| // Copyright 2014 The Crashpad Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "minidump/minidump_writable.h" |
| |
| #include <stdint.h> |
| |
| #include <iterator> |
| |
| #include "base/check_op.h" |
| #include "base/logging.h" |
| #include "util/file/file_writer.h" |
| #include "util/numeric/safe_assignment.h" |
| |
| namespace { |
| |
| constexpr size_t kMaximumAlignment = 16; |
| |
| } // namespace |
| |
| namespace crashpad { |
| namespace internal { |
| |
| MinidumpWritable::~MinidumpWritable() { |
| } |
| |
| bool MinidumpWritable::WriteEverything(FileWriterInterface* file_writer) { |
| DCHECK_EQ(state_, kStateMutable); |
| |
| if (!Freeze()) { |
| return false; |
| } |
| |
| DCHECK_EQ(state_, kStateFrozen); |
| |
| FileOffset offset = 0; |
| std::vector<MinidumpWritable*> write_sequence; |
| size_t size = WillWriteAtOffset(kPhaseEarly, &offset, &write_sequence); |
| if (size == kInvalidSize) { |
| return false; |
| } |
| |
| offset += size; |
| if (WillWriteAtOffset(kPhaseLate, &offset, &write_sequence) == kInvalidSize) { |
| return false; |
| } |
| |
| DCHECK_EQ(state_, kStateWritable); |
| DCHECK_EQ(write_sequence.front(), this); |
| |
| for (MinidumpWritable* writable : write_sequence) { |
| if (!writable->WritePaddingAndObject(file_writer)) { |
| return false; |
| } |
| } |
| |
| DCHECK_EQ(state_, kStateWritten); |
| |
| return true; |
| } |
| |
| void MinidumpWritable::RegisterRVA(RVA* rva) { |
| DCHECK_LE(state_, kStateFrozen); |
| |
| registered_rvas_.push_back(rva); |
| } |
| |
| void MinidumpWritable::RegisterRVA(RVA64* rva64) { |
| DCHECK_LE(state_, kStateFrozen); |
| |
| registered_rva64s_.push_back(rva64); |
| } |
| |
| void MinidumpWritable::RegisterLocationDescriptor( |
| MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor) { |
| DCHECK_LE(state_, kStateFrozen); |
| |
| registered_location_descriptors_.push_back(location_descriptor); |
| } |
| |
| void MinidumpWritable::RegisterLocationDescriptor( |
| MINIDUMP_LOCATION_DESCRIPTOR64* location_descriptor64) { |
| DCHECK_LE(state_, kStateFrozen); |
| |
| registered_location_descriptor64s_.push_back(location_descriptor64); |
| } |
| |
| MinidumpWritable::MinidumpWritable() |
| : registered_rvas_(), |
| registered_rva64s_(), |
| registered_location_descriptors_(), |
| registered_location_descriptor64s_(), |
| leading_pad_bytes_(0), |
| state_(kStateMutable) {} |
| |
| bool MinidumpWritable::Freeze() { |
| DCHECK_EQ(state_, kStateMutable); |
| state_ = kStateFrozen; |
| |
| std::vector<MinidumpWritable*> children = Children(); |
| for (MinidumpWritable* child : children) { |
| if (!child->Freeze()) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| size_t MinidumpWritable::Alignment() { |
| DCHECK_GE(state_, kStateFrozen); |
| |
| return 4; |
| } |
| |
| std::vector<MinidumpWritable*> MinidumpWritable::Children() { |
| DCHECK_GE(state_, kStateFrozen); |
| |
| return std::vector<MinidumpWritable*>(); |
| } |
| |
| MinidumpWritable::Phase MinidumpWritable::WritePhase() { |
| return kPhaseEarly; |
| } |
| |
| size_t MinidumpWritable::WillWriteAtOffset( |
| Phase phase, |
| FileOffset* offset, |
| std::vector<MinidumpWritable*>* write_sequence) { |
| FileOffset local_offset = *offset; |
| CHECK_GE(local_offset, 0); |
| |
| size_t leading_pad_bytes_this_phase; |
| size_t size; |
| if (phase == WritePhase()) { |
| DCHECK_EQ(state_, kStateFrozen); |
| |
| // Add this object to the sequence of MinidumpWritable objects to be |
| // written. |
| write_sequence->push_back(this); |
| |
| size = SizeOfObject(); |
| |
| if (size > 0) { |
| // Honor this object’s request to be aligned to a specific byte boundary. |
| // Once the alignment is corrected, this object knows exactly what file |
| // offset it will be written at. |
| size_t alignment = Alignment(); |
| CHECK_LE(alignment, kMaximumAlignment); |
| |
| leading_pad_bytes_this_phase = |
| (alignment - (local_offset % alignment)) % alignment; |
| local_offset += leading_pad_bytes_this_phase; |
| *offset = local_offset; |
| } else { |
| // If the object is size 0, alignment is of no concern. |
| leading_pad_bytes_this_phase = 0; |
| } |
| leading_pad_bytes_ = leading_pad_bytes_this_phase; |
| |
| // Now that the file offset that this object will be written at is known, |
| // let the subclass implementation know in case it’s interested. |
| if (!WillWriteAtOffsetImpl(local_offset)) { |
| return kInvalidSize; |
| } |
| |
| // Populate the 32-bit RVA fields in other objects that have registered to |
| // point to this one. Typically, a parent object will have registered to |
| // point to its children, but this can also occur where no parent-child |
| // relationship exists. |
| if (!registered_rvas_.empty() || |
| !registered_location_descriptors_.empty()) { |
| RVA local_rva; |
| if (!AssignIfInRange(&local_rva, local_offset)) { |
| LOG(ERROR) << "offset " << local_offset << " out of range"; |
| return kInvalidSize; |
| } |
| |
| for (RVA* rva : registered_rvas_) { |
| *rva = local_rva; |
| } |
| |
| if (!registered_location_descriptors_.empty()) { |
| decltype(registered_location_descriptors_[0]->DataSize) local_size; |
| if (!AssignIfInRange(&local_size, size)) { |
| LOG(ERROR) << "size " << size << " out of range"; |
| return kInvalidSize; |
| } |
| |
| for (MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor : |
| registered_location_descriptors_) { |
| location_descriptor->DataSize = local_size; |
| location_descriptor->Rva = local_rva; |
| } |
| } |
| } |
| |
| // Populate the 64-bit RVA fields in other objects that have registered to |
| // point to this one. Typically, a parent object will have registered to |
| // point to its children, but this can also occur where no parent-child |
| // relationship exists. |
| if (!registered_rva64s_.empty() || |
| !registered_location_descriptor64s_.empty()) { |
| RVA64 local_rva64; |
| if (!AssignIfInRange(&local_rva64, local_offset)) { |
| LOG(ERROR) << "offset " << local_offset << " out of range"; |
| return kInvalidSize; |
| } |
| |
| for (RVA64* rva64 : registered_rva64s_) { |
| *rva64 = local_rva64; |
| } |
| |
| if (!registered_location_descriptor64s_.empty()) { |
| decltype(registered_location_descriptor64s_[0]->DataSize) local_size; |
| if (!AssignIfInRange(&local_size, size)) { |
| LOG(ERROR) << "size " << size << " out of range"; |
| return kInvalidSize; |
| } |
| |
| for (MINIDUMP_LOCATION_DESCRIPTOR64* location_descriptor : |
| registered_location_descriptor64s_) { |
| location_descriptor->DataSize = local_size; |
| location_descriptor->Rva = local_rva64; |
| } |
| } |
| } |
| |
| // This object is now considered writable. However, if it contains RVA/RVA64 |
| // or MINIDUMP_LOCATION_DESCRIPTOR/MINIDUMP_LOCATION_DESCRIPTOR64 fields, |
| // they may not be fully updated yet, because it’s the repsonsibility of |
| // these fields’ pointees to update them. Once WillWriteAtOffset has |
| // completed running for both phases on an entire tree, and the entire tree |
| // has moved into kStateFrozen, all RVA/RVA64 and |
| // MINIDUMP_LOCATION_DESCRIPTOR/MINIDUMP_LOCATION_DESCRIPTOR64 fields within |
| // that tree will be populated. |
| state_ = kStateWritable; |
| } else { |
| if (phase == kPhaseEarly) { |
| DCHECK_EQ(state_, kStateFrozen); |
| } else { |
| DCHECK_EQ(state_, kStateWritable); |
| } |
| |
| size = 0; |
| leading_pad_bytes_this_phase = 0; |
| } |
| |
| // Loop over children regardless of whether this object itself will write |
| // during this phase. An object’s children are not required to be written |
| // during the same phase as their parent. |
| std::vector<MinidumpWritable*> children = Children(); |
| for (MinidumpWritable* child : children) { |
| // Use “auto” here because it’s impossible to know whether size_t (size) or |
| // FileOffset (local_offset) is the wider type, and thus what type the |
| // result of adding these two variables will have. |
| auto unaligned_child_offset = local_offset + size; |
| FileOffset child_offset; |
| if (!AssignIfInRange(&child_offset, unaligned_child_offset)) { |
| LOG(ERROR) << "offset " << unaligned_child_offset << " out of range"; |
| return kInvalidSize; |
| } |
| |
| size_t child_size = |
| child->WillWriteAtOffset(phase, &child_offset, write_sequence); |
| if (child_size == kInvalidSize) { |
| return kInvalidSize; |
| } |
| |
| size += child_size; |
| } |
| |
| return leading_pad_bytes_this_phase + size; |
| } |
| |
| bool MinidumpWritable::WillWriteAtOffsetImpl(FileOffset offset) { |
| return true; |
| } |
| |
| bool MinidumpWritable::WritePaddingAndObject(FileWriterInterface* file_writer) { |
| DCHECK_EQ(state_, kStateWritable); |
| |
| // The number of elements in kZeroes must be at least one less than the |
| // maximum Alignment() ever encountered. |
| static constexpr uint8_t kZeroes[kMaximumAlignment - 1] = {}; |
| DCHECK_LE(leading_pad_bytes_, std::size(kZeroes)); |
| |
| if (leading_pad_bytes_) { |
| if (!file_writer->Write(&kZeroes, leading_pad_bytes_)) { |
| return false; |
| } |
| } |
| |
| if (!WriteObject(file_writer)) { |
| return false; |
| } |
| |
| state_ = kStateWritten; |
| return true; |
| } |
| |
| } // namespace internal |
| } // namespace crashpad |