blob: a1186edb4f342eab1af730eaaef15fb84e670080 [file] [log] [blame]
// Copyright 2014 The Crashpad Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef CRASHPAD_SNAPSHOT_SYSTEM_SNAPSHOT_H_
#define CRASHPAD_SNAPSHOT_SYSTEM_SNAPSHOT_H_
#include <stdint.h>
#include <sys/types.h>
#include <string>
#include "snapshot/cpu_architecture.h"
namespace crashpad {
//! \brief An abstract interface to a snapshot representing the state of a
//! system, comprising an operating system, CPU architecture, and various
//! other characteristics.
class SystemSnapshot {
public:
virtual ~SystemSnapshot() {}
//! \brief A system’s operating system family.
enum OperatingSystem {
//! \brief The snapshot system’s operating system is unknown.
kOperatingSystemUnknown = 0,
//! \brief macOS.
kOperatingSystemMacOSX,
//! \brief Windows.
kOperatingSystemWindows,
//! \brief Linux.
kOperatingSystemLinux,
//! \brief Android.
kOperatingSystemAndroid,
//! \brief Fuchsia.
kOperatingSystemFuchsia,
//! \brief iOS.
kOperatingSystemIOS,
};
//! \brief A system’s daylight saving time status.
//!
//! The daylight saving time status is taken partially from the system’s
//! locale configuration. This determines whether daylight saving time is
//! ever observed on the system. If it is, the snapshot’s time
//! (ProcessSnapshot::SnapshotTime()) is used to determine whether the system
//! was observing daylight saving time at the time of the snapshot.
enum DaylightSavingTimeStatus {
//! \brief Daylight saving time is never observed on the snapshot system.
kDoesNotObserveDaylightSavingTime = 0,
//! \brief Daylight saving time is observed on the snapshot system when in
//! effect, but standard time was in effect at the time of the snapshot.
kObservingStandardTime,
//! \brief Daylight saving time is observed on the snapshot system when in
//! effect, and daylight saving time was in effect at the time of the
//! snapshot.
kObservingDaylightSavingTime,
};
//! \brief Returns the snapshot system’s CPU architecture.
//!
//! In some cases, a system may be able to run processes of multiple specific
//! architecture types. For example, systems based on 64-bit architectures
//! such as x86_64 are often able to run 32-bit code of another architecture
//! in the same family, such as 32-bit x86. On these systems, this method will
//! return the architecture of the process that the snapshot is associated
//! with, provided that the SystemSnapshot object was obtained from
//! ProcessSnapshot::System(). This renders one aspect of this method’s return
//! value a process attribute rather than a system attribute, but it’s defined
//! here rather than in ProcessSnapshot because the CPU architecture is a
//! better conceptual fit for the system abstraction alongside these other
//! related methods.
virtual CPUArchitecture GetCPUArchitecture() const = 0;
//! \brief Returns the snapshot system’s CPU revision.
//!
//! For x86-family CPUs (including x86_64 and 32-bit x86), this is the CPU
//! family, model, and stepping ID values from `cpuid 1` `eax`. The family and
//! model values are adjusted to take the extended family and model IDs into
//! account. These values are encoded in this method’s return value with the
//! family in the high high 16 bits, the model in the next 8 bits, and the
//! stepping in the low 8 bits.
//!
//! \return A CPU architecture-specific value identifying the CPU revision.
virtual uint32_t CPURevision() const = 0;
//! \brief Returns the total number of CPUs present in the snapshot system.
virtual uint8_t CPUCount() const = 0;
//! \brief Returns the vendor of the snapshot system’s CPUs.
//!
//! For x86-family CPUs (including x86_64 and 32-bit x86), this is the CPU
//! vendor identification string as encoded in `cpuid 0` `ebx`, `edx`, and
//! `ecx`.
//!
//! \return A string identifying the vendor of the snapshot system’s CPUs.
virtual std::string CPUVendor() const = 0;
//! \brief Returns frequency information about the snapshot system’s CPUs in
//! \a current_hz and \a max_hz.
//!
//! \param[out] current_hz The snapshot system’s CPU clock frequency in Hz at
//! the time of the snapshot.
//! \param[out] max_hz The snapshot system’s maximum possible CPU clock
//! frequency.
virtual void CPUFrequency(uint64_t* current_hz, uint64_t* max_hz) const = 0;
//! \brief Returns an x86-family snapshot system’s CPU signature.
//!
//! This is the family, model, and stepping ID values as encoded in `cpuid 1`
//! `eax`.
//!
//! This method must only be called when GetCPUArchitecture() indicates an
//! x86-family CPU architecture (#kCPUArchitectureX86 or
//! #kCPUArchitectureX86_64).
//!
//! \return An x86 family-specific value identifying the CPU signature.
virtual uint32_t CPUX86Signature() const = 0;
//! \brief Returns an x86-family snapshot system’s CPU features.
//!
//! This is the feature information as encoded in `cpuid 1` `edx` and `ecx`.
//! `edx` is placed in the low half of the return value, and `ecx` is placed
//! in the high half.
//!
//! This method must only be called when GetCPUArchitecture() indicates an
//! x86-family CPU architecture (#kCPUArchitectureX86 or
//! #kCPUArchitectureX86_64).
//!
//! \return An x86 family-specific value identifying CPU features.
//!
//! \sa CPUX86ExtendedFeatures()
//! \sa CPUX86Leaf7Features()
virtual uint64_t CPUX86Features() const = 0;
//! \brief Returns an x86-family snapshot system’s extended CPU features.
//!
//! This is the extended feature information as encoded in `cpuid 0x80000001`
//! `edx` and `ecx`. `edx` is placed in the low half of the return value, and
//! `ecx` is placed in the high half.
//!
//! This method must only be called when GetCPUArchitecture() indicates an
//! x86-family CPU architecture (#kCPUArchitectureX86 or
//! #kCPUArchitectureX86_64).
//!
//! \return An x86 family-specific value identifying extended CPU features.
//!
//! \sa CPUX86Features()
//! \sa CPUX86Leaf7Features()
virtual uint64_t CPUX86ExtendedFeatures() const = 0;
//! \brief Returns an x86-family snapshot system’s “leaf 7” CPU features.
//!
//! This is the “leaf 7” feature information as encoded in `cpuid 7` `ebx`. If
//! `cpuid 7` is not supported by the snapshot CPU, this returns `0`.
//!
//! This method must only be called when GetCPUArchitecture() indicates an
//! x86-family CPU architecture (#kCPUArchitectureX86 or
//! #kCPUArchitectureX86_64).
//!
//! \return An x86 family-specific value identifying “leaf 7” CPU features.
//!
//! \sa CPUX86Features()
//! \sa CPUX86ExtendedFeatures()
virtual uint32_t CPUX86Leaf7Features() const = 0;
//! \brief Returns an x86-family snapshot system’s CPU’s support for the SSE
//! DAZ (“denormals are zeros”) mode.
//!
//! This determines whether the CPU supports DAZ mode at all, not whether this
//! mode is enabled for any particular thread. DAZ mode support is detected by
//! examining the DAZ bit in the `mxcsr_mask` field of the floating-point
//! context saved by `fxsave`.
//!
//! This method must only be called when GetCPUArchitecture() indicates an
//! x86-family CPU architecture (#kCPUArchitectureX86 or
//! #kCPUArchitectureX86_64).
//!
//! \return `true` if the snapshot system’s CPUs support the SSE DAZ mode,
//! `false` if they do not.
virtual bool CPUX86SupportsDAZ() const = 0;
//! \brief Returns the snapshot system’s operating system family.
virtual OperatingSystem GetOperatingSystem() const = 0;
//! \brief Returns whether the snapshot system runs a server variant of its
//! operating system.
virtual bool OSServer() const = 0;
//! \brief Returns the snapshot system’s operating system version information
//! in \a major, \a minor, \a bugfix, and \a build.
//!
//! \param[out] major The snapshot system’s operating system’s first (major)
//! version number component. This would be `10` for macOS 10.12.1, and
//! `6` for Windows 7 (NT 6.1) SP1 version 6.1.7601.
//! \param[out] minor The snapshot system’s operating system’s second (minor)
//! version number component. This would be `12` for macOS 10.12.1, and
//! `1` for Windows 7 (NT 6.1) SP1 version 6.1.7601.
//! \param[out] bugfix The snapshot system’s operating system’s third (bugfix)
//! version number component. This would be `1` for macOS 10.12.1, and
//! `7601` for Windows 7 (NT 6.1) SP1 version 6.1.7601.
//! \param[out] build A string further identifying an operating system
//! version. For macOS 10.12.1, this would be `"16B2657"`. For Windows,
//! this would be `"Service Pack 1"` if that service pack was installed.
//! On Android, the `ro.build.fingerprint` system property would be
//! appended. For Linux and other Unix-like systems, this would be the
//! kernel version from `uname -srvm`, possibly with additional
//! information appended.
virtual void OSVersion(int* major,
int* minor,
int* bugfix,
std::string* build) const = 0;
//! \brief Returns the snapshot system’s full operating system version
//! information in string format.
//!
//! For macOS, the string contains values from the operating system and
//! kernel. A macOS 10.12.1 system snapshot would be identified as `"Mac OS
//! X 10.12.1 (16B2657); Darwin 16.1.0 Darwin Kernel Version 16.1.0: Wed Oct
//! 19 20:31:56 PDT 2016; root:xnu-3789.21.4~4/RELEASE_X86_64 x86_64"`.
virtual std::string OSVersionFull() const = 0;
//! \brief Returns a description of the snapshot system’s hardware in string
//! format.
//!
//! For macOS, the string contains the Mac model and board ID. A mid-2014 15"
//! MacBook Pro would be identified as `"MacBookPro11,3
//! (Mac-2BD1B31983FE1663)"`.
virtual std::string MachineDescription() const = 0;
//! \brief Returns the status of the NX (no-execute, or XD, execute-disable)
//! feature on the snapshot system.
//!
//! This refers to a feature that allows mapped readable pages to be marked
//! as non-executable.
//!
//! \return `true` if the snapshot system supports NX and it is enabled.
virtual bool NXEnabled() const = 0;
//! \brief Returns time zone information from the snapshot system, based on
//! its locale configuration and real-time clock.
//!
//! \param[out] dst_status Whether the location observes daylight saving time,
//! and if so, whether it or standard time is currently being observed.
//! \param[out] standard_offset_seconds The number of seconds that the
//! location’s time zone is east (ahead) of UTC during standard time.
//! \param[out] daylight_offset_seconds The number of seconds that the
//! location’s time zone is east (ahead) of UTC during daylight saving.
//! time.
//! \param[out] standard_name The name of the time zone while standard time is
//! being observed.
//! \param[out] daylight_name The name of the time zone while daylight saving
//! time is being observed.
virtual void TimeZone(DaylightSavingTimeStatus* dst_status,
int* standard_offset_seconds,
int* daylight_offset_seconds,
std::string* standard_name,
std::string* daylight_name) const = 0;
//! \brief Returns a mask indicating the range of valid addresses for a
//! pointer.
//!
//! ARM64 supports storing pointer authentication codes in the upper bits of
//! a pointer. This mask is generated based on the number of bits in a pointer
//! reserved for the authentication codes. To recover an address from pointer
//! with an authentication code, `AND` this mask with the pointer. If the pac
//! sign extension bit is set, instead `~` and `OR` this mask with the
//! pointer.
//!
//! If the platform does not support pointer authentication, or the range of
//! valid addressees for a pointer was inaccessible, this field will be 0.
virtual uint64_t AddressMask() const = 0;
};
} // namespace crashpad
#endif // CRASHPAD_SNAPSHOT_SYSTEM_SNAPSHOT_H_