blob: e828d351afa14b56a891bf0e0f77675379c4e46b [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <memory>
#include "base/logging.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/events/gesture_detection/velocity_tracker_state.h"
#include "ui/events/test/motion_event_test_utils.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/vector2d_f.h"
using base::TimeDelta;
using base::TimeTicks;
using ui::test::MockMotionEvent;
namespace ui {
namespace {
const TimeDelta kTenMillis = TimeDelta::FromMilliseconds(10);
const TimeDelta kOneSecond = TimeDelta::FromSeconds(1);
const float kEpsilson = .01f;
const char* GetStrategyName(VelocityTracker::Strategy strategy) {
switch (strategy) {
case VelocityTracker::LSQ1: return "LSQ1";
case VelocityTracker::LSQ2: return "LSQ2";
case VelocityTracker::LSQ2_RESTRICTED: return "LSQ2_RESTRICTED";
case VelocityTracker::LSQ3: return "LSQ3";
case VelocityTracker::WLSQ2_DELTA: return "WLSQ2_DELTA";
case VelocityTracker::WLSQ2_CENTRAL: return "WLSQ2_CENTRAL";
case VelocityTracker::WLSQ2_RECENT: return "WLSQ2_RECENT";
case VelocityTracker::INT1: return "INT1";
case VelocityTracker::INT2: return "INT2";
}
NOTREACHED() << "Invalid strategy";
return "";
}
} // namespace
class VelocityTrackerTest : public testing::Test {
public:
VelocityTrackerTest() {}
~VelocityTrackerTest() override {}
protected:
static MockMotionEvent Sample(MotionEvent::Action action,
const gfx::PointF& p0,
TimeTicks t0,
const gfx::Vector2dF& v,
TimeDelta dt) {
const gfx::PointF p = p0 + ScaleVector2d(v, dt.InSecondsF());
return MockMotionEvent(action, t0 + dt, p.x(), p.y());
}
static void ApplyMovementSequence(VelocityTrackerState* state,
const gfx::PointF& p0,
const gfx::Vector2dF& v,
TimeTicks t0,
TimeDelta t,
size_t samples) {
EXPECT_TRUE(samples);
if (!samples)
return;
const base::TimeDelta dt = t / samples;
state->AddMovement(Sample(MotionEvent::Action::DOWN, p0, t0, v, dt * 0));
ApplyMovement(state, p0, v, t0, t, samples);
state->AddMovement(Sample(MotionEvent::Action::UP, p0, t0, v, t));
}
static void ApplyMovement(VelocityTrackerState* state,
const gfx::PointF& p0,
const gfx::Vector2dF& v,
TimeTicks t0,
TimeDelta t,
size_t samples) {
EXPECT_TRUE(samples);
if (!samples)
return;
const base::TimeDelta dt = t / samples;
for (size_t i = 0; i < samples; ++i)
state->AddMovement(Sample(MotionEvent::Action::MOVE, p0, t0, v, dt * i));
}
};
TEST_F(VelocityTrackerTest, Basic) {
const gfx::PointF p0(0, 0);
const gfx::Vector2dF v(0, 500);
const size_t samples = 60;
for (int i = 0; i <= VelocityTracker::STRATEGY_MAX; ++i) {
VelocityTracker::Strategy strategy =
static_cast<VelocityTracker::Strategy>(i);
SCOPED_TRACE(GetStrategyName(strategy));
VelocityTrackerState state(strategy);
// Default state should report zero velocity.
EXPECT_EQ(0, state.GetXVelocity(0));
EXPECT_EQ(0, state.GetYVelocity(0));
// Sample a constant velocity sequence.
ApplyMovementSequence(&state, p0, v, TimeTicks::Now(), kOneSecond, samples);
// The computed velocity should match that of the input.
state.ComputeCurrentVelocity(1000, 20000);
EXPECT_NEAR(v.x(), state.GetXVelocity(0), kEpsilson * v.x());
EXPECT_NEAR(v.y(), state.GetYVelocity(0), kEpsilson * v.y());
// A pointer ID of -1 should report the velocity of the active pointer.
EXPECT_NEAR(v.x(), state.GetXVelocity(-1), kEpsilson * v.x());
EXPECT_NEAR(v.y(), state.GetYVelocity(-1), kEpsilson * v.y());
// Invalid pointer ID's should report zero velocity.
EXPECT_EQ(0, state.GetXVelocity(1));
EXPECT_EQ(0, state.GetYVelocity(1));
EXPECT_EQ(0, state.GetXVelocity(7));
EXPECT_EQ(0, state.GetYVelocity(7));
}
}
TEST_F(VelocityTrackerTest, MaxVelocity) {
const gfx::PointF p0(0, 0);
const gfx::Vector2dF v(-50000, 50000);
const size_t samples = 3;
const base::TimeDelta dt = kTenMillis * 2;
VelocityTrackerState state(VelocityTracker::Strategy::LSQ2);
ApplyMovementSequence(&state, p0, v, TimeTicks::Now(), dt, samples);
// The computed velocity should be restricted to the provided maximum.
state.ComputeCurrentVelocity(1000, 100);
EXPECT_NEAR(-100, state.GetXVelocity(0), kEpsilson);
EXPECT_NEAR(100, state.GetYVelocity(0), kEpsilson);
state.ComputeCurrentVelocity(1000, 1000);
EXPECT_NEAR(-1000, state.GetXVelocity(0), kEpsilson);
EXPECT_NEAR(1000, state.GetYVelocity(0), kEpsilson);
}
TEST_F(VelocityTrackerTest, VaryingVelocity) {
const gfx::PointF p0(0, 0);
const gfx::Vector2dF vFast(0, 500);
const gfx::Vector2dF vSlow = ScaleVector2d(vFast, 0.5f);
const size_t samples = 12;
for (int i = 0; i <= VelocityTracker::STRATEGY_MAX; ++i) {
VelocityTracker::Strategy strategy =
static_cast<VelocityTracker::Strategy>(i);
SCOPED_TRACE(GetStrategyName(strategy));
VelocityTrackerState state(strategy);
base::TimeTicks t0 = base::TimeTicks::Now();
base::TimeDelta dt = kTenMillis * 10;
state.AddMovement(
Sample(MotionEvent::Action::DOWN, p0, t0, vFast, base::TimeDelta()));
// Apply some fast movement and compute the velocity.
gfx::PointF pCurr = p0;
base::TimeTicks tCurr = t0;
ApplyMovement(&state, pCurr, vFast, tCurr, dt, samples);
state.ComputeCurrentVelocity(1000, 20000);
float vOldY = state.GetYVelocity(0);
// Apply some slow movement.
pCurr += ScaleVector2d(vFast, dt.InSecondsF());
tCurr += dt;
ApplyMovement(&state, pCurr, vSlow, tCurr, dt, samples);
// The computed velocity should have decreased.
state.ComputeCurrentVelocity(1000, 20000);
float vCurrentY = state.GetYVelocity(0);
EXPECT_GT(vFast.y(), vCurrentY);
EXPECT_GT(vOldY, vCurrentY);
vOldY = vCurrentY;
// Apply some additional fast movement.
pCurr += ScaleVector2d(vSlow, dt.InSecondsF());
tCurr += dt;
ApplyMovement(&state, pCurr, vFast, tCurr, dt, samples);
// The computed velocity should have increased.
state.ComputeCurrentVelocity(1000, 20000);
vCurrentY = state.GetYVelocity(0);
EXPECT_LT(vSlow.y(), vCurrentY);
EXPECT_LT(vOldY, vCurrentY);
}
}
TEST_F(VelocityTrackerTest, DelayedActionUp) {
const gfx::PointF p0(0, 0);
const gfx::Vector2dF v(-50000, 50000);
const size_t samples = 10;
const base::TimeTicks t0 = base::TimeTicks::Now();
const base::TimeDelta dt = kTenMillis * 2;
VelocityTrackerState state(VelocityTracker::Strategy::LSQ2);
state.AddMovement(
Sample(MotionEvent::Action::DOWN, p0, t0, v, base::TimeDelta()));
// Apply the movement and verify a (non-zero) velocity.
ApplyMovement(&state, p0, v, t0, dt, samples);
state.ComputeCurrentVelocity(1000, 1000);
EXPECT_NEAR(-1000, state.GetXVelocity(0), kEpsilson);
EXPECT_NEAR(1000, state.GetYVelocity(0), kEpsilson);
// Apply the delayed Action::UP.
const gfx::PointF p1 = p0 + ScaleVector2d(v, dt.InSecondsF());
const base::TimeTicks t1 = t0 + dt + kTenMillis * 10;
state.AddMovement(
Sample(MotionEvent::Action::UP, p1, t1, v, base::TimeDelta()));
// The tracked velocity should have been reset.
state.ComputeCurrentVelocity(1000, 1000);
EXPECT_EQ(0.f, state.GetXVelocity(0));
EXPECT_EQ(0.f, state.GetYVelocity(0));
}
// Tests that a rapid deceleration won't result in a velocity going in the
// opposite direction to the pointers primary movement, with the LSQ_RESTRICTED
// strategy. See crbug.com/417855.
TEST_F(VelocityTrackerTest, NoDirectionReversal) {
VelocityTrackerState state_unrestricted(VelocityTracker::LSQ2);
VelocityTrackerState state_restricted(VelocityTracker::LSQ2_RESTRICTED);
const base::TimeTicks t0 = base::TimeTicks::Now();
const base::TimeDelta dt = base::TimeDelta::FromMilliseconds(1);
const size_t samples = 60;
gfx::PointF p(0, 0);
MockMotionEvent m1(MotionEvent::Action::DOWN, t0, p.x(), p.y());
state_unrestricted.AddMovement(m1);
state_restricted.AddMovement(m1);
for (size_t i = 0; i < samples; ++i) {
if (i < 50)
p.set_y(p.y() + 10);
MockMotionEvent mi(MotionEvent::Action::MOVE, t0 + dt * i, p.x(), p.y());
state_unrestricted.AddMovement(mi);
state_restricted.AddMovement(mi);
}
// The computed velocity be zero, as we stopped at the end of the gesture. In
// particular, it should not be negative, as all movement was in the positive
// direction.
state_restricted.ComputeCurrentVelocity(1000, 20000);
EXPECT_EQ(0, state_restricted.GetXVelocity(0));
EXPECT_EQ(0, state_restricted.GetYVelocity(0));
// This does not hold for the unrestricted LSQ2 strategy.
state_unrestricted.ComputeCurrentVelocity(1000, 20000);
EXPECT_EQ(0, state_unrestricted.GetXVelocity(0));
// Y velocity is negative, despite the fact that the finger only moved in the
// positive y direction.
EXPECT_GT(0, state_unrestricted.GetYVelocity(0));
}
} // namespace ui