| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ui/display/manager/touch_transform_controller.h" |
| |
| #include <utility> |
| #include <vector> |
| |
| #include "base/logging.h" |
| #include "third_party/skia/include/core/SkMatrix44.h" |
| #include "ui/display/display_layout.h" |
| #include "ui/display/manager/display_manager.h" |
| #include "ui/display/manager/managed_display_info.h" |
| #include "ui/display/manager/touch_device_manager.h" |
| #include "ui/display/manager/touch_transform_setter.h" |
| #include "ui/display/screen.h" |
| #include "ui/display/types/display_constants.h" |
| #include "ui/display/types/display_snapshot.h" |
| #include "ui/events/devices/device_data_manager.h" |
| #include "ui/events/devices/touch_device_transform.h" |
| |
| namespace display { |
| |
| namespace { |
| |
| // Given an array of touch point and display point pairs, this function computes |
| // and returns the constants(defined below) using a least fit algorithm. |
| // If (xt, yt) is a touch point then its corresponding (xd, yd) would be defined |
| // by the following 2 equations: |
| // xd = xt * A + yt * B + C |
| // yd = xt * D + yt * E + F |
| // This function computes A, B, C, D, E and F and sets |ctm| with the calibrated |
| // transform matrix. In case the computation fails, the function will return |
| // false. |
| // See http://crbug.com/672293 |
| bool GetCalibratedTransform( |
| std::array<std::pair<gfx::Point, gfx::Point>, 4> touch_point_pairs, |
| const gfx::Transform& pre_calibration_tm, |
| gfx::Transform* ctm) { |
| // Transform the display points before solving the equation. |
| // If the calibration was performed at a resolution that is 0.5 times the |
| // current resolution, then the display points (x, y) for a given touch point |
| // now represents a display point at (2 * x, 2 * y). This and other kinds of |
| // similar tranforms can be applied using |pre_calibration_tm|. |
| for (int row = 0; row < 4; row++) |
| pre_calibration_tm.TransformPoint(&touch_point_pairs[row].first); |
| |
| // Vector of the X-coordinate of display points corresponding to each of the |
| // touch points. |
| SkVector4 display_points_x( |
| touch_point_pairs[0].first.x(), touch_point_pairs[1].first.x(), |
| touch_point_pairs[2].first.x(), touch_point_pairs[3].first.x()); |
| // Vector of the Y-coordinate of display points corresponding to each of the |
| // touch points. |
| SkVector4 display_points_y( |
| touch_point_pairs[0].first.y(), touch_point_pairs[1].first.y(), |
| touch_point_pairs[2].first.y(), touch_point_pairs[3].first.y()); |
| |
| // Initialize |touch_point_matrix| |
| // If {(xt_1, yt_1), (xt_2, yt_2), (xt_3, yt_3)....} are a set of touch points |
| // received during calibration, then the |touch_point_matrix| would be defined |
| // as: |
| // |xt_1 yt_1 1 0| |
| // |xt_2 yt_2 1 0| |
| // |xt_3 yt_3 1 0| |
| // |xt_4 yt_4 1 0| |
| SkMatrix44 touch_point_matrix; |
| for (int row = 0; row < 4; row++) { |
| touch_point_matrix.set(row, 0, touch_point_pairs[row].second.x()); |
| touch_point_matrix.set(row, 1, touch_point_pairs[row].second.y()); |
| touch_point_matrix.set(row, 2, 1); |
| touch_point_matrix.set(row, 3, 0); |
| } |
| SkMatrix44 touch_point_matrix_transpose(touch_point_matrix); |
| touch_point_matrix_transpose.transpose(); |
| |
| SkMatrix44 product_matrix = touch_point_matrix_transpose * touch_point_matrix; |
| |
| // Set (3, 3) = 1 so that |determinent| of the matrix is != 0 and the inverse |
| // can be calculated. |
| product_matrix.set(3, 3, 1); |
| |
| SkMatrix44 product_matrix_inverse; |
| |
| // NOTE: If the determinent is zero then the inverse cannot be computed. The |
| // only solution is to restart touch calibration and get new points from user. |
| if (!product_matrix.invert(&product_matrix_inverse)) { |
| NOTREACHED() << "Touch Calibration failed. Determinent is zero."; |
| return false; |
| } |
| |
| product_matrix_inverse.set(3, 3, 0); |
| |
| product_matrix = product_matrix_inverse * touch_point_matrix_transpose; |
| |
| // Constants [A, B, C, 0] used to calibrate the x-coordinate of touch input. |
| // x_new = x_old * A + y_old * B + C; |
| SkVector4 x_constants = product_matrix * display_points_x; |
| // Constants [D, E, F, 0] used to calibrate the y-coordinate of touch input. |
| // y_new = x_old * D + y_old * E + F; |
| SkVector4 y_constants = product_matrix * display_points_y; |
| |
| // Create a transform matrix using the touch calibration data. |
| ctm->ConcatTransform(gfx::Transform( |
| x_constants.fData[0], x_constants.fData[1], 0, x_constants.fData[2], |
| y_constants.fData[0], y_constants.fData[1], 0, y_constants.fData[2], 0, 0, |
| 1, 0, 0, 0, 0, 1)); |
| return true; |
| } |
| |
| // Returns an uncalibrated touch transform. |
| gfx::Transform GetUncalibratedTransform(const gfx::Transform& tm, |
| const ManagedDisplayInfo& display, |
| const ManagedDisplayInfo& touch_display, |
| const gfx::SizeF& touch_area, |
| const gfx::SizeF& touch_native_size) { |
| gfx::SizeF current_size(display.bounds_in_native().size()); |
| gfx::Transform ctm(tm); |
| // Take care of panel fitting only if supported. Panel fitting is emulated |
| // in software mirroring mode (display != touch_display). |
| // If panel fitting is enabled then the aspect ratio is preserved and the |
| // display is scaled acordingly. In this case blank regions would be present |
| // in order to center the displayed area. |
| if (display.is_aspect_preserving_scaling() || |
| display.id() != touch_display.id()) { |
| float touch_calib_ar = |
| touch_native_size.width() / touch_native_size.height(); |
| float current_ar = current_size.width() / current_size.height(); |
| |
| if (current_ar > touch_calib_ar) { // Letterboxing |
| ctm.Translate( |
| 0, (1 - current_ar / touch_calib_ar) * 0.5 * current_size.height()); |
| ctm.Scale(1, current_ar / touch_calib_ar); |
| } else if (touch_calib_ar > current_ar) { // Pillarboxing |
| ctm.Translate( |
| (1 - touch_calib_ar / current_ar) * 0.5 * current_size.width(), 0); |
| ctm.Scale(touch_calib_ar / current_ar, 1); |
| } |
| } |
| // Take care of scaling between touchscreen area and display resolution. |
| ctm.Scale(current_size.width() / touch_area.width(), |
| current_size.height() / touch_area.height()); |
| return ctm; |
| } |
| |
| DisplayIdList GetCurrentDisplayIdList(const DisplayManager* display_manager) { |
| DCHECK(display_manager->num_connected_displays()); |
| if (display_manager->num_connected_displays() == 1) |
| return DisplayIdList{display_manager->first_display_id()}; |
| return display_manager->GetCurrentDisplayIdList(); |
| } |
| |
| } // namespace |
| |
| TouchTransformController::UpdateData::UpdateData() = default; |
| |
| TouchTransformController::UpdateData::~UpdateData() = default; |
| |
| // This is to compute the scale ratio for the TouchEvent's radius. The |
| // configured resolution of the display is not always the same as the touch |
| // screen's reporting resolution, e.g. the display could be set as |
| // 1920x1080 while the touchscreen is reporting touch position range at |
| // 32767x32767. Touch radius is reported in the units the same as touch position |
| // so we need to scale the touch radius to be compatible with the display's |
| // resolution. We compute the scale as |
| // sqrt of (display_area / touchscreen_area) |
| double TouchTransformController::GetTouchResolutionScale( |
| const ManagedDisplayInfo& touch_display, |
| const ui::TouchscreenDevice& touch_device) const { |
| if (touch_device.id == ui::InputDevice::kInvalidId || |
| touch_device.size.IsEmpty() || |
| touch_display.bounds_in_native().size().IsEmpty()) |
| return 1.0; |
| |
| double display_area = touch_display.bounds_in_native().size().GetArea(); |
| double touch_area = touch_device.size.GetArea(); |
| double ratio = std::sqrt(display_area / touch_area); |
| |
| VLOG(2) << "Display size: " |
| << touch_display.bounds_in_native().size().ToString() |
| << ", Touchscreen size: " << touch_device.size.ToString() |
| << ", Touch radius scale ratio: " << ratio; |
| return ratio; |
| } |
| |
| gfx::Transform TouchTransformController::GetTouchTransform( |
| const ManagedDisplayInfo& display, |
| const ManagedDisplayInfo& touch_display, |
| const ui::TouchscreenDevice& touchscreen) const { |
| auto current_size = gfx::SizeF(display.bounds_in_native().size()); |
| auto touch_native_size = gfx::SizeF(touch_display.GetNativeModeSize()); |
| auto touch_area = gfx::SizeF(touchscreen.size); |
| |
| gfx::Transform ctm; |
| |
| if (current_size.IsEmpty() || touch_native_size.IsEmpty() || |
| touch_area.IsEmpty() || touchscreen.id == ui::InputDevice::kInvalidId) |
| return ctm; |
| |
| // Translate the touch so that it falls within the display bounds. This |
| // should not be performed if the displays are mirrored. |
| if (display.id() == touch_display.id()) { |
| ctm.Translate(display.bounds_in_native().x(), |
| display.bounds_in_native().y()); |
| } |
| |
| // If the device is currently under calibration, then do not return any |
| // transform as we want to use the raw native touch input data for calibration |
| if (is_calibrating_) |
| return ctm; |
| |
| TouchCalibrationData calibration_data = |
| display_manager_->touch_device_manager()->GetCalibrationData( |
| touchscreen, touch_display.id()); |
| // If touch calibration data is unavailable, use naive approach. |
| if (calibration_data.IsEmpty()) { |
| return GetUncalibratedTransform(ctm, display, touch_display, touch_area, |
| touch_native_size); |
| } |
| |
| // The resolution at which the touch calibration was performed. |
| gfx::SizeF touch_calib_size(calibration_data.bounds); |
| |
| // Any additional transfomration that needs to be applied to the display |
| // points, before we solve for the final transform. |
| gfx::Transform pre_transform; |
| |
| if (display.id() != touch_display.id() || |
| display.is_aspect_preserving_scaling()) { |
| // Case of displays being mirrored or in panel fitting mode. |
| // Aspect ratio of the touch display's resolution during calibration. |
| float calib_ar = touch_calib_size.width() / touch_calib_size.height(); |
| // Aspect ratio of the display that is being mirrored. |
| float current_ar = current_size.width() / current_size.height(); |
| |
| if (current_ar < calib_ar) { |
| pre_transform.Scale(current_size.height() / touch_calib_size.height(), |
| current_size.height() / touch_calib_size.height()); |
| pre_transform.Translate( |
| (current_ar / calib_ar - 1.f) * touch_calib_size.width() * 0.5f, 0); |
| } else { |
| pre_transform.Scale(current_size.width() / touch_calib_size.width(), |
| current_size.width() / touch_calib_size.width()); |
| pre_transform.Translate( |
| 0, (calib_ar / current_ar - 1.f) * touch_calib_size.height() * 0.5f); |
| } |
| } else { |
| // Case of current resolution being different from the resolution when the |
| // touch calibration was performed. |
| pre_transform.Scale(current_size.width() / touch_calib_size.width(), |
| current_size.height() / touch_calib_size.height()); |
| } |
| // Solve for coefficients and compute transform matrix. |
| gfx::Transform stored_ctm; |
| if (!GetCalibratedTransform(calibration_data.point_pairs, pre_transform, |
| &stored_ctm)) { |
| // TODO(malaykeshav): This can be checked at the calibration step before |
| // storing the calibration associated data. This will allow us to explicitly |
| // inform the user with proper UX. |
| |
| // Return uncalibrated transform. |
| return GetUncalibratedTransform(ctm, display, touch_display, touch_area, |
| touch_native_size); |
| } |
| |
| stored_ctm.ConcatTransform(ctm); |
| return stored_ctm; |
| } |
| |
| TouchTransformController::TouchTransformController( |
| DisplayManager* display_manager, |
| std::unique_ptr<TouchTransformSetter> setter) |
| : display_manager_(display_manager), |
| touch_transform_setter_(std::move(setter)) {} |
| |
| TouchTransformController::~TouchTransformController() {} |
| |
| void TouchTransformController::UpdateTouchTransforms() const { |
| UpdateData update_data; |
| UpdateTouchTransforms(&update_data); |
| touch_transform_setter_->ConfigureTouchDevices( |
| update_data.touch_device_transforms); |
| } |
| |
| void TouchTransformController::UpdateTouchRadius( |
| const ManagedDisplayInfo& display, |
| UpdateData* update_data) const { |
| for (const auto& device : |
| display_manager_->touch_device_manager() |
| ->GetAssociatedTouchDevicesForDisplay(display.id())) { |
| DCHECK_EQ(0u, update_data->device_to_scale.count(device.id)); |
| update_data->device_to_scale.emplace( |
| device.id, GetTouchResolutionScale(display, device)); |
| } |
| } |
| |
| void TouchTransformController::UpdateTouchTransform( |
| int64_t target_display_id, |
| const ManagedDisplayInfo& touch_display, |
| const ManagedDisplayInfo& target_display, |
| UpdateData* update_data) const { |
| ui::TouchDeviceTransform touch_device_transform; |
| touch_device_transform.display_id = target_display_id; |
| for (const auto& device : |
| display_manager_->touch_device_manager() |
| ->GetAssociatedTouchDevicesForDisplay(touch_display.id())) { |
| touch_device_transform.device_id = device.id; |
| touch_device_transform.transform = |
| GetTouchTransform(target_display, touch_display, device); |
| auto device_to_scale_iter = update_data->device_to_scale.find(device.id); |
| if (device_to_scale_iter != update_data->device_to_scale.end()) |
| touch_device_transform.radius_scale = device_to_scale_iter->second; |
| update_data->touch_device_transforms.push_back(touch_device_transform); |
| } |
| } |
| |
| void TouchTransformController::UpdateTouchTransforms( |
| UpdateData* update_data) const { |
| if (display_manager_->num_connected_displays() == 0) |
| return; |
| |
| DisplayIdList display_id_list = GetCurrentDisplayIdList(display_manager_); |
| DCHECK(display_id_list.size()); |
| |
| DisplayInfoList display_info_list; |
| |
| for (int64_t display_id : display_id_list) { |
| DCHECK(display_id != kInvalidDisplayId); |
| display_info_list.push_back(display_manager_->GetDisplayInfo(display_id)); |
| UpdateTouchRadius(display_info_list.back(), update_data); |
| } |
| |
| if (display_manager_->IsInMirrorMode()) { |
| std::size_t primary_display_id_index = |
| std::distance(display_id_list.begin(), |
| std::find(display_id_list.begin(), display_id_list.end(), |
| Screen::GetScreen()->GetPrimaryDisplay().id())); |
| |
| for (std::size_t index = 0; index < display_id_list.size(); index++) { |
| // In extended but software mirroring mode, there is a WindowTreeHost |
| // for each display, but all touches are forwarded to the primary root |
| // window's WindowTreeHost. |
| // In mirror mode, there is just one WindowTreeHost and two displays. |
| // Make the WindowTreeHost accept touch events from both displays. |
| std::size_t touch_display_index = |
| display_manager_->SoftwareMirroringEnabled() |
| ? primary_display_id_index |
| : index; |
| UpdateTouchTransform(display_id_list[primary_display_id_index], |
| display_info_list[index], |
| display_info_list[touch_display_index], update_data); |
| } |
| return; |
| } |
| |
| for (std::size_t index = 0; index < display_id_list.size(); index++) { |
| UpdateTouchTransform(display_id_list[index], display_info_list[index], |
| display_info_list[index], update_data); |
| } |
| } |
| |
| void TouchTransformController::SetForCalibration(bool is_calibrating) { |
| is_calibrating_ = is_calibrating; |
| UpdateTouchTransforms(); |
| } |
| |
| } // namespace display |