blob: 03c67ddc1c7cbe6d49242cc8ef27636470f4cc9e [file] [log] [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/formats/mp2t/mp2t_stream_parser.h"
#include <memory>
#include <utility>
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/numerics/checked_math.h"
#include "media/base/byte_queue.h"
#include "media/base/media_tracks.h"
#include "media/base/stream_parser.h"
#include "media/base/stream_parser_buffer.h"
#include "media/base/timestamp_constants.h"
#include "media/base/video_codec_string_parsers.h"
#include "media/formats/mp2t/descriptors.h"
#include "media/formats/mp2t/es_parser.h"
#include "media/formats/mp2t/es_parser_adts.h"
#include "media/formats/mp2t/es_parser_h264.h"
#include "media/formats/mp2t/es_parser_mpeg1audio.h"
#include "media/formats/mp2t/mp2t_common.h"
#include "media/formats/mp2t/ts_packet.h"
#include "media/formats/mp2t/ts_section.h"
#include "media/formats/mp2t/ts_section_cat.h"
#include "media/formats/mp2t/ts_section_cets_ecm.h"
#include "media/formats/mp2t/ts_section_cets_pssh.h"
#include "media/formats/mp2t/ts_section_pat.h"
#include "media/formats/mp2t/ts_section_pes.h"
#include "media/formats/mp2t/ts_section_pmt.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace media {
namespace mp2t {
namespace {
constexpr int64_t kSampleAESPrivateDataIndicatorAVC = 0x7a617663;
constexpr int64_t kSampleAESPrivateDataIndicatorAAC = 0x61616364;
// TODO(dougsteed). Consider adding support for the following:
// const int64_t kSampleAESPrivateDataIndicatorAC3 = 0x61633364;
// const int64_t kSampleAESPrivateDataIndicatorEAC3 = 0x65633364;
} // namespace
enum StreamType {
// ISO-13818.1 / ITU H.222 Table 2.34 "Stream type assignments"
kStreamTypeMpeg1Audio = 0x3,
// ISO/IEC 13818-3 Audio (MPEG-2)
kStreamTypeMpeg2Audio = 0x4,
kStreamTypeAAC = 0xf,
kStreamTypeAVC = 0x1b,
kStreamTypeAACWithSampleAES = 0xcf,
kStreamTypeAVCWithSampleAES = 0xdb,
// TODO(dougsteed). Consider adding support for the following:
// kStreamTypeAC3WithSampleAES = 0xc1,
// kStreamTypeEAC3WithSampleAES = 0xc2,
};
class PidState {
public:
enum PidType {
kPidPat,
kPidPmt,
kPidAudioPes,
kPidVideoPes,
kPidCat,
kPidCetsEcm,
kPidCetsPssh,
};
PidState(int pid,
PidType pid_type,
std::unique_ptr<TsSection> section_parser);
// Extract the content of the TS packet and parse it.
// Return true if successful.
bool PushTsPacket(const TsPacket& ts_packet);
// Flush the PID state (possibly emitting some pending frames)
// and reset its state.
void Flush();
// Enable/disable the PID.
// Disabling a PID will reset its state and ignore any further incoming TS
// packets.
void Enable();
void Disable();
bool IsEnabled() const;
PidType pid_type() const { return pid_type_; }
private:
void ResetState();
int pid_;
PidType pid_type_;
std::unique_ptr<TsSection> section_parser_;
bool enable_;
int continuity_counter_;
};
PidState::PidState(int pid,
PidType pid_type,
std::unique_ptr<TsSection> section_parser)
: pid_(pid),
pid_type_(pid_type),
section_parser_(std::move(section_parser)),
enable_(false),
continuity_counter_(-1) {
DCHECK(section_parser_);
}
bool PidState::PushTsPacket(const TsPacket& ts_packet) {
DCHECK_EQ(ts_packet.pid(), pid_);
// The current PID is not part of the PID filter,
// just discard the incoming TS packet.
if (!enable_)
return true;
int expected_continuity_counter = (continuity_counter_ + 1) % 16;
if (continuity_counter_ >= 0 &&
ts_packet.continuity_counter() != expected_continuity_counter) {
DVLOG(1) << "TS discontinuity detected for pid: " << pid_;
return false;
}
bool status = section_parser_->Parse(
ts_packet.payload_unit_start_indicator(),
ts_packet.payload(),
ts_packet.payload_size());
// At the minimum, when parsing failed, auto reset the section parser.
// Components that use the StreamParser can take further action if needed.
if (!status) {
DVLOG(1) << "Parsing failed for pid = " << pid_;
ResetState();
}
return status;
}
void PidState::Flush() {
section_parser_->Flush();
ResetState();
}
void PidState::Enable() {
enable_ = true;
}
void PidState::Disable() {
if (!enable_)
return;
ResetState();
enable_ = false;
}
bool PidState::IsEnabled() const {
return enable_;
}
void PidState::ResetState() {
section_parser_->Reset();
continuity_counter_ = -1;
}
Mp2tStreamParser::BufferQueueWithConfig::BufferQueueWithConfig(
bool is_cfg_sent,
const AudioDecoderConfig& audio_cfg,
const VideoDecoderConfig& video_cfg)
: is_config_sent(is_cfg_sent),
audio_config(audio_cfg),
video_config(video_cfg) {
}
Mp2tStreamParser::BufferQueueWithConfig::BufferQueueWithConfig(
const BufferQueueWithConfig& other) = default;
Mp2tStreamParser::BufferQueueWithConfig::~BufferQueueWithConfig() {
}
Mp2tStreamParser::Mp2tStreamParser(base::span<const std::string> allowed_codecs,
bool sbr_in_mimetype)
: sbr_in_mimetype_(sbr_in_mimetype),
selected_audio_pid_(-1),
selected_video_pid_(-1),
is_initialized_(false),
segment_started_(false) {
for (const std::string& codec_name : allowed_codecs) {
switch (StringToVideoCodec(codec_name)) {
case VideoCodec::kH264:
allowed_stream_types_.insert(kStreamTypeAVC);
allowed_stream_types_.insert(kStreamTypeAVCWithSampleAES);
continue;
case VideoCodec::kUnknown:
// Probably audio.
break;
default:
DLOG(WARNING) << "Unsupported video codec " << codec_name;
continue;
}
switch (StringToAudioCodec(codec_name)) {
case AudioCodec::kAAC:
allowed_stream_types_.insert(kStreamTypeAAC);
allowed_stream_types_.insert(kStreamTypeAACWithSampleAES);
continue;
case AudioCodec::kMP3:
allowed_stream_types_.insert(kStreamTypeMpeg1Audio);
allowed_stream_types_.insert(kStreamTypeMpeg2Audio);
continue;
case AudioCodec::kUnknown:
// Neither audio, nor video.
break;
default:
DLOG(WARNING) << "Unsupported audio codec " << codec_name;
continue;
}
// Failed to parse as an audio or a video codec.
DLOG(WARNING) << "Unknown codec " << codec_name;
}
}
Mp2tStreamParser::~Mp2tStreamParser() = default;
void Mp2tStreamParser::Init(
InitCB init_cb,
NewConfigCB config_cb,
NewBuffersCB new_buffers_cb,
EncryptedMediaInitDataCB encrypted_media_init_data_cb,
NewMediaSegmentCB new_segment_cb,
EndMediaSegmentCB end_of_segment_cb,
MediaLog* media_log) {
DCHECK(!is_initialized_);
DCHECK(!init_cb_);
DCHECK(init_cb);
DCHECK(config_cb);
DCHECK(new_buffers_cb);
DCHECK(encrypted_media_init_data_cb);
DCHECK(new_segment_cb);
DCHECK(end_of_segment_cb);
init_cb_ = std::move(init_cb);
config_cb_ = std::move(config_cb);
new_buffers_cb_ = std::move(new_buffers_cb);
encrypted_media_init_data_cb_ = std::move(encrypted_media_init_data_cb);
new_segment_cb_ = std::move(new_segment_cb);
end_of_segment_cb_ = std::move(end_of_segment_cb);
media_log_ = media_log;
}
void Mp2tStreamParser::Flush() {
DVLOG(1) << "Mp2tStreamParser::Flush";
// Flush the buffers and reset the pids.
for (const auto& pid_pair : pids_) {
DVLOG(1) << "Flushing PID: " << pid_pair.first;
pid_pair.second->Flush();
}
pids_.clear();
// Flush is invoked from SourceBuffer.abort/SourceState::ResetParserState, and
// MSE spec prohibits emitting new configs in ResetParserState algorithm (see
// https://w3c.github.io/media-source/#sourcebuffer-reset-parser-state,
// 3.5.2 Reset Parser State states that new frames might be processed only in
// PARSING_MEDIA_SEGMENT and therefore doesn't allow emitting new configs,
// since that might need to run "init segment received" algorithm).
// So before we emit remaining buffers here, we need to trim our buffer queue
// so that we leave only buffers with configs that were already sent.
for (auto buffer_queue_iter = buffer_queue_chain_.begin();
buffer_queue_iter != buffer_queue_chain_.end(); ++buffer_queue_iter) {
const BufferQueueWithConfig& queue_with_config = *buffer_queue_iter;
if (!queue_with_config.is_config_sent) {
DVLOG(LOG_LEVEL_ES) << "Flush: dropping buffers with unsent new configs.";
buffer_queue_chain_.erase(buffer_queue_iter, buffer_queue_chain_.end());
break;
}
}
EmitRemainingBuffers();
buffer_queue_chain_.clear();
// End of the segment.
// Note: does not need to invoke |end_of_segment_cb_| since flushing the
// stream parser already involves the end of the current segment.
segment_started_ = false;
// Remove any bytes left in the TS buffer.
// (i.e. any partial TS packet => less than 188 bytes).
ts_byte_queue_.Reset();
uninspected_pending_bytes_ = 0;
// Reset the selected PIDs.
selected_audio_pid_ = -1;
selected_video_pid_ = -1;
// Reset the timestamp unroller.
timestamp_unroller_.Reset();
}
bool Mp2tStreamParser::GetGenerateTimestampsFlag() const {
return false;
}
bool Mp2tStreamParser::AppendToParseBuffer(const uint8_t* buf, size_t size) {
DVLOG(1) << __func__ << " size=" << size;
// Ensure that we are not still in the middle of iterating Parse calls for
// previously appended data. May consider changing this to a DCHECK once
// stabilized, though since impact of proceeding when this condition fails
// could lead to memory corruption, preferring CHECK.
CHECK_EQ(uninspected_pending_bytes_, 0);
// Add the data to the parser state.
uninspected_pending_bytes_ = base::checked_cast<int>(size);
if (!ts_byte_queue_.Push(buf, uninspected_pending_bytes_)) {
DVLOG(2) << "AppendToParseBuffer(): Failed to push buf of size " << size;
return false;
}
return true;
}
StreamParser::ParseStatus Mp2tStreamParser::Parse(
int max_pending_bytes_to_inspect) {
DVLOG(1) << __func__;
DCHECK_GE(max_pending_bytes_to_inspect, 0);
const uint8_t* ts_buffer = nullptr;
int queue_size = 0;
ts_byte_queue_.Peek(&ts_buffer, &queue_size);
// First, determine the amount of bytes not yet popped, though already
// inspected by previous call(s) to Parse().
int ts_buffer_size = queue_size - uninspected_pending_bytes_;
DCHECK_GE(ts_buffer_size, 0);
// Next, allow up to `max_pending_bytes_to_inspect` more of `queue_` contents
// beyond those previously inspected to be involved in this Parse() call.
int inspection_increment =
std::min(max_pending_bytes_to_inspect, uninspected_pending_bytes_);
ts_buffer_size += inspection_increment;
// If successfully parsed, remember that we will have inspected this
// incremental part of `ts_byte_queue_` contents. Note that parse failures are
// fatal.
uninspected_pending_bytes_ -= inspection_increment;
DCHECK_GE(uninspected_pending_bytes_, 0);
int bytes_to_pop = 0;
while (true) {
if (ts_buffer_size < TsPacket::kPacketSize) {
break;
}
// Synchronization.
int skipped_bytes = TsPacket::Sync(ts_buffer, ts_buffer_size);
if (skipped_bytes > 0) {
DVLOG(1) << "Packet not aligned on a TS syncword:"
<< " skipped_bytes=" << skipped_bytes;
CHECK_GE(ts_buffer_size, skipped_bytes);
ts_buffer_size -= skipped_bytes;
ts_buffer += skipped_bytes;
bytes_to_pop += skipped_bytes;
continue;
}
// Parse the TS header, skipping 1 byte if the header is invalid.
std::unique_ptr<TsPacket> ts_packet(
TsPacket::Parse(ts_buffer, ts_buffer_size));
if (!ts_packet) {
DVLOG(1) << "Error: invalid TS packet";
CHECK_GE(ts_buffer_size, 1);
ts_buffer_size--;
ts_buffer++;
bytes_to_pop++;
continue;
}
DVLOG(LOG_LEVEL_TS)
<< "Processing PID=" << ts_packet->pid()
<< " start_unit=" << ts_packet->payload_unit_start_indicator();
// Parse the section.
auto it = pids_.find(ts_packet->pid());
if (it == pids_.end() &&
ts_packet->pid() == TsSection::kPidPat) {
// Create the PAT state here if needed.
auto pat_section_parser =
std::make_unique<TsSectionPat>(base::BindRepeating(
&Mp2tStreamParser::RegisterPmt, base::Unretained(this)));
auto pat_pid_state = std::make_unique<PidState>(
ts_packet->pid(), PidState::kPidPat, std::move(pat_section_parser));
pat_pid_state->Enable();
it = pids_
.insert(
std::make_pair(ts_packet->pid(), std::move(pat_pid_state)))
.first;
} else if (it == pids_.end() && ts_packet->pid() == TsSection::kPidCat) {
// We allow a CAT to appear as the first packet in the TS. This allows us
// to specify encryption metadata for HLS by injecting it as an extra TS
// packet at the front of the stream.
it = pids_.insert(std::make_pair(TsSection::kPidCat, MakeCatPidState()))
.first;
}
if (it != pids_.end()) {
if (!it->second->PushTsPacket(*ts_packet))
return ParseStatus::kFailed;
} else {
DVLOG(LOG_LEVEL_TS) << "Ignoring TS packet for pid: " << ts_packet->pid();
}
// Go to the next packet.
ts_buffer_size -= TsPacket::kPacketSize;
ts_buffer += TsPacket::kPacketSize;
bytes_to_pop += TsPacket::kPacketSize;
}
if (!FinishInitializationIfNeeded()) {
// Inlining a former RCHECK here, since we cannot return false from this
// method any longer.
DLOG(WARNING)
<< "Failure while parsing Mpeg2TS: FinishInitializationIfNeeded()";
return ParseStatus::kFailed;
}
// Emit the A/V buffers that kept accumulating during TS parsing.
if (!EmitRemainingBuffers()) {
return ParseStatus::kFailed;
}
ts_byte_queue_.Pop(bytes_to_pop);
if (uninspected_pending_bytes_ > 0) {
return ParseStatus::kSuccessHasMoreData;
}
return ParseStatus::kSuccess;
}
void Mp2tStreamParser::RegisterPmt(int program_number, int pmt_pid) {
DVLOG(1) << "RegisterPmt:"
<< " program_number=" << program_number
<< " pmt_pid=" << pmt_pid;
// Only one TS program is allowed. Ignore the incoming program map table,
// if there is already one registered.
for (const auto& pid_pair : pids_) {
PidState* pid_state = pid_pair.second.get();
if (pid_state->pid_type() == PidState::kPidPmt) {
DVLOG_IF(1, pmt_pid != pid_pair.first)
<< "More than one program is defined";
return;
}
}
// Create the PMT state here if needed.
DVLOG(1) << "Create a new PMT parser";
auto pmt_section_parser = std::make_unique<TsSectionPmt>(base::BindRepeating(
&Mp2tStreamParser::RegisterPes, base::Unretained(this)));
auto pmt_pid_state = std::make_unique<PidState>(
pmt_pid, PidState::kPidPmt, std::move(pmt_section_parser));
pmt_pid_state->Enable();
pids_.insert(std::make_pair(pmt_pid, std::move(pmt_pid_state)));
// Take the opportunity to clean up any PIDs that were involved in importing
// encryption metadata for HLS with SampleAES. This prevents the possibility
// of interference with actual PIDs that might be declared in the PMT.
// TODO(dougsteed): if in the future the appropriate PIDs are embedded in the
// source stream, this will not be necessary.
UnregisterCat();
UnregisterCencPids();
}
std::unique_ptr<EsParser> Mp2tStreamParser::CreateH264Parser(int pes_pid) {
auto on_video_config_changed = base::BindRepeating(
&Mp2tStreamParser::OnVideoConfigChanged, base::Unretained(this), pes_pid);
auto on_emit_video_buffer = base::BindRepeating(
&Mp2tStreamParser::OnEmitVideoBuffer, base::Unretained(this), pes_pid);
return std::make_unique<EsParserH264>(std::move(on_video_config_changed),
std::move(on_emit_video_buffer));
}
std::unique_ptr<EsParser> Mp2tStreamParser::CreateAacParser(int pes_pid) {
auto on_audio_config_changed = base::BindRepeating(
&Mp2tStreamParser::OnAudioConfigChanged, base::Unretained(this), pes_pid);
auto on_emit_audio_buffer = base::BindRepeating(
&Mp2tStreamParser::OnEmitAudioBuffer, base::Unretained(this), pes_pid);
return std::make_unique<EsParserAdts>(on_audio_config_changed,
std::move(on_emit_audio_buffer),
sbr_in_mimetype_);
}
std::unique_ptr<EsParser> Mp2tStreamParser::CreateMpeg1AudioParser(
int pes_pid) {
auto on_audio_config_changed = base::BindRepeating(
&Mp2tStreamParser::OnAudioConfigChanged, base::Unretained(this), pes_pid);
auto on_emit_audio_buffer = base::BindRepeating(
&Mp2tStreamParser::OnEmitAudioBuffer, base::Unretained(this), pes_pid);
return std::make_unique<EsParserMpeg1Audio>(
on_audio_config_changed, std::move(on_emit_audio_buffer), media_log_);
}
bool Mp2tStreamParser::ShouldForceEncryptedParser() {
// If we expect to handle encrypted data later in the stream, then force the
// use of the encrypted parser variant so that the initial configuration
// reflects the intended encryption mode (even if the initial segment itself
// is not encrypted).
return initial_encryption_scheme_ != EncryptionScheme::kUnencrypted;
}
std::unique_ptr<EsParser> Mp2tStreamParser::CreateEncryptedH264Parser(
int pes_pid,
bool emit_clear_buffers) {
auto on_video_config_changed = base::BindRepeating(
&Mp2tStreamParser::OnVideoConfigChanged, base::Unretained(this), pes_pid);
auto on_emit_video_buffer = base::BindRepeating(
&Mp2tStreamParser::OnEmitVideoBuffer, base::Unretained(this), pes_pid);
EsParserAdts::GetDecryptConfigCB get_decrypt_config;
if (!emit_clear_buffers) {
get_decrypt_config = base::BindRepeating(
&Mp2tStreamParser::GetDecryptConfig, base::Unretained(this));
}
return std::make_unique<EsParserH264>(
std::move(on_video_config_changed), on_emit_video_buffer,
initial_encryption_scheme_, std::move(get_decrypt_config));
}
std::unique_ptr<EsParser> Mp2tStreamParser::CreateEncryptedAacParser(
int pes_pid,
bool emit_clear_buffers) {
auto on_audio_config_changed = base::BindRepeating(
&Mp2tStreamParser::OnAudioConfigChanged, base::Unretained(this), pes_pid);
auto on_emit_audio_buffer = base::BindRepeating(
&Mp2tStreamParser::OnEmitAudioBuffer, base::Unretained(this), pes_pid);
EsParserAdts::GetDecryptConfigCB get_decrypt_config;
if (!emit_clear_buffers) {
get_decrypt_config = base::BindRepeating(
&Mp2tStreamParser::GetDecryptConfig, base::Unretained(this));
}
return std::make_unique<EsParserAdts>(
on_audio_config_changed, std::move(on_emit_audio_buffer),
std::move(get_decrypt_config), initial_encryption_scheme_,
sbr_in_mimetype_);
}
void Mp2tStreamParser::RegisterPes(int pes_pid,
int stream_type,
const Descriptors& descriptors) {
// TODO(damienv): check there is no mismatch if the entry already exists.
DVLOG(1) << "RegisterPes:"
<< " pes_pid=" << pes_pid
<< " stream_type=" << std::hex << stream_type << std::dec;
auto it = pids_.find(pes_pid);
if (it != pids_.end())
return;
// Ignore stream types not specified in the creation of the SourceBuffer.
// See https://crbug.com/1169393.
// TODO(https://crbug.com/535738): Remove this hack when MSE stream/mime type
// checks have been relaxed.
if (allowed_stream_types_.find(stream_type) == allowed_stream_types_.end()) {
DVLOG(1) << "Stream type not allowed for this parser: " << stream_type;
return;
}
// Create a stream parser corresponding to the stream type.
bool is_audio = true;
std::unique_ptr<EsParser> es_parser;
switch (stream_type) {
case kStreamTypeAVC:
is_audio = false;
if (ShouldForceEncryptedParser()) {
es_parser =
CreateEncryptedH264Parser(pes_pid, true /* emit_clear_buffers */);
break;
}
es_parser = CreateH264Parser(pes_pid);
break;
case kStreamTypeAAC:
if (ShouldForceEncryptedParser()) {
es_parser =
CreateEncryptedAacParser(pes_pid, true /* emit_clear_buffers */);
break;
}
es_parser = CreateAacParser(pes_pid);
break;
case kStreamTypeMpeg1Audio:
case kStreamTypeMpeg2Audio:
es_parser = CreateMpeg1AudioParser(pes_pid);
break;
case kStreamTypeAVCWithSampleAES:
if (descriptors.HasPrivateDataIndicator(
kSampleAESPrivateDataIndicatorAVC)) {
is_audio = false;
es_parser =
CreateEncryptedH264Parser(pes_pid, false /* emit_clear_buffers */);
} else {
VLOG(2) << "HLS: stream_type in PMT indicates AVC with Sample-AES, but "
<< "corresponding private data indicator is not present.";
}
break;
case kStreamTypeAACWithSampleAES:
if (descriptors.HasPrivateDataIndicator(
kSampleAESPrivateDataIndicatorAAC)) {
es_parser =
CreateEncryptedAacParser(pes_pid, false /* emit_clear_buffers */);
} else {
VLOG(2) << "HLS: stream_type in PMT indicates AAC with Sample-AES, but "
<< "corresponding private data indicator is not present.";
}
break;
default:
// Unknown stream_type, so can't create a parser. Logged below.
break;
}
if (!es_parser) {
VLOG(1) << "Parser could not be created for stream_type: " << stream_type;
return;
}
// Create the PES state here.
DVLOG(1) << "Create a new PES state";
auto pes_section_parser = std::make_unique<TsSectionPes>(
std::move(es_parser), &timestamp_unroller_);
PidState::PidType pid_type =
is_audio ? PidState::kPidAudioPes : PidState::kPidVideoPes;
auto pes_pid_state = std::make_unique<PidState>(
pes_pid, pid_type, std::move(pes_section_parser));
pids_.insert(std::make_pair(pes_pid, std::move(pes_pid_state)));
// A new PES pid has been added, the PID filter might change.
UpdatePidFilter();
}
void Mp2tStreamParser::UpdatePidFilter() {
// Applies the HLS rule to select the default audio/video PIDs:
// select the audio/video streams with the lowest PID.
// TODO(damienv): this can be changed when the StreamParser interface
// supports multiple audio/video streams.
auto lowest_audio_pid = pids_.end();
auto lowest_video_pid = pids_.end();
for (auto it = pids_.begin(); it != pids_.end(); ++it) {
int pid = it->first;
PidState* pid_state = it->second.get();
if (pid_state->pid_type() == PidState::kPidAudioPes &&
(lowest_audio_pid == pids_.end() || pid < lowest_audio_pid->first))
lowest_audio_pid = it;
if (pid_state->pid_type() == PidState::kPidVideoPes &&
(lowest_video_pid == pids_.end() || pid < lowest_video_pid->first))
lowest_video_pid = it;
}
// Enable both the lowest audio and video PIDs.
if (lowest_audio_pid != pids_.end()) {
DVLOG(1) << "Enable audio pid: " << lowest_audio_pid->first;
lowest_audio_pid->second->Enable();
selected_audio_pid_ = lowest_audio_pid->first;
}
if (lowest_video_pid != pids_.end()) {
DVLOG(1) << "Enable video pid: " << lowest_video_pid->first;
lowest_video_pid->second->Enable();
selected_video_pid_ = lowest_video_pid->first;
}
// Disable all the other audio and video PIDs.
for (auto it = pids_.begin(); it != pids_.end(); ++it) {
PidState* pid_state = it->second.get();
if (it != lowest_audio_pid && it != lowest_video_pid &&
(pid_state->pid_type() == PidState::kPidAudioPes ||
pid_state->pid_type() == PidState::kPidVideoPes))
pid_state->Disable();
}
}
void Mp2tStreamParser::OnVideoConfigChanged(
int pes_pid,
const VideoDecoderConfig& video_decoder_config) {
DVLOG(1) << "OnVideoConfigChanged for pid=" << pes_pid;
DCHECK_EQ(pes_pid, selected_video_pid_);
DCHECK(video_decoder_config.IsValidConfig());
if (!buffer_queue_chain_.empty() &&
!buffer_queue_chain_.back().video_config.IsValidConfig()) {
// No video has been received so far, can reuse the existing video queue.
DCHECK(buffer_queue_chain_.back().video_queue.empty());
buffer_queue_chain_.back().video_config = video_decoder_config;
} else {
// Create a new entry in |buffer_queue_chain_| with the updated configs.
BufferQueueWithConfig buffer_queue_with_config(
false,
buffer_queue_chain_.empty()
? AudioDecoderConfig() : buffer_queue_chain_.back().audio_config,
video_decoder_config);
buffer_queue_chain_.push_back(buffer_queue_with_config);
}
// Replace any non valid config with the 1st valid entry.
// This might happen if there was no available config before.
for (std::list<BufferQueueWithConfig>::iterator it =
buffer_queue_chain_.begin(); it != buffer_queue_chain_.end(); ++it) {
if (it->video_config.IsValidConfig())
break;
it->video_config = video_decoder_config;
}
}
void Mp2tStreamParser::OnAudioConfigChanged(
int pes_pid,
const AudioDecoderConfig& audio_decoder_config) {
DVLOG(1) << "OnAudioConfigChanged for pid=" << pes_pid;
DCHECK_EQ(pes_pid, selected_audio_pid_);
DCHECK(audio_decoder_config.IsValidConfig());
if (!buffer_queue_chain_.empty() &&
!buffer_queue_chain_.back().audio_config.IsValidConfig()) {
// No audio has been received so far, can reuse the existing audio queue.
DCHECK(buffer_queue_chain_.back().audio_queue.empty());
buffer_queue_chain_.back().audio_config = audio_decoder_config;
} else {
// Create a new entry in |buffer_queue_chain_| with the updated configs.
BufferQueueWithConfig buffer_queue_with_config(
false,
audio_decoder_config,
buffer_queue_chain_.empty()
? VideoDecoderConfig() : buffer_queue_chain_.back().video_config);
buffer_queue_chain_.push_back(buffer_queue_with_config);
}
// Replace any non valid config with the 1st valid entry.
// This might happen if there was no available config before.
for (std::list<BufferQueueWithConfig>::iterator it =
buffer_queue_chain_.begin(); it != buffer_queue_chain_.end(); ++it) {
if (it->audio_config.IsValidConfig())
break;
it->audio_config = audio_decoder_config;
}
}
std::unique_ptr<MediaTracks> GenerateMediaTrackInfo(
const AudioDecoderConfig& audio_config,
const VideoDecoderConfig& video_config) {
auto media_tracks = std::make_unique<MediaTracks>();
// TODO(servolk): Implement proper sourcing of media track info as described
// in crbug.com/590085
if (audio_config.IsValidConfig()) {
media_tracks->AddAudioTrack(audio_config, kMp2tAudioTrackId,
MediaTrack::Kind("main"), MediaTrack::Label(""),
MediaTrack::Language(""));
}
if (video_config.IsValidConfig()) {
media_tracks->AddVideoTrack(video_config, kMp2tVideoTrackId,
MediaTrack::Kind("main"), MediaTrack::Label(""),
MediaTrack::Language(""));
}
return media_tracks;
}
bool Mp2tStreamParser::FinishInitializationIfNeeded() {
// Nothing to be done if already initialized.
if (is_initialized_)
return true;
// Wait for more data to come to finish initialization.
if (buffer_queue_chain_.empty())
return true;
// Wait for more data to come if one of the config is not available.
BufferQueueWithConfig& queue_with_config = buffer_queue_chain_.front();
if (selected_audio_pid_ > 0 &&
!queue_with_config.audio_config.IsValidConfig())
return true;
if (selected_video_pid_ > 0 &&
!queue_with_config.video_config.IsValidConfig())
return true;
// Pass the config before invoking the initialization callback.
std::unique_ptr<MediaTracks> media_tracks = GenerateMediaTrackInfo(
queue_with_config.audio_config, queue_with_config.video_config);
RCHECK(config_cb_.Run(std::move(media_tracks)));
queue_with_config.is_config_sent = true;
// For Mpeg2 TS, the duration is not known.
DVLOG(1) << "Mpeg2TS stream parser initialization done";
// TODO(wolenetz): If possible, detect and report track counts by type more
// accurately here. Currently, capped at max 1 each for audio and video.
InitParameters params(kInfiniteDuration);
params.detected_audio_track_count =
queue_with_config.audio_config.IsValidConfig() ? 1 : 0;
params.detected_video_track_count =
queue_with_config.video_config.IsValidConfig() ? 1 : 0;
std::move(init_cb_).Run(params);
is_initialized_ = true;
return true;
}
void Mp2tStreamParser::OnEmitAudioBuffer(
int pes_pid,
scoped_refptr<StreamParserBuffer> stream_parser_buffer) {
DCHECK_EQ(pes_pid, selected_audio_pid_);
DVLOG(LOG_LEVEL_ES)
<< "OnEmitAudioBuffer: "
<< " size="
<< stream_parser_buffer->data_size()
<< " dts="
<< stream_parser_buffer->GetDecodeTimestamp().InMilliseconds()
<< " pts="
<< stream_parser_buffer->timestamp().InMilliseconds()
<< " dur="
<< stream_parser_buffer->duration().InMilliseconds();
// Ignore the incoming buffer if it is not associated with any config.
if (buffer_queue_chain_.empty()) {
LOG(ERROR) << "Cannot provide buffers before configs";
return;
}
buffer_queue_chain_.back().audio_queue.push_back(stream_parser_buffer);
}
void Mp2tStreamParser::OnEmitVideoBuffer(
int pes_pid,
scoped_refptr<StreamParserBuffer> stream_parser_buffer) {
DCHECK_EQ(pes_pid, selected_video_pid_);
DVLOG(LOG_LEVEL_ES)
<< "OnEmitVideoBuffer"
<< " size="
<< stream_parser_buffer->data_size()
<< " dts="
<< stream_parser_buffer->GetDecodeTimestamp().InMilliseconds()
<< " pts="
<< stream_parser_buffer->timestamp().InMilliseconds()
<< " dur="
<< stream_parser_buffer->duration().InMilliseconds()
<< " is_key_frame="
<< stream_parser_buffer->is_key_frame();
// Ignore the incoming buffer if it is not associated with any config.
if (buffer_queue_chain_.empty()) {
NOTREACHED() << "Cannot provide buffers before configs";
return;
}
buffer_queue_chain_.back().video_queue.push_back(stream_parser_buffer);
}
bool Mp2tStreamParser::EmitRemainingBuffers() {
DVLOG(LOG_LEVEL_ES) << "Mp2tStreamParser::EmitRemainingBuffers";
// No buffer should be sent until fully initialized.
if (!is_initialized_)
return true;
if (buffer_queue_chain_.empty())
return true;
// Keep track of the last audio and video config sent.
AudioDecoderConfig last_audio_config =
buffer_queue_chain_.back().audio_config;
VideoDecoderConfig last_video_config =
buffer_queue_chain_.back().video_config;
// Do not have all the configs, need more data.
if (selected_audio_pid_ >= 0 && !last_audio_config.IsValidConfig())
return true;
if (selected_video_pid_ >= 0 && !last_video_config.IsValidConfig())
return true;
// Buffer emission.
while (!buffer_queue_chain_.empty()) {
// Start a segment if needed.
if (!segment_started_) {
DVLOG(1) << "Starting a new segment";
segment_started_ = true;
new_segment_cb_.Run();
}
// Update the audio and video config if needed.
BufferQueueWithConfig& queue_with_config = buffer_queue_chain_.front();
if (!queue_with_config.is_config_sent) {
std::unique_ptr<MediaTracks> media_tracks = GenerateMediaTrackInfo(
queue_with_config.audio_config, queue_with_config.video_config);
if (!config_cb_.Run(std::move(media_tracks))) {
return false;
}
queue_with_config.is_config_sent = true;
}
// Add buffers.
BufferQueueMap buffer_queue_map;
if (!queue_with_config.audio_queue.empty())
buffer_queue_map.insert(
std::make_pair(kMp2tAudioTrackId, queue_with_config.audio_queue));
if (!queue_with_config.video_queue.empty())
buffer_queue_map.insert(
std::make_pair(kMp2tVideoTrackId, queue_with_config.video_queue));
if (!buffer_queue_map.empty() && !new_buffers_cb_.Run(buffer_queue_map))
return false;
buffer_queue_chain_.pop_front();
}
// Push an empty queue with the last audio/video config
// so that buffers with the same config can be added later on.
BufferQueueWithConfig queue_with_config(
true, last_audio_config, last_video_config);
buffer_queue_chain_.push_back(queue_with_config);
return true;
}
std::unique_ptr<PidState> Mp2tStreamParser::MakeCatPidState() {
auto cat_section_parser = std::make_unique<TsSectionCat>(
base::BindRepeating(&Mp2tStreamParser::RegisterCencPids,
base::Unretained(this)),
base::BindRepeating(&Mp2tStreamParser::RegisterEncryptionScheme,
base::Unretained(this)));
auto cat_pid_state = std::make_unique<PidState>(
TsSection::kPidCat, PidState::kPidCat, std::move(cat_section_parser));
cat_pid_state->Enable();
return cat_pid_state;
}
void Mp2tStreamParser::UnregisterCat() {
for (auto& pid : pids_) {
if (pid.second->pid_type() == PidState::kPidCat) {
pids_.erase(pid.first);
break;
}
}
}
void Mp2tStreamParser::RegisterCencPids(int ca_pid, int pssh_pid) {
auto ecm_parser = std::make_unique<TsSectionCetsEcm>(base::BindRepeating(
&Mp2tStreamParser::RegisterNewKeyIdAndIv, base::Unretained(this)));
auto ecm_pid_state = std::make_unique<PidState>(ca_pid, PidState::kPidCetsEcm,
std::move(ecm_parser));
ecm_pid_state->Enable();
pids_.insert(std::make_pair(ca_pid, std::move(ecm_pid_state)));
auto pssh_parser = std::make_unique<TsSectionCetsPssh>(base::BindRepeating(
&Mp2tStreamParser::RegisterPsshBoxes, base::Unretained(this)));
auto pssh_pid_state = std::make_unique<PidState>(
pssh_pid, PidState::kPidCetsPssh, std::move(pssh_parser));
pssh_pid_state->Enable();
pids_.insert(std::make_pair(pssh_pid, std::move(pssh_pid_state)));
}
void Mp2tStreamParser::UnregisterCencPids() {
for (auto& pid : pids_) {
if (pid.second->pid_type() == PidState::kPidCetsEcm) {
pids_.erase(pid.first);
break;
}
}
for (auto& pid : pids_) {
if (pid.second->pid_type() == PidState::kPidCetsPssh) {
pids_.erase(pid.first);
break;
}
}
}
void Mp2tStreamParser::RegisterEncryptionScheme(EncryptionScheme scheme) {
// We only need to record this for the initial decoder config.
if (!is_initialized_) {
initial_encryption_scheme_ = scheme;
}
// Reset the DecryptConfig, so that unless and until a CENC-ECM (containing
// key id and IV) is seen, media data will be considered unencrypted. This is
// similar to the way clear leaders can occur in MP4 containers.
decrypt_config_.reset();
}
void Mp2tStreamParser::RegisterNewKeyIdAndIv(const std::string& key_id,
const std::string& iv) {
if (!iv.empty()) {
switch (initial_encryption_scheme_) {
case EncryptionScheme::kUnencrypted:
decrypt_config_.reset();
break;
case EncryptionScheme::kCenc:
decrypt_config_ = DecryptConfig::CreateCencConfig(key_id, iv, {});
break;
case EncryptionScheme::kCbcs:
decrypt_config_ =
DecryptConfig::CreateCbcsConfig(key_id, iv, {}, absl::nullopt);
break;
}
}
}
void Mp2tStreamParser::RegisterPsshBoxes(
const std::vector<uint8_t>& init_data) {
encrypted_media_init_data_cb_.Run(EmeInitDataType::CENC, init_data);
}
} // namespace mp2t
} // namespace media