| // Copyright 2014 The Crashpad Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "snapshot/cpu_context.h" |
| |
| #include <stddef.h> |
| #include <string.h> |
| #include <sys/types.h> |
| |
| #include <iterator> |
| |
| #include "gtest/gtest.h" |
| #include "test/hex_string.h" |
| |
| namespace crashpad { |
| namespace test { |
| namespace { |
| |
| enum ExponentValue { |
| kExponentAllZero = 0, |
| kExponentAllOne, |
| kExponentNormal, |
| }; |
| |
| enum FractionValue { |
| kFractionAllZero = 0, |
| kFractionNormal, |
| }; |
| |
| //! \brief Initializes an x87 register to a known bit pattern. |
| //! |
| //! \param[out] st_mm The x87 register to initialize. The reserved portion of |
| //! the register is always zeroed out. |
| //! \param[in] exponent_value The bit pattern to use for the exponent. If this |
| //! is kExponentAllZero, the sign bit will be set to `1`, and if this is |
| //! kExponentAllOne, the sign bit will be set to `0`. This tests that the |
| //! implementation doesn’t erroneously consider the sign bit to be part of |
| //! the exponent. This may also be kExponentNormal, indicating that the |
| //! exponent shall neither be all zeroes nor all ones. |
| //! \param[in] j_bit The value to use for the “J bit” (“integer bit”). |
| //! \param[in] fraction_value If kFractionAllZero, the fraction will be zeroed |
| //! out. If kFractionNormal, the fraction will not be all zeroes. |
| void SetX87Register(CPUContextX86::X87Register* st, |
| ExponentValue exponent_value, |
| bool j_bit, |
| FractionValue fraction_value) { |
| switch (exponent_value) { |
| case kExponentAllZero: |
| (*st)[9] = 0x80; |
| (*st)[8] = 0; |
| break; |
| case kExponentAllOne: |
| (*st)[9] = 0x7f; |
| (*st)[8] = 0xff; |
| break; |
| case kExponentNormal: |
| (*st)[9] = 0x55; |
| (*st)[8] = 0x55; |
| break; |
| } |
| |
| uint8_t fraction_pattern = fraction_value == kFractionAllZero ? 0 : 0x55; |
| memset(st, fraction_pattern, 8); |
| |
| if (j_bit) { |
| (*st)[7] |= 0x80; |
| } else { |
| (*st)[7] &= ~0x80; |
| } |
| } |
| |
| //! \brief Initializes an x87 register to a known bit pattern. |
| //! |
| //! This behaves as SetX87Register() but also clears the reserved portion of the |
| //! field as used in the `fxsave` format. |
| void SetX87OrMMXRegister(CPUContextX86::X87OrMMXRegister* st_mm, |
| ExponentValue exponent_value, |
| bool j_bit, |
| FractionValue fraction_value) { |
| SetX87Register(&st_mm->st, exponent_value, j_bit, fraction_value); |
| memset(st_mm->st_reserved, 0, sizeof(st_mm->st_reserved)); |
| } |
| |
| TEST(CPUContextX86, FxsaveToFsave) { |
| // Establish a somewhat plausible fxsave state. Use nonzero values for |
| // reserved fields and things that aren’t present in fsave. |
| CPUContextX86::Fxsave fxsave; |
| fxsave.fcw = 0x027f; // mask exceptions, 53-bit precision, round to nearest |
| fxsave.fsw = 1 << 11; // top = 1: logical 0-7 maps to physical 1-7, 0 |
| fxsave.ftw = 0x1f; // physical 5-7 (logical 4-6) empty |
| fxsave.reserved_1 = 0x5a; |
| fxsave.fop = 0x1fe; // fsin |
| fxsave.fpu_ip = 0x76543210; |
| fxsave.fpu_cs = 0x0007; |
| fxsave.reserved_2 = 0x5a5a; |
| fxsave.fpu_dp = 0xfedcba98; |
| fxsave.fpu_ds = 0x000f; |
| fxsave.reserved_3 = 0x5a5a; |
| fxsave.mxcsr = 0x1f80; |
| fxsave.mxcsr_mask = 0xffff; |
| SetX87Register( |
| &fxsave.st_mm[0].st, kExponentNormal, true, kFractionAllZero); // valid |
| SetX87Register( |
| &fxsave.st_mm[1].st, kExponentAllZero, false, kFractionAllZero); // zero |
| SetX87Register( |
| &fxsave.st_mm[2].st, kExponentAllOne, true, kFractionAllZero); // spec. |
| SetX87Register( |
| &fxsave.st_mm[3].st, kExponentAllOne, true, kFractionNormal); // spec. |
| SetX87Register( |
| &fxsave.st_mm[4].st, kExponentAllZero, false, kFractionAllZero); |
| SetX87Register( |
| &fxsave.st_mm[5].st, kExponentAllZero, false, kFractionAllZero); |
| SetX87Register( |
| &fxsave.st_mm[6].st, kExponentAllZero, false, kFractionAllZero); |
| SetX87Register( |
| &fxsave.st_mm[7].st, kExponentNormal, true, kFractionNormal); // valid |
| for (size_t index = 0; index < std::size(fxsave.st_mm); ++index) { |
| memset(&fxsave.st_mm[index].st_reserved, |
| 0x5a, |
| sizeof(fxsave.st_mm[index].st_reserved)); |
| } |
| memset(&fxsave.xmm, 0x5a, sizeof(fxsave) - offsetof(decltype(fxsave), xmm)); |
| |
| CPUContextX86::Fsave fsave; |
| CPUContextX86::FxsaveToFsave(fxsave, &fsave); |
| |
| // Everything should have come over from fxsave. Reserved fields should be |
| // zero. |
| EXPECT_EQ(fsave.fcw, fxsave.fcw); |
| EXPECT_EQ(fsave.reserved_1, 0); |
| EXPECT_EQ(fsave.fsw, fxsave.fsw); |
| EXPECT_EQ(fsave.reserved_2, 0); |
| EXPECT_EQ(fsave.ftw, 0xfe90); // FxsaveToFsaveTagWord |
| EXPECT_EQ(fsave.reserved_3, 0); |
| EXPECT_EQ(fsave.fpu_ip, fxsave.fpu_ip); |
| EXPECT_EQ(fsave.fpu_cs, fxsave.fpu_cs); |
| EXPECT_EQ(fsave.fop, fxsave.fop); |
| EXPECT_EQ(fsave.fpu_dp, fxsave.fpu_dp); |
| EXPECT_EQ(fsave.fpu_ds, fxsave.fpu_ds); |
| EXPECT_EQ(fsave.reserved_4, 0); |
| for (size_t index = 0; index < std::size(fsave.st); ++index) { |
| EXPECT_EQ(BytesToHexString(fsave.st[index], std::size(fsave.st[index])), |
| BytesToHexString(fxsave.st_mm[index].st, |
| std::size(fxsave.st_mm[index].st))) |
| << "index " << index; |
| } |
| } |
| |
| TEST(CPUContextX86, FsaveToFxsave) { |
| // Establish a somewhat plausible fsave state. Use nonzero values for |
| // reserved fields. |
| CPUContextX86::Fsave fsave; |
| fsave.fcw = 0x0300; // unmask exceptions, 64-bit precision, round to nearest |
| fsave.reserved_1 = 0xa5a5; |
| fsave.fsw = 2 << 11; // top = 2: logical 0-7 maps to physical 2-7, 0-1 |
| fsave.reserved_2 = 0xa5a5; |
| fsave.ftw = 0xa9ff; // physical 0-3 (logical 6-7, 0-1) empty; physical 4 |
| // (logical 2) zero; physical 5-7 (logical 3-5) special |
| fsave.reserved_3 = 0xa5a5; |
| fsave.fpu_ip = 0x456789ab; |
| fsave.fpu_cs = 0x1013; |
| fsave.fop = 0x01ee; // fldz |
| fsave.fpu_dp = 0x0123cdef; |
| fsave.fpu_ds = 0x2017; |
| fsave.reserved_4 = 0xa5a5; |
| SetX87Register(&fsave.st[0], kExponentAllZero, false, kFractionNormal); |
| SetX87Register(&fsave.st[1], kExponentAllZero, true, kFractionNormal); |
| SetX87Register( |
| &fsave.st[2], kExponentAllZero, false, kFractionAllZero); // zero |
| SetX87Register( |
| &fsave.st[3], kExponentAllZero, true, kFractionAllZero); // spec. |
| SetX87Register( |
| &fsave.st[4], kExponentAllZero, false, kFractionNormal); // spec. |
| SetX87Register( |
| &fsave.st[5], kExponentAllZero, true, kFractionNormal); // spec. |
| SetX87Register(&fsave.st[6], kExponentAllZero, false, kFractionAllZero); |
| SetX87Register(&fsave.st[7], kExponentAllZero, true, kFractionAllZero); |
| |
| CPUContextX86::Fxsave fxsave; |
| CPUContextX86::FsaveToFxsave(fsave, &fxsave); |
| |
| // Everything in fsave should have come over from there. Fields not present in |
| // fsave and reserved fields should be zero. |
| EXPECT_EQ(fxsave.fcw, fsave.fcw); |
| EXPECT_EQ(fxsave.fsw, fsave.fsw); |
| EXPECT_EQ(fxsave.ftw, 0xf0); // FsaveToFxsaveTagWord |
| EXPECT_EQ(fxsave.reserved_1, 0); |
| EXPECT_EQ(fxsave.fop, fsave.fop); |
| EXPECT_EQ(fxsave.fpu_ip, fsave.fpu_ip); |
| EXPECT_EQ(fxsave.fpu_cs, fsave.fpu_cs); |
| EXPECT_EQ(fxsave.reserved_2, 0); |
| EXPECT_EQ(fxsave.fpu_dp, fsave.fpu_dp); |
| EXPECT_EQ(fxsave.fpu_ds, fsave.fpu_ds); |
| EXPECT_EQ(fxsave.reserved_3, 0); |
| EXPECT_EQ(fxsave.mxcsr, 0u); |
| EXPECT_EQ(fxsave.mxcsr_mask, 0u); |
| for (size_t index = 0; index < std::size(fxsave.st_mm); ++index) { |
| EXPECT_EQ(BytesToHexString(fxsave.st_mm[index].st, |
| std::size(fxsave.st_mm[index].st)), |
| BytesToHexString(fsave.st[index], std::size(fsave.st[index]))) |
| << "index " << index; |
| EXPECT_EQ(BytesToHexString(fxsave.st_mm[index].st_reserved, |
| std::size(fxsave.st_mm[index].st_reserved)), |
| std::string(std::size(fxsave.st_mm[index].st_reserved) * 2, '0')) |
| << "index " << index; |
| } |
| size_t unused_len = sizeof(fxsave) - offsetof(decltype(fxsave), xmm); |
| EXPECT_EQ(BytesToHexString(fxsave.xmm, unused_len), |
| std::string(unused_len * 2, '0')); |
| |
| // Since the fsave format is a subset of the fxsave format, fsave-fxsave-fsave |
| // should round-trip cleanly. |
| CPUContextX86::Fsave fsave_2; |
| CPUContextX86::FxsaveToFsave(fxsave, &fsave_2); |
| |
| // Clear the reserved fields in the original fsave structure, since they’re |
| // expected to be clear in the copy. |
| fsave.reserved_1 = 0; |
| fsave.reserved_2 = 0; |
| fsave.reserved_3 = 0; |
| fsave.reserved_4 = 0; |
| EXPECT_EQ(memcmp(&fsave, &fsave_2, sizeof(fsave)), 0); |
| } |
| |
| TEST(CPUContextX86, FxsaveToFsaveTagWord) { |
| // The fsave tag word uses bit pattern 00 for valid, 01 for zero, 10 for |
| // “special”, and 11 for empty. Like the fxsave tag word, it is arranged by |
| // physical register. The fxsave tag word determines whether a register is |
| // empty, and analysis of the x87 register content distinguishes between |
| // valid, zero, and special. In the initializations below, comments show |
| // whether a register is expected to be considered valid, zero, or special, |
| // except where the tag word is expected to indicate that it is empty. Each |
| // combination appears twice: once where the fxsave tag word indicates a |
| // nonempty register, and once again where it indicates an empty register. |
| |
| uint16_t fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7 |
| uint8_t fxsave_tag = 0x0f; // physical 4-7 (logical 4-7) empty |
| CPUContextX86::X87OrMMXRegister st_mm[8]; |
| SetX87OrMMXRegister( |
| &st_mm[0], kExponentNormal, false, kFractionNormal); // spec. |
| SetX87OrMMXRegister( |
| &st_mm[1], kExponentNormal, true, kFractionNormal); // valid |
| SetX87OrMMXRegister( |
| &st_mm[2], kExponentNormal, false, kFractionAllZero); // spec. |
| SetX87OrMMXRegister( |
| &st_mm[3], kExponentNormal, true, kFractionAllZero); // valid |
| SetX87OrMMXRegister(&st_mm[4], kExponentNormal, false, kFractionNormal); |
| SetX87OrMMXRegister(&st_mm[5], kExponentNormal, true, kFractionNormal); |
| SetX87OrMMXRegister(&st_mm[6], kExponentNormal, false, kFractionAllZero); |
| SetX87OrMMXRegister(&st_mm[7], kExponentNormal, true, kFractionAllZero); |
| EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), |
| 0xff22); |
| |
| fsw = 2 << 11; // top = 2: logical 0-7 maps to physical 2-7, 0-1 |
| fxsave_tag = 0xf0; // physical 0-3 (logical 6-7, 0-1) empty |
| SetX87OrMMXRegister(&st_mm[0], kExponentAllZero, false, kFractionNormal); |
| SetX87OrMMXRegister(&st_mm[1], kExponentAllZero, true, kFractionNormal); |
| SetX87OrMMXRegister( |
| &st_mm[2], kExponentAllZero, false, kFractionAllZero); // zero |
| SetX87OrMMXRegister( |
| &st_mm[3], kExponentAllZero, true, kFractionAllZero); // spec. |
| SetX87OrMMXRegister( |
| &st_mm[4], kExponentAllZero, false, kFractionNormal); // spec. |
| SetX87OrMMXRegister( |
| &st_mm[5], kExponentAllZero, true, kFractionNormal); // spec. |
| SetX87OrMMXRegister(&st_mm[6], kExponentAllZero, false, kFractionAllZero); |
| SetX87OrMMXRegister(&st_mm[7], kExponentAllZero, true, kFractionAllZero); |
| EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), |
| 0xa9ff); |
| |
| fsw = 5 << 11; // top = 5: logical 0-7 maps to physical 5-7, 0-4 |
| fxsave_tag = 0x5a; // physical 0, 2, 5, and 7 (logical 5, 0, 2, and 3) empty |
| SetX87OrMMXRegister(&st_mm[0], kExponentAllOne, false, kFractionNormal); |
| SetX87OrMMXRegister( |
| &st_mm[1], kExponentAllOne, true, kFractionNormal); // spec. |
| SetX87OrMMXRegister(&st_mm[2], kExponentAllOne, false, kFractionAllZero); |
| SetX87OrMMXRegister(&st_mm[3], kExponentAllOne, true, kFractionAllZero); |
| SetX87OrMMXRegister( |
| &st_mm[4], kExponentAllOne, false, kFractionNormal); // spec. |
| SetX87OrMMXRegister(&st_mm[5], kExponentAllOne, true, kFractionNormal); |
| SetX87OrMMXRegister( |
| &st_mm[6], kExponentAllOne, false, kFractionAllZero); // spec. |
| SetX87OrMMXRegister( |
| &st_mm[7], kExponentAllOne, true, kFractionAllZero); // spec. |
| EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), |
| 0xeebb); |
| |
| // This set set is just a mix of all of the possible tag types in a single |
| // register file. |
| fsw = 1 << 11; // top = 1: logical 0-7 maps to physical 1-7, 0 |
| fxsave_tag = 0x1f; // physical 5-7 (logical 4-6) empty |
| SetX87OrMMXRegister( |
| &st_mm[0], kExponentNormal, true, kFractionAllZero); // valid |
| SetX87OrMMXRegister( |
| &st_mm[1], kExponentAllZero, false, kFractionAllZero); // zero |
| SetX87OrMMXRegister( |
| &st_mm[2], kExponentAllOne, true, kFractionAllZero); // spec. |
| SetX87OrMMXRegister( |
| &st_mm[3], kExponentAllOne, true, kFractionNormal); // spec. |
| SetX87OrMMXRegister(&st_mm[4], kExponentAllZero, false, kFractionAllZero); |
| SetX87OrMMXRegister(&st_mm[5], kExponentAllZero, false, kFractionAllZero); |
| SetX87OrMMXRegister(&st_mm[6], kExponentAllZero, false, kFractionAllZero); |
| SetX87OrMMXRegister( |
| &st_mm[7], kExponentNormal, true, kFractionNormal); // valid |
| EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), |
| 0xfe90); |
| |
| // In this set, everything is valid. |
| fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7 |
| fxsave_tag = 0xff; // nothing empty |
| for (size_t index = 0; index < std::size(st_mm); ++index) { |
| SetX87OrMMXRegister(&st_mm[index], kExponentNormal, true, kFractionAllZero); |
| } |
| EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), 0); |
| |
| // In this set, everything is empty. The registers shouldn’t be consulted at |
| // all, so they’re left alone from the previous set. |
| fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7 |
| fxsave_tag = 0; // everything empty |
| EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), |
| 0xffff); |
| } |
| |
| TEST(CPUContextX86, FsaveToFxsaveTagWord) { |
| // The register sets that these x87 tag words might apply to are given in the |
| // FxsaveToFsaveTagWord test above. |
| EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xff22), 0x0f); |
| EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xa9ff), 0xf0); |
| EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xeebb), 0x5a); |
| EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xfe90), 0x1f); |
| EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0x0000), 0xff); |
| EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xffff), 0x00); |
| } |
| |
| } // namespace |
| } // namespace test |
| } // namespace crashpad |