
CheckUInt64(i);
}
// Test min int to make sure that works
CheckInt32(INT_MIN);
CheckInt32(INT_MAX);
CheckInt64(LONG_MIN);
CheckInt64(uint64_t{1000000000});
CheckInt64(uint64_t{9999999999});
CheckInt64(uint64_t{100000000000000});
CheckInt64(uint64_t{999999999999999});
CheckInt64(uint64_t{1000000000000000000});
CheckInt64(uint64_t{1199999999999999999});
CheckInt64(int64_t{-700000000000000000});
CheckInt64(LONG_MAX);
CheckUInt32(std::numeric_limits<uint32_t>::max());
CheckUInt64(uint64_t{1000000000});
CheckUInt64(uint64_t{9999999999});
CheckUInt64(uint64_t{100000000000000});
CheckUInt64(uint64_t{999999999999999});
CheckUInt64(uint64_t{1000000000000000000});
CheckUInt64(uint64_t{1199999999999999999});
CheckUInt64(std::numeric_limits<uint64_t>::max());
for (int i = 0; i < 10000; i++) {
CheckHex64(i);
}
CheckHex64(uint64_t{0x123456789abcdef0});
}
template <typename int_type, typename in_val_type>
void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
std::string s;
// uint128 can be streamed but not StrCat'd
absl::strings_internal::OStringStream(&s) << in_value;
int_type x = static_cast<int_type>(~exp_value);
EXPECT_TRUE(SimpleAtoi(s, &x))
<< "in_value=" << in_value << " s=" << s << " x=" << x;
EXPECT_EQ(exp_value, x);
x = static_cast<int_type>(~exp_value);
EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));
EXPECT_EQ(exp_value, x);
}
template <typename int_type, typename in_val_type>
void VerifySimpleAtoiBad(in_val_type in_value) {
std::string s = absl::StrCat(in_value);
int_type x;
EXPECT_FALSE(SimpleAtoi(s, &x));
EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
}
TEST(NumbersTest, Atoi) {
// SimpleAtoi(absl::string_view, int32_t)
VerifySimpleAtoiGood<int32_t>(0, 0);
VerifySimpleAtoiGood<int32_t>(42, 42);
VerifySimpleAtoiGood<int32_t>(-42, -42);
VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
// SimpleAtoi(absl::string_view, uint32_t)
VerifySimpleAtoiGood<uint32_t>(0, 0);
VerifySimpleAtoiGood<uint32_t>(42, 42);
VerifySimpleAtoiBad<uint32_t>(-42);
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());
// SimpleAtoi(absl::string_view, int64_t)
VerifySimpleAtoiGood<int64_t>(0, 0);
VerifySimpleAtoiGood<int64_t>(42, 42);
VerifySimpleAtoiGood<int64_t>(-42, -42);
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
std::numeric_limits<int64_t>::min());
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());
// SimpleAtoi(absl::string_view, uint64_t)
VerifySimpleAtoiGood<uint64_t>(0, 0);
VerifySimpleAtoiGood<uint64_t>(42, 42);
VerifySimpleAtoiBad<uint64_t>(-42);
VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
// SimpleAtoi(absl::string_view, absl::uint128)
VerifySimpleAtoiGood<absl::uint128>(0, 0);
VerifySimpleAtoiGood<absl::uint128>(42, 42);
VerifySimpleAtoiBad<absl::uint128>(-42);
VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
VerifySimpleAtoiGood<absl::uint128>(
std::numeric_limits<absl::uint128>::max(),
std::numeric_limits<absl::uint128>::max());
// Some other types
VerifySimpleAtoiGood<int>(-42, -42);
VerifySimpleAtoiGood<int32_t>(-42, -42);
VerifySimpleAtoiGood<uint32_t>(42, 42);
VerifySimpleAtoiGood<unsigned int>(42, 42);
VerifySimpleAtoiGood<int64_t>(-42, -42);
VerifySimpleAtoiGood<long>(-42, -42); // NOLINT(runtime/int)
VerifySimpleAtoiGood<uint64_t>(42, 42);
VerifySimpleAtoiGood<size_t>(42, 42);
VerifySimpleAtoiGood<std::string::size_type>(42, 42);
}
TEST(NumbersTest, Atod) {
double d;
EXPECT_TRUE(absl::SimpleAtod("nan", &d));
EXPECT_TRUE(std::isnan(d));
}
TEST(NumbersTest, Atoenum) {
enum E01 {
E01_zero = 0,
E01_one = 1,
};
VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);
VerifySimpleAtoiGood<E01>(E01_one, E01_one);
enum E_101 {
E_101_minusone = -1,
E_101_zero = 0,
E_101_one = 1,
};
VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);
VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);
VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);
enum E_bigint {
E_bigint_zero = 0,
E_bigint_one = 1,
E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),
};
VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);
VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);
VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);
enum E_fullint {
E_fullint_zero = 0,
E_fullint_one = 1,
E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),
E_fullint_min32 = INT32_MIN,
};
VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);
VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);
VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);
VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);
enum E_biguint {
E_biguint_zero = 0,
E_biguint_one = 1,
E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),
E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),
};
VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);
VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);
VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);
VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);
}
TEST(stringtest, safe_strto32_base) {
int32_t value;
EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
EXPECT_EQ(0x34234324, value);
EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
EXPECT_EQ(0x34234324, value);
EXPECT_TRUE(safe_strto32_base("34234324", &value, 16));
EXPECT_EQ(0x34234324, value);
EXPECT_TRUE(safe_strto32_base("0", &value, 16));
EXPECT_EQ(0, value);
EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16));
EXPECT_EQ(-0x34234324, value);
EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16));
EXPECT_EQ(-0x34234324, value);
EXPECT_TRUE(safe_strto32_base("7654321", &value, 8));
EXPECT_EQ(07654321, value);
EXPECT_TRUE(safe_strto32_base("-01234", &value, 8));
EXPECT_EQ(-01234, value);
EXPECT_FALSE(safe_strto32_base("1834", &value, 8));
// Autodetect base.
EXPECT_TRUE(safe_strto32_base("0", &value, 0));
EXPECT_EQ(0, value);
EXPECT_TRUE(safe_strto32_base("077", &value, 0));
EXPECT_EQ(077, value); // Octal interpretation
// Leading zero indicates octal, but then followed by invalid digit.
EXPECT_FALSE(safe_strto32_base("088", &value, 0));
// Leading 0x indicated hex, but then followed by invalid digit.
EXPECT_FALSE(safe_strto32_base("0xG", &value, 0));
// Base-10 version.
EXPECT_TRUE(safe_strto32_base("34234324", &value, 10));
EXPECT_EQ(34234324, value);
EXPECT_TRUE(safe_strto32_base("0", &value, 10));
EXPECT_EQ(0, value);
EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10));
EXPECT_EQ(-34234324, value);
EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10));
EXPECT_EQ(34234324, value);
// Invalid ints.
EXPECT_FALSE(safe_strto32_base("", &value, 10));
EXPECT_FALSE(safe_strto32_base(" ", &value, 10));
EXPECT_FALSE(safe_strto32_base("abc", &value, 10));
EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10));
EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10));
// Out of bounds.
EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
// String version.
EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16));
EXPECT_EQ(0x1234, value);
// Base-10 string version.
EXPECT_TRUE(safe_strto32_base("1234", &value, 10));
EXPECT_EQ(1234, value);
}
TEST(stringtest, safe_strto32_range) {
// These tests verify underflow/overflow behaviour.
int32_t value;
EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
EXPECT_EQ(std::numeric_limits<int32_t>::max(), value);
EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10));
EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
}
TEST(stringtest, safe_strto64_range) {
// These tests verify underflow/overflow behaviour.
int64_t value;
EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
EXPECT_EQ(std::numeric_limits<int64_t>::max(), value);
EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10));
EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
}
TEST(stringtest, safe_strto32_leading_substring) {
// These tests verify this comment in numbers.h:
// On error, returns false, and sets *value to: [...]
// conversion of leading substring if available ("123@@@" -> 123)
// 0 if no leading substring available
int32_t value;
EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10));
EXPECT_EQ(4069, value);
EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8));
EXPECT_EQ(0406, value);
EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10));
EXPECT_EQ(4069, value);
EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16));
EXPECT_EQ(0x4069ba, value);
EXPECT_FALSE(safe_strto32_base("@@@", &value, 10));
EXPECT_EQ(0, value); // there was no leading substring
}
TEST(stringtest, safe_strto64_leading_substring) {
// These tests verify this comment in numbers.h:
// On error, returns false, and sets *value to: [...]
// conversion of leading substring if available ("123@@@" -> 123)
// 0 if no leading substring available
int64_t value;
EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10));
EXPECT_EQ(4069, value);
EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8));
EXPECT_EQ(0406, value);
EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10));
EXPECT_EQ(4069, value);
EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16));
EXPECT_EQ(0x4069ba, value);
EXPECT_FALSE(safe_strto64_base("@@@", &value, 10));
EXPECT_EQ(0, value); // there was no leading substring
}
TEST(stringtest, safe_strto64_base) {
int64_t value;
EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16));
EXPECT_EQ(int64_t{0x3423432448783446}, value);
EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16));
EXPECT_EQ(int64_t{0x3423432448783446}, value);
EXPECT_TRUE(safe_strto64_base("0", &value, 16));
EXPECT_EQ(0, value);
EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16));
EXPECT_EQ(int64_t{-0x3423432448783446}, value);
EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16));
EXPECT_EQ(int64_t{-0x3423432448783446}, value);
EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8));
EXPECT_EQ(int64_t{0123456701234567012}, value);
EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8));
EXPECT_EQ(int64_t{-017777777777777}, value);
EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8));
// Autodetect base.
EXPECT_TRUE(safe_strto64_base("0", &value, 0));
EXPECT_EQ(0, value);
EXPECT_TRUE(safe_strto64_base("077", &value, 0));
EXPECT_EQ(077, value); // Octal interpretation
// Leading zero indicates octal, but then followed by invalid digit.
EXPECT_FALSE(safe_strto64_base("088", &value, 0));
// Leading 0x indicated hex, but then followed by invalid digit.
EXPECT_FALSE(safe_strto64_base("0xG", &value, 0));
// Base-10 version.
EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10));
EXPECT_EQ(int64_t{34234324487834466}, value);
EXPECT_TRUE(safe_strto64_base("0", &value, 10));
EXPECT_EQ(0, value);
EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10));
EXPECT_EQ(int64_t{-34234324487834466}, value);
EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10));
EXPECT_EQ(int64_t{34234324487834466}, value);
// Invalid ints.
EXPECT_FALSE(safe_strto64_base("", &value, 10));
EXPECT_FALSE(safe_strto64_base(" ", &value, 10));
EXPECT_FALSE(safe_strto64_base("abc", &value, 10));
EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10));
EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10));
// Out of bounds.
EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
// String version.
EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16));
EXPECT_EQ(0x1234, value);
// Base-10 string version.
EXPECT_TRUE(safe_strto64_base("1234", &value, 10));
EXPECT_EQ(1234, value);
}
const size_t kNumRandomTests = 10000;
template <typename IntType>
void test_random_integer_parse_base(bool (*parse_func)(absl::string_view,
IntType* value,
int base)) {
using RandomEngine = std::minstd_rand0;
std::random_device rd;
RandomEngine rng(rd());
std::uniform_int_distribution<IntType> random_int(
std::numeric_limits<IntType>::min());
std::uniform_int_distribution<int> random_base(2, 35);
for (size_t i = 0; i < kNumRandomTests; i++) {
IntType value = random_int(rng);
int base = random_base(rng);
std::string str_value;
EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
IntType parsed_value;
// Test successful parse
EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
EXPECT_EQ(parsed_value, value);
// Test overflow
EXPECT_FALSE(
parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value),
&parsed_value, base));
// Test underflow
if (std::numeric_limits<IntType>::min() < 0) {
EXPECT_FALSE(
parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value),
&parsed_value, base));
} else {
EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base));
}
}
}
TEST(stringtest, safe_strto32_random) {
test_random_integer_parse_base<int32_t>(&safe_strto32_base);
}
TEST(stringtest, safe_strto64_random) {
test_random_integer_parse_base<int64_t>(&safe_strto64_base);
}
TEST(stringtest, safe_strtou32_random) {
test_random_integer_parse_base<uint32_t>(&safe_strtou32_base);
}
TEST(stringtest, safe_strtou64_random) {
test_random_integer_parse_base<uint64_t>(&safe_strtou64_base);
}
TEST(stringtest, safe_strtou128_random) {
// random number generators don't work for uint128, and
// uint128 can be streamed but not StrCat'd, so this code must be custom
// implemented for uint128, but is generally the same as what's above.
// test_random_integer_parse_base<absl::uint128>(
// &absl::numbers_internal::safe_strtou128_base);
using RandomEngine = std::minstd_rand0;
using IntType = absl::uint128;
constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base;
std::random_device rd;
RandomEngine rng(rd());
std::uniform_int_distribution<uint64_t> random_uint64(
std::numeric_limits<uint64_t>::min());
std::uniform_int_distribution<int> random_base(2, 35);
for (size_t i = 0; i < kNumRandomTests; i++) {
IntType value = random_uint64(rng);
value = (value << 64) + random_uint64(rng);
int base = random_base(rng);
std::string str_value;
EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
IntType parsed_value;
// Test successful parse
EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
EXPECT_EQ(parsed_value, value);
// Test overflow
std::string s;
absl::strings_internal::OStringStream(&s)
<< std::numeric_limits<IntType>::max() << value;
EXPECT_FALSE(parse_func(s, &parsed_value, base));
// Test underflow
s.clear();
absl::strings_internal::OStringStream(&s) << "-" << value;
EXPECT_FALSE(parse_func(s, &parsed_value, base));
}
}
TEST(stringtest, safe_strtou32_base) {
for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
const auto& e = strtouint32_test_cases()[i];
uint32_t value;
EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base))
<< "str=\"" << e.str << "\" base=" << e.base;
if (e.expect_ok) {
EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str
<< "\" base=" << e.base;
}
}
}
TEST(stringtest, safe_strtou32_base_length_delimited) {
for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
const auto& e = strtouint32_test_cases()[i];
std::string tmp(e.str);
tmp.append("12"); // Adds garbage at the end.
uint32_t value;
EXPECT_EQ(e.expect_ok,
safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)),
&value, e.base))
<< "str=\"" << e.str << "\" base=" << e.base;
if (e.expect_ok) {
EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str
<< " base=" << e.base;
}
}
}
TEST(stringtest, safe_strtou64_base) {
for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
const auto& e = strtouint64_test_cases()[i];
uint64_t value;
EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base))
<< "str=\"" << e.str << "\" base=" << e.base;
if (e.expect_ok) {
EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base;
}
}
}
TEST(stringtest, safe_strtou64_base_length_delimited) {
for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
const auto& e = strtouint64_test_cases()[i];
std::string tmp(e.str);
tmp.append("12"); // Adds garbage at the end.
uint64_t value;
EXPECT_EQ(e.expect_ok,
safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)),
&value, e.base))
<< "str=\"" << e.str << "\" base=" << e.base;
if (e.expect_ok) {
EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base;
}
}
}
// feenableexcept() and fedisableexcept() are extensions supported by some libc
// implementations.
#if defined(__GLIBC__) || defined(__BIONIC__)
#define ABSL_HAVE_FEENABLEEXCEPT 1
#define ABSL_HAVE_FEDISABLEEXCEPT 1
#endif
class SimpleDtoaTest : public testing::Test {
protected:
void SetUp() override {
// Store the current floating point env & clear away any pending exceptions.
feholdexcept(&fp_env_);
#ifdef ABSL_HAVE_FEENABLEEXCEPT
// Turn on floating point exceptions.
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
}
void TearDown() override {
// Restore the floating point environment to the original state.
// In theory fedisableexcept is unnecessary; fesetenv will also do it.
// In practice, our toolchains have subtle bugs.
#ifdef ABSL_HAVE_FEDISABLEEXCEPT
fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
#endif
fesetenv(&fp_env_);
}
std::string ToNineDigits(double value) {
char buffer[16]; // more than enough for %.9g
snprintf(buffer, sizeof(buffer), "%.9g", value);
return buffer;
}
fenv_t fp_env_;
};
// Run the given runnable functor for "cases" test cases, chosen over the
// available range of float. pi and e and 1/e are seeded, and then all
// available integer powers of 2 and 10 are multiplied against them. In
// addition to trying all those values, we try the next higher and next lower
// float, and then we add additional test cases evenly distributed between them.
// Each test case is passed to runnable as both a positive and negative value.
template <typename R>
void ExhaustiveFloat(uint32_t cases, R&& runnable) {
runnable(0.0f);
runnable(-0.0f);
if (cases >= 2e9) { // more than 2 billion? Might as well run them all.
for (float f = 0; f < std::numeric_limits<float>::max(); ) {
f = nextafterf(f, std::numeric_limits<float>::max());
runnable(-f);
runnable(f);
}
return;
}
std::set<float> floats = {3.4028234e38f};
for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) {
for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf);
for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf);
for (float testf = f; testf < 3e38f / 2; testf *= 2.0f)
floats.insert(testf);
for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf);
}
float last = *floats.begin();
runnable(last);
runnable(-last);
int iters_per_float = cases / floats.size();
if (iters_per_float == 0) iters_per_float = 1;
for (float f : floats) {
if (f == last) continue;
float testf = std::nextafter(last, std::numeric_limits<float>::max());
runnable(testf);
runnable(-testf);
last = testf;
if (f == last) continue;
double step = (double{f} - last) / iters_per_float;
for (double d = last + step; d < f; d += step) {
testf = d;
if (testf != last) {
runnable(testf);
runnable(-testf);
last = testf;
}
}
testf = std::nextafter(f, 0.0f);
if (testf > last) {
runnable(testf);
runnable(-testf);
last = testf;
}
if (f != last) {
runnable(f);
runnable(-f);
last = f;
}
}
}
TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) {
uint64_t test_count = 0;
std::vector<double> mismatches;
auto checker = [&](double d) {
if (d != d) return; // rule out NaNs
++test_count;
char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
SixDigitsToBuffer(d, sixdigitsbuf);
char snprintfbuf[kSixDigitsToBufferSize] = {0};
snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
if (strcmp(sixdigitsbuf, snprintfbuf) != 0) {
mismatches.push_back(d);
if (mismatches.size() < 10) {
ABSL_RAW_LOG(ERROR, "%s",
absl::StrCat("Six-digit failure with double. ", "d=", d,
"=", d, " sixdigits=", sixdigitsbuf,
" printf(%g)=", snprintfbuf)
.c_str());
}
}
};
// Some quick sanity checks...
checker(5e-324);
checker(1e-308);
checker(1.0);
checker(1.000005);
checker(1.7976931348623157e308);
checker(0.00390625);
#ifndef _MSC_VER
// on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it
// to 0.00195312 (round half to even).
checker(0.001953125);
#endif
checker(0.005859375);
// Some cases where the rounding is very very close
checker(1.089095e-15);
checker(3.274195e-55);
checker(6.534355e-146);
checker(2.920845e+234);
if (mismatches.empty()) {
test_count = 0;
ExhaustiveFloat(kFloatNumCases, checker);
test_count = 0;
std::vector<int> digit_testcases{
100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100, // misc
195312, 195313, // 1.953125 is a case where we round down, just barely.
200000, 500000, 800000, // misc mid-range cases
585937, 585938, // 5.859375 is a case where we round up, just barely.
900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999};
if (kFloatNumCases >= 1e9) {
// If at least 1 billion test cases were requested, user wants an
// exhaustive test. So let's test all mantissas, too.
constexpr int min_mantissa = 100000, max_mantissa = 999999;
digit_testcases.resize(max_mantissa - min_mantissa + 1);
std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa);
}
for (int exponent = -324; exponent <= 308; ++exponent) {
double powten = absl::strings_internal::Pow10(exponent);
if (powten == 0) powten = 5e-324;
if (kFloatNumCases >= 1e9) {
// The exhaustive test takes a very long time, so log progress.
char buf[kSixDigitsToBufferSize];
ABSL_RAW_LOG(
INFO, "%s",
absl::StrCat("Exp ", exponent, " powten=", powten, "(", powten,
") (",
std::string(buf, SixDigitsToBuffer(powten, buf)), ")")
.c_str());
}
for (int digits : digit_testcases) {
if (exponent == 308 && digits >= 179769) break; // don't overflow!
double digiform = (digits + 0.5) * 0.00001;
double testval = digiform * powten;
double pretestval = nextafter(testval, 0);
double posttestval = nextafter(testval, 1.7976931348623157e308);
checker(testval);
checker(pretestval);
checker(posttestval);
}
}
} else {
EXPECT_EQ(mismatches.size(), 0);
for (size_t i = 0; i < mismatches.size(); ++i) {
if (i > 100) i = mismatches.size() - 1;
double d = mismatches[i];
char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
SixDigitsToBuffer(d, sixdigitsbuf);
char snprintfbuf[kSixDigitsToBufferSize] = {0};
snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
double before = nextafter(d, 0.0);
double after = nextafter(d, 1.7976931348623157e308);
char b1[32], b2[kSixDigitsToBufferSize];
ABSL_RAW_LOG(
ERROR, "%s",
absl::StrCat(
"Mismatch #", i, " d=", d, " (", ToNineDigits(d), ")",
" sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf,
"'", " Before.=", PerfectDtoa(before), " ",
(SixDigitsToBuffer(before, b2), b2),
" vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1),
" Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2),
" vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1),
" After.=.", PerfectDtoa(after), " ",
(SixDigitsToBuffer(after, b2), b2),
" vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1))
.c_str());
}
}
}
TEST(StrToInt32, Partial) {
struct Int32TestLine {
std::string input;
bool status;
int32_t value;
};
const int32_t int32_min = std::numeric_limits<int32_t>::min();
const int32_t int32_max = std::numeric_limits<int32_t>::max();
Int32TestLine int32_test_line[] = {
{"", false, 0},
{" ", false, 0},
{"-", false, 0},
{"123@@@", false, 123},
{absl::StrCat(int32_min, int32_max), false, int32_min},
{absl::StrCat(int32_max, int32_max), false, int32_max},
};
for (const Int32TestLine& test_line : int32_test_line) {
int32_t value = -2;
bool status = safe_strto32_base(test_line.input, &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
value = -2;
status = safe_strto32_base(test_line.input, &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
value = -2;
status = safe_strto32_base(absl::string_view(test_line.input), &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
}
}
TEST(StrToUint32, Partial) {
struct Uint32TestLine {
std::string input;
bool status;
uint32_t value;
};
const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();
Uint32TestLine uint32_test_line[] = {
{"", false, 0},
{" ", false, 0},
{"-", false, 0},
{"123@@@", false, 123},
{absl::StrCat(uint32_max, uint32_max), false, uint32_max},
};
for (const Uint32TestLine& test_line : uint32_test_line) {
uint32_t value = 2;
bool status = safe_strtou32_base(test_line.input, &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
value = 2;
status = safe_strtou32_base(test_line.input, &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
value = 2;
status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
}
}
TEST(StrToInt64, Partial) {
struct Int64TestLine {
std::string input;
bool status;
int64_t value;
};
const int64_t int64_min = std::numeric_limits<int64_t>::min();
const int64_t int64_max = std::numeric_limits<int64_t>::max();
Int64TestLine int64_test_line[] = {
{"", false, 0},
{" ", false, 0},
{"-", false, 0},
{"123@@@", false, 123},
{absl::StrCat(int64_min, int64_max), false, int64_min},
{absl::StrCat(int64_max, int64_max), false, int64_max},
};
for (const Int64TestLine& test_line : int64_test_line) {
int64_t value = -2;
bool status = safe_strto64_base(test_line.input, &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
value = -2;
status = safe_strto64_base(test_line.input, &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
value = -2;
status = safe_strto64_base(absl::string_view(test_line.input), &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
}
}
TEST(StrToUint64, Partial) {
struct Uint64TestLine {
std::string input;
bool status;
uint64_t value;
};
const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
Uint64TestLine uint64_test_line[] = {
{"", false, 0},
{" ", false, 0},
{"-", false, 0},
{"123@@@", false, 123},
{absl::StrCat(uint64_max, uint64_max), false, uint64_max},
};
for (const Uint64TestLine& test_line : uint64_test_line) {
uint64_t value = 2;
bool status = safe_strtou64_base(test_line.input, &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
value = 2;
status = safe_strtou64_base(test_line.input, &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
value = 2;
status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10);
EXPECT_EQ(test_line.status, status) << test_line.input;
EXPECT_EQ(test_line.value, value) << test_line.input;
}
}
TEST(StrToInt32Base, PrefixOnly) {
struct Int32TestLine {
std::string input;
bool status;
int32_t value;
};
Int32TestLine int32_test_line[] = {
{ "", false, 0 },
{ "-", false, 0 },
{ "-0", true, 0 },
{ "0", true, 0 },
{ "0x", false, 0 },
{ "-0x", false, 0 },
};
const int base_array[] = { 0, 2, 8, 10, 16 };
for (const Int32TestLine& line : int32_test_line) {
for (const int base : base_array) {
int32_t value = 2;
bool status = safe_strto32_base(line.input.c_str(), &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
value = 2;
status = safe_strto32_base(line.input, &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
value = 2;
status = safe_strto32_base(absl::string_view(line.input), &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
}
}
}
TEST(StrToUint32Base, PrefixOnly) {
struct Uint32TestLine {
std::string input;
bool status;
uint32_t value;
};
Uint32TestLine uint32_test_line[] = {
{ "", false, 0 },
{ "0", true, 0 },
{ "0x", false, 0 },
};
const int base_array[] = { 0, 2, 8, 10, 16 };
for (const Uint32TestLine& line : uint32_test_line) {
for (const int base : base_array) {
uint32_t value = 2;
bool status = safe_strtou32_base(line.input.c_str(), &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
value = 2;
status = safe_strtou32_base(line.input, &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
value = 2;
status = safe_strtou32_base(absl::string_view(line.input), &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
}
}
}
TEST(StrToInt64Base, PrefixOnly) {
struct Int64TestLine {
std::string input;
bool status;
int64_t value;
};
Int64TestLine int64_test_line[] = {
{ "", false, 0 },
{ "-", false, 0 },
{ "-0", true, 0 },
{ "0", true, 0 },
{ "0x", false, 0 },
{ "-0x", false, 0 },
};
const int base_array[] = { 0, 2, 8, 10, 16 };
for (const Int64TestLine& line : int64_test_line) {
for (const int base : base_array) {
int64_t value = 2;
bool status = safe_strto64_base(line.input.c_str(), &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
value = 2;
status = safe_strto64_base(line.input, &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
value = 2;
status = safe_strto64_base(absl::string_view(line.input), &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
}
}
}
TEST(StrToUint64Base, PrefixOnly) {
struct Uint64TestLine {
std::string input;
bool status;
uint64_t value;
};
Uint64TestLine uint64_test_line[] = {
{ "", false, 0 },
{ "0", true, 0 },
{ "0x", false, 0 },
};
const int base_array[] = { 0, 2, 8, 10, 16 };
for (const Uint64TestLine& line : uint64_test_line) {
for (const int base : base_array) {
uint64_t value = 2;
bool status = safe_strtou64_base(line.input.c_str(), &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
value = 2;
status = safe_strtou64_base(line.input, &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
value = 2;
status = safe_strtou64_base(absl::string_view(line.input), &value, base);
EXPECT_EQ(line.status, status) << line.input << " " << base;
EXPECT_EQ(line.value, value) << line.input << " " << base;
}
}
}
void TestFastHexToBufferZeroPad16(uint64_t v) {
char buf[16];
auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf);
absl::string_view res(buf, 16);
char buf2[17];
snprintf(buf2, sizeof(buf2), "%016" PRIx64, v);
EXPECT_EQ(res, buf2) << v;
size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v);
EXPECT_EQ(digits, expected_digits) << v;
}
TEST(FastHexToBufferZeroPad16, Smoke) {
TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min());
TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max());
TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min());
TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max());
absl::BitGen rng;
for (int i = 0; i < 100000; ++i) {
TestFastHexToBufferZeroPad16(
absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(),
std::numeric_limits<uint64_t>::max()));
}
}
} // namespace