blob: 51e0dfed7c67f426f5bdf60864834c5a5457068b [file] [log] [blame]
# Copyright 2022 The Chromium Authors
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
from __future__ import annotations
import abc
import datetime as dt
import json
import logging
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Type
from crossbench.benchmarks.base import BenchmarkProbeMixin
from crossbench.benchmarks.jetstream.jetstream import JetStreamBenchmark
from crossbench.probes import metric as cb_metric
from crossbench.probes.json import JsonResultProbe
from crossbench.probes.results import ProbeResult, ProbeResultDict
from crossbench.stories.press_benchmark import PressBenchmarkStory
if TYPE_CHECKING:
from crossbench.path import LocalPath
from crossbench.runner.actions import Actions
from crossbench.runner.groups import BrowsersRunGroup, StoriesRunGroup
from crossbench.runner.run import Run
class JetStream2Probe(
BenchmarkProbeMixin, JsonResultProbe, metaclass=abc.ABCMeta):
"""
JetStream2-specific Probe.
Extracts all JetStream2 times and scores.
"""
FLATTEN: bool = False
JS: str = """
let results = Object.create(null);
for (let benchmark of JetStream.benchmarks) {
const data = { score: benchmark.score };
if ("worst4" in benchmark) {
data.firstIteration = benchmark.firstIteration;
data.average = benchmark.average;
data.worst4 = benchmark.worst4;
} else if ("runTime" in benchmark) {
data.runTime = benchmark.runTime;
data.startupTime = benchmark.startupTime;
}
results[benchmark.plan.name] = data;
};
return results;
"""
def to_json(self, actions: Actions) -> Dict[str, float]:
data = actions.js(self.JS)
assert len(data) > 0, "No benchmark data generated"
return data
def process_json_data(self, json_data: Dict[str, Any]) -> Dict[str, Any]:
assert "Total" not in json_data, (
"JSON result data already contains a ['Total'] entry.")
json_data["Total"] = self._compute_total_metrics(json_data)
return json_data
def _compute_total_metrics(self, json_data: Dict[str,
Any]) -> Dict[str, float]:
# Manually add all total scores
accumulated_metrics = defaultdict(list)
for _, metrics in json_data.items():
for metric, value in metrics.items():
accumulated_metrics[metric].append(value)
total: Dict[str, float] = {}
for metric, values in accumulated_metrics.items():
total[metric] = cb_metric.geomean(values)
return total
def merge_stories(self, group: StoriesRunGroup) -> ProbeResult:
merged = cb_metric.MetricsMerger.merge_json_list(
story_group.results[self].json
for story_group in group.repetitions_groups)
return self.write_group_result(group, merged, write_csv=True)
def merge_browsers(self, group: BrowsersRunGroup) -> ProbeResult:
return self.merge_browsers_json_list(group).merge(
self.merge_browsers_csv_list(group))
def log_run_result(self, run: Run) -> None:
self._log_result(run.results, single_result=True)
def log_browsers_result(self, group: BrowsersRunGroup) -> None:
self._log_result(group.results, single_result=False)
def _log_result(self, result_dict: ProbeResultDict,
single_result: bool) -> None:
if self not in result_dict:
return
results_json: LocalPath = result_dict[self].json
logging.info("-" * 80)
logging.critical("JetStream results:")
if not single_result:
logging.critical(" %s", result_dict[self].csv)
logging.info("- " * 40)
with results_json.open(encoding="utf-8") as f:
data = json.load(f)
if single_result:
logging.critical("Score %s", data["Total"]["score"])
else:
self._log_result_metrics(data)
def _extract_result_metrics_table(self, metrics: Dict[str, Any],
table: Dict[str, List[str]]) -> None:
for metric_key, metric_value in metrics.items():
parts = metric_key.split("/")
if len(parts) != 2 or parts[0] == "Total" or parts[1] != "score":
continue
table[metric_key].append(
cb_metric.format_metric(metric_value["average"],
metric_value["stddev"]))
# Separate runs don't produce a score
if "Total/score" in metrics:
metric_value = metrics["Total/score"]
table["Score"].append(
cb_metric.format_metric(metric_value["average"],
metric_value["stddev"]))
class JetStream2Story(PressBenchmarkStory, metaclass=abc.ABCMeta):
URL_LOCAL: str = "http://localhost:8000/"
SUBSTORIES: Tuple[str, ...] = (
"WSL",
"UniPoker",
"uglify-js-wtb",
"typescript",
"tsf-wasm",
"tagcloud-SP",
"string-unpack-code-SP",
"stanford-crypto-sha256",
"stanford-crypto-pbkdf2",
"stanford-crypto-aes",
"splay",
"segmentation",
"richards-wasm",
"richards",
"regexp",
"regex-dna-SP",
"raytrace",
"quicksort-wasm",
"prepack-wtb",
"pdfjs",
"OfflineAssembler",
"octane-zlib",
"octane-code-load",
"navier-stokes",
"n-body-SP",
"multi-inspector-code-load",
"ML",
"mandreel",
"lebab-wtb",
"json-stringify-inspector",
"json-parse-inspector",
"jshint-wtb",
"HashSet-wasm",
"hash-map",
"gcc-loops-wasm",
"gbemu",
"gaussian-blur",
"float-mm.c",
"FlightPlanner",
"first-inspector-code-load",
"espree-wtb",
"earley-boyer",
"delta-blue",
"date-format-xparb-SP",
"date-format-tofte-SP",
"crypto-sha1-SP",
"crypto-md5-SP",
"crypto-aes-SP",
"crypto",
"coffeescript-wtb",
"chai-wtb",
"cdjs",
"Box2D",
"bomb-workers",
"Basic",
"base64-SP",
"babylon-wtb",
"Babylon",
"async-fs",
"Air",
"ai-astar",
"acorn-wtb",
"3d-raytrace-SP",
"3d-cube-SP",
)
@property
def substory_duration(self) -> dt.timedelta:
return dt.timedelta(seconds=2)
def setup(self, run: Run) -> None:
with run.actions("Setup") as actions:
actions.show_url(self._url)
if self._substories != self.SUBSTORIES:
actions.wait_js_condition(("return JetStream && JetStream.benchmarks "
"&& JetStream.benchmarks.length > 0;"), 0.1,
10)
actions.js(
"""
let benchmarks = arguments[0];
JetStream.benchmarks = JetStream.benchmarks.filter(
benchmark => benchmarks.includes(benchmark.name));
""",
arguments=[self._substories])
actions.wait_js_condition(
"""
return document.querySelectorAll("#results>.benchmark").length > 0;
""", 1, self.duration + dt.timedelta(seconds=30))
def run(self, run: Run) -> None:
with run.actions("Running") as actions:
actions.js("JetStream.start()")
actions.wait(self.fast_duration)
with run.actions("Waiting for completion") as actions:
actions.wait_js_condition(
"""
let summaryElement = document.getElementById("result-summary");
return (summaryElement.classList.contains("done"));
""", self.substory_duration, self.slow_duration)
ProbeClsTupleT = Tuple[Type[JetStream2Probe], ...]
class JetStream2Benchmark(JetStreamBenchmark):
pass