blob: d7338f2a64cd715d2b043f646c8bb7a4b6f96b99 [file] [log] [blame]
/* Copyright (c) 2006, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ---
* Author: Maxim Lifantsev
*/
//
// Background and key design points of MemoryRegionMap.
//
// MemoryRegionMap is a low-level module with quite atypical requirements that
// result in some degree of non-triviality of the implementation and design.
//
// MemoryRegionMap collects info about *all* memory regions created with
// mmap, munmap, mremap, sbrk.
// They key word above is 'all': all that are happening in a process
// during its lifetime frequently starting even before global object
// constructor execution.
//
// This is needed by the primary client of MemoryRegionMap:
// HeapLeakChecker uses the regions and the associated stack traces
// to figure out what part of the memory is the heap:
// if MemoryRegionMap were to miss some (early) regions, leak checking would
// stop working correctly.
//
// To accomplish the goal of functioning before/during global object
// constructor execution MemoryRegionMap is done as a singleton service
// that relies on own on-demand initialized static constructor-less data,
// and only relies on other low-level modules that can also function properly
// even before global object constructors run.
//
// Accomplishing the goal of collecting data about all mmap, munmap, mremap,
// sbrk occurrences is a more involved: conceptually to do this one needs to
// record some bits of data in particular about any mmap or sbrk call,
// but to do that one needs to allocate memory for that data at some point,
// but all memory allocations in the end themselves come from an mmap
// or sbrk call (that's how the address space of the process grows).
//
// Also note that we need to do all the above recording from
// within an mmap/sbrk hook which is sometimes/frequently is made by a memory
// allocator, including the allocator MemoryRegionMap itself must rely on.
// In the case of heap-checker usage this includes even the very first
// mmap/sbrk call happening in the program: heap-checker gets activated due to
// a link-time installed mmap/sbrk hook and it initializes MemoryRegionMap
// and asks it to record info about this very first call right from that
// very first hook invocation.
//
// MemoryRegionMap is doing its memory allocations via LowLevelAlloc:
// unlike more complex standard memory allocator, LowLevelAlloc cooperates with
// MemoryRegionMap by not holding any of its own locks while it calls mmap
// to get memory, thus we are able to call LowLevelAlloc from
// our mmap/sbrk hooks without causing a deadlock in it.
// For the same reason of deadlock prevention the locking in MemoryRegionMap
// itself is write-recursive which is an exception to Google's mutex usage.
//
// We still need to break the infinite cycle of mmap calling our hook,
// which asks LowLevelAlloc for memory to record this mmap,
// which (sometimes) causes mmap, which calls our hook, and so on.
// We do this as follows: on a recursive call of MemoryRegionMap's
// mmap/sbrk/mremap hook we record the data about the allocation in a
// static fixed-sized stack (saved_regions and saved_buckets), when the
// recursion unwinds but before returning from the outer hook call we unwind
// this stack and move the data from saved_regions and saved_buckets to its
// permanent place in the RegionSet and "bucket_table" respectively,
// which can cause more allocations and mmap-s and recursion and unwinding,
// but the whole process ends eventually due to the fact that for the small
// allocations we are doing LowLevelAlloc reuses one mmap call and parcels out
// the memory it created to satisfy several of our allocation requests.
//
// ========================================================================= //
#include <config.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
#ifdef HAVE_MMAP
#include <sys/mman.h>
#elif !defined(MAP_FAILED)
#define MAP_FAILED -1 // the only thing we need from mman.h
#endif
#ifdef HAVE_PTHREAD
#include <pthread.h> // for pthread_t, pthread_self()
#endif
#include <stddef.h>
#include <algorithm>
#include <set>
#include "memory_region_map.h"
#include "base/logging.h"
#include "base/low_level_alloc.h"
#include "malloc_hook-inl.h"
#include <gperftools/stacktrace.h>
#include <gperftools/malloc_hook.h>
// MREMAP_FIXED is a linux extension. How it's used in this file,
// setting it to 0 is equivalent to saying, "This feature isn't
// supported", which is right.
#ifndef MREMAP_FIXED
# define MREMAP_FIXED 0
#endif
using std::max;
// ========================================================================= //
int MemoryRegionMap::client_count_ = 0;
int MemoryRegionMap::max_stack_depth_ = 0;
MemoryRegionMap::RegionSet* MemoryRegionMap::regions_ = NULL;
LowLevelAlloc::Arena* MemoryRegionMap::arena_ = NULL;
SpinLock MemoryRegionMap::lock_(SpinLock::LINKER_INITIALIZED);
SpinLock MemoryRegionMap::owner_lock_( // ACQUIRED_AFTER(lock_)
SpinLock::LINKER_INITIALIZED);
int MemoryRegionMap::recursion_count_ = 0; // GUARDED_BY(owner_lock_)
pthread_t MemoryRegionMap::lock_owner_tid_; // GUARDED_BY(owner_lock_)
int64 MemoryRegionMap::map_size_ = 0;
int64 MemoryRegionMap::unmap_size_ = 0;
HeapProfileBucket** MemoryRegionMap::bucket_table_ = NULL; // GUARDED_BY(lock_)
int MemoryRegionMap::num_buckets_ = 0; // GUARDED_BY(lock_)
int MemoryRegionMap::saved_buckets_count_ = 0; // GUARDED_BY(lock_)
HeapProfileBucket MemoryRegionMap::saved_buckets_[20]; // GUARDED_BY(lock_)
// GUARDED_BY(lock_)
const void* MemoryRegionMap::saved_buckets_keys_[20][kMaxStackDepth];
// ========================================================================= //
// Simple hook into execution of global object constructors,
// so that we do not call pthread_self() when it does not yet work.
static bool libpthread_initialized = false;
static bool initializer = (libpthread_initialized = true, true);
static inline bool current_thread_is(pthread_t should_be) {
// Before main() runs, there's only one thread, so we're always that thread
if (!libpthread_initialized) return true;
// this starts working only sometime well into global constructor execution:
return pthread_equal(pthread_self(), should_be);
}
// ========================================================================= //
// Constructor-less place-holder to store a RegionSet in.
union MemoryRegionMap::RegionSetRep {
char rep[sizeof(RegionSet)];
void* align_it; // do not need a better alignment for 'rep' than this
RegionSet* region_set() { return reinterpret_cast<RegionSet*>(rep); }
};
// The bytes where MemoryRegionMap::regions_ will point to.
// We use RegionSetRep with noop c-tor so that global construction
// does not interfere.
static MemoryRegionMap::RegionSetRep regions_rep;
// ========================================================================= //
// Has InsertRegionLocked been called recursively
// (or rather should we *not* use regions_ to record a hooked mmap).
static bool recursive_insert = false;
void MemoryRegionMap::Init(int max_stack_depth, bool use_buckets) {
RAW_VLOG(10, "MemoryRegionMap Init");
RAW_CHECK(max_stack_depth >= 0, "");
// Make sure we don't overflow the memory in region stacks:
RAW_CHECK(max_stack_depth <= kMaxStackDepth,
"need to increase kMaxStackDepth?");
Lock();
client_count_ += 1;
max_stack_depth_ = max(max_stack_depth_, max_stack_depth);
if (client_count_ > 1) {
// not first client: already did initialization-proper
Unlock();
RAW_VLOG(10, "MemoryRegionMap Init increment done");
return;
}
// Set our hooks and make sure they were installed:
RAW_CHECK(MallocHook::AddMmapHook(&MmapHook), "");
RAW_CHECK(MallocHook::AddMremapHook(&MremapHook), "");
RAW_CHECK(MallocHook::AddSbrkHook(&SbrkHook), "");
RAW_CHECK(MallocHook::AddMunmapHook(&MunmapHook), "");
// We need to set recursive_insert since the NewArena call itself
// will already do some allocations with mmap which our hooks will catch
// recursive_insert allows us to buffer info about these mmap calls.
// Note that Init() can be (and is) sometimes called
// already from within an mmap/sbrk hook.
recursive_insert = true;
arena_ = LowLevelAlloc::NewArena(0, LowLevelAlloc::DefaultArena());
recursive_insert = false;
HandleSavedRegionsLocked(&InsertRegionLocked); // flush the buffered ones
// Can't instead use HandleSavedRegionsLocked(&DoInsertRegionLocked) before
// recursive_insert = false; as InsertRegionLocked will also construct
// regions_ on demand for us.
if (use_buckets) {
const int table_bytes = kHashTableSize * sizeof(*bucket_table_);
recursive_insert = true;
bucket_table_ = static_cast<HeapProfileBucket**>(
MyAllocator::Allocate(table_bytes));
recursive_insert = false;
memset(bucket_table_, 0, table_bytes);
num_buckets_ = 0;
}
if (regions_ == NULL) // init regions_
InitRegionSetLocked();
Unlock();
RAW_VLOG(10, "MemoryRegionMap Init done");
}
bool MemoryRegionMap::Shutdown() {
RAW_VLOG(10, "MemoryRegionMap Shutdown");
Lock();
RAW_CHECK(client_count_ > 0, "");
client_count_ -= 1;
if (client_count_ != 0) { // not last client; need not really shutdown
Unlock();
RAW_VLOG(10, "MemoryRegionMap Shutdown decrement done");
return true;
}
if (bucket_table_ != NULL) {
for (int i = 0; i < kHashTableSize; i++) {
for (HeapProfileBucket* curr = bucket_table_[i]; curr != 0; /**/) {
HeapProfileBucket* bucket = curr;
curr = curr->next;
MyAllocator::Free(bucket->stack, 0);
MyAllocator::Free(bucket, 0);
}
}
MyAllocator::Free(bucket_table_, 0);
num_buckets_ = 0;
bucket_table_ = NULL;
}
RAW_CHECK(MallocHook::RemoveMmapHook(&MmapHook), "");
RAW_CHECK(MallocHook::RemoveMremapHook(&MremapHook), "");
RAW_CHECK(MallocHook::RemoveSbrkHook(&SbrkHook), "");
RAW_CHECK(MallocHook::RemoveMunmapHook(&MunmapHook), "");
if (regions_) regions_->~RegionSet();
regions_ = NULL;
bool deleted_arena = LowLevelAlloc::DeleteArena(arena_);
if (deleted_arena) {
arena_ = 0;
} else {
RAW_LOG(WARNING, "Can't delete LowLevelAlloc arena: it's being used");
}
Unlock();
RAW_VLOG(10, "MemoryRegionMap Shutdown done");
return deleted_arena;
}
bool MemoryRegionMap::IsRecordingLocked() {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
return client_count_ > 0;
}
// Invariants (once libpthread_initialized is true):
// * While lock_ is not held, recursion_count_ is 0 (and
// lock_owner_tid_ is the previous owner, but we don't rely on
// that).
// * recursion_count_ and lock_owner_tid_ are only written while
// both lock_ and owner_lock_ are held. They may be read under
// just owner_lock_.
// * At entry and exit of Lock() and Unlock(), the current thread
// owns lock_ iff pthread_equal(lock_owner_tid_, pthread_self())
// && recursion_count_ > 0.
void MemoryRegionMap::Lock() {
{
SpinLockHolder l(&owner_lock_);
if (recursion_count_ > 0 && current_thread_is(lock_owner_tid_)) {
RAW_CHECK(lock_.IsHeld(), "Invariants violated");
recursion_count_++;
RAW_CHECK(recursion_count_ <= 5,
"recursive lock nesting unexpectedly deep");
return;
}
}
lock_.Lock();
{
SpinLockHolder l(&owner_lock_);
RAW_CHECK(recursion_count_ == 0,
"Last Unlock didn't reset recursion_count_");
if (libpthread_initialized)
lock_owner_tid_ = pthread_self();
recursion_count_ = 1;
}
}
void MemoryRegionMap::Unlock() {
SpinLockHolder l(&owner_lock_);
RAW_CHECK(recursion_count_ > 0, "unlock when not held");
RAW_CHECK(lock_.IsHeld(),
"unlock when not held, and recursion_count_ is wrong");
RAW_CHECK(current_thread_is(lock_owner_tid_), "unlock by non-holder");
recursion_count_--;
if (recursion_count_ == 0) {
lock_.Unlock();
}
}
bool MemoryRegionMap::LockIsHeld() {
SpinLockHolder l(&owner_lock_);
return lock_.IsHeld() && current_thread_is(lock_owner_tid_);
}
const MemoryRegionMap::Region*
MemoryRegionMap::DoFindRegionLocked(uintptr_t addr) {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
if (regions_ != NULL) {
Region sample;
sample.SetRegionSetKey(addr);
RegionSet::iterator region = regions_->lower_bound(sample);
if (region != regions_->end()) {
RAW_CHECK(addr <= region->end_addr, "");
if (region->start_addr <= addr && addr < region->end_addr) {
return &(*region);
}
}
}
return NULL;
}
bool MemoryRegionMap::FindRegion(uintptr_t addr, Region* result) {
Lock();
const Region* region = DoFindRegionLocked(addr);
if (region != NULL) *result = *region; // create it as an independent copy
Unlock();
return region != NULL;
}
bool MemoryRegionMap::FindAndMarkStackRegion(uintptr_t stack_top,
Region* result) {
Lock();
const Region* region = DoFindRegionLocked(stack_top);
if (region != NULL) {
RAW_VLOG(10, "Stack at %p is inside region %p..%p",
reinterpret_cast<void*>(stack_top),
reinterpret_cast<void*>(region->start_addr),
reinterpret_cast<void*>(region->end_addr));
const_cast<Region*>(region)->set_is_stack(); // now we know
// cast is safe (set_is_stack does not change the set ordering key)
*result = *region; // create *result as an independent copy
}
Unlock();
return region != NULL;
}
HeapProfileBucket* MemoryRegionMap::GetBucket(int depth,
const void* const key[]) {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
// Make hash-value
uintptr_t hash = 0;
for (int i = 0; i < depth; i++) {
hash += reinterpret_cast<uintptr_t>(key[i]);
hash += hash << 10;
hash ^= hash >> 6;
}
hash += hash << 3;
hash ^= hash >> 11;
// Lookup stack trace in table
unsigned int hash_index = (static_cast<unsigned int>(hash)) % kHashTableSize;
for (HeapProfileBucket* bucket = bucket_table_[hash_index];
bucket != 0;
bucket = bucket->next) {
if ((bucket->hash == hash) && (bucket->depth == depth) &&
std::equal(key, key + depth, bucket->stack)) {
return bucket;
}
}
// Create new bucket
const size_t key_size = sizeof(key[0]) * depth;
HeapProfileBucket* bucket;
if (recursive_insert) { // recursion: save in saved_buckets_
const void** key_copy = saved_buckets_keys_[saved_buckets_count_];
std::copy(key, key + depth, key_copy);
bucket = &saved_buckets_[saved_buckets_count_];
memset(bucket, 0, sizeof(*bucket));
++saved_buckets_count_;
bucket->stack = key_copy;
bucket->next = NULL;
} else {
recursive_insert = true;
const void** key_copy = static_cast<const void**>(
MyAllocator::Allocate(key_size));
recursive_insert = false;
std::copy(key, key + depth, key_copy);
recursive_insert = true;
bucket = static_cast<HeapProfileBucket*>(
MyAllocator::Allocate(sizeof(HeapProfileBucket)));
recursive_insert = false;
memset(bucket, 0, sizeof(*bucket));
bucket->stack = key_copy;
bucket->next = bucket_table_[hash_index];
}
bucket->hash = hash;
bucket->depth = depth;
bucket_table_[hash_index] = bucket;
++num_buckets_;
return bucket;
}
MemoryRegionMap::RegionIterator MemoryRegionMap::BeginRegionLocked() {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
RAW_CHECK(regions_ != NULL, "");
return regions_->begin();
}
MemoryRegionMap::RegionIterator MemoryRegionMap::EndRegionLocked() {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
RAW_CHECK(regions_ != NULL, "");
return regions_->end();
}
inline void MemoryRegionMap::DoInsertRegionLocked(const Region& region) {
RAW_VLOG(12, "Inserting region %p..%p from %p",
reinterpret_cast<void*>(region.start_addr),
reinterpret_cast<void*>(region.end_addr),
reinterpret_cast<void*>(region.caller()));
RegionSet::const_iterator i = regions_->lower_bound(region);
if (i != regions_->end() && i->start_addr <= region.start_addr) {
RAW_DCHECK(region.end_addr <= i->end_addr, ""); // lower_bound ensures this
return; // 'region' is a subset of an already recorded region; do nothing
// We can be stricter and allow this only when *i has been created via
// an mmap with MAP_NORESERVE flag set.
}
if (DEBUG_MODE) {
RAW_CHECK(i == regions_->end() || !region.Overlaps(*i),
"Wow, overlapping memory regions");
Region sample;
sample.SetRegionSetKey(region.start_addr);
i = regions_->lower_bound(sample);
RAW_CHECK(i == regions_->end() || !region.Overlaps(*i),
"Wow, overlapping memory regions");
}
region.AssertIsConsistent(); // just making sure
// This inserts and allocates permanent storage for region
// and its call stack data: it's safe to do it now:
regions_->insert(region);
RAW_VLOG(12, "Inserted region %p..%p :",
reinterpret_cast<void*>(region.start_addr),
reinterpret_cast<void*>(region.end_addr));
if (VLOG_IS_ON(12)) LogAllLocked();
}
// These variables are local to MemoryRegionMap::InsertRegionLocked()
// and MemoryRegionMap::HandleSavedRegionsLocked()
// and are file-level to ensure that they are initialized at load time.
// Number of unprocessed region inserts.
static int saved_regions_count = 0;
// Unprocessed inserts (must be big enough to hold all allocations that can
// be caused by a InsertRegionLocked call).
// Region has no constructor, so that c-tor execution does not interfere
// with the any-time use of the static memory behind saved_regions.
static MemoryRegionMap::Region saved_regions[20];
inline void MemoryRegionMap::HandleSavedRegionsLocked(
void (*insert_func)(const Region& region)) {
while (saved_regions_count > 0) {
// Making a local-var copy of the region argument to insert_func
// including its stack (w/o doing any memory allocations) is important:
// in many cases the memory in saved_regions
// will get written-to during the (*insert_func)(r) call below.
Region r = saved_regions[--saved_regions_count];
(*insert_func)(r);
}
}
void MemoryRegionMap::RestoreSavedBucketsLocked() {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
while (saved_buckets_count_ > 0) {
HeapProfileBucket bucket = saved_buckets_[--saved_buckets_count_];
unsigned int hash_index =
static_cast<unsigned int>(bucket.hash) % kHashTableSize;
bool is_found = false;
for (HeapProfileBucket* curr = bucket_table_[hash_index];
curr != 0;
curr = curr->next) {
if ((curr->hash == bucket.hash) && (curr->depth == bucket.depth) &&
std::equal(bucket.stack, bucket.stack + bucket.depth, curr->stack)) {
curr->allocs += bucket.allocs;
curr->alloc_size += bucket.alloc_size;
curr->frees += bucket.frees;
curr->free_size += bucket.free_size;
is_found = true;
break;
}
}
if (is_found) continue;
const size_t key_size = sizeof(bucket.stack[0]) * bucket.depth;
const void** key_copy = static_cast<const void**>(
MyAllocator::Allocate(key_size));
std::copy(bucket.stack, bucket.stack + bucket.depth, key_copy);
HeapProfileBucket* new_bucket = static_cast<HeapProfileBucket*>(
MyAllocator::Allocate(sizeof(HeapProfileBucket)));
memset(new_bucket, 0, sizeof(*new_bucket));
new_bucket->hash = bucket.hash;
new_bucket->depth = bucket.depth;
new_bucket->stack = key_copy;
new_bucket->next = bucket_table_[hash_index];
bucket_table_[hash_index] = new_bucket;
++num_buckets_;
}
}
inline void MemoryRegionMap::InitRegionSetLocked() {
RAW_VLOG(12, "Initializing region set");
regions_ = regions_rep.region_set();
recursive_insert = true;
new(regions_) RegionSet();
HandleSavedRegionsLocked(&DoInsertRegionLocked);
recursive_insert = false;
}
inline void MemoryRegionMap::InsertRegionLocked(const Region& region) {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
// We can be called recursively, because RegionSet constructor
// and DoInsertRegionLocked() (called below) can call the allocator.
// recursive_insert tells us if that's the case. When this happens,
// region insertion information is recorded in saved_regions[],
// and taken into account when the recursion unwinds.
// Do the insert:
if (recursive_insert) { // recursion: save in saved_regions
RAW_VLOG(12, "Saving recursive insert of region %p..%p from %p",
reinterpret_cast<void*>(region.start_addr),
reinterpret_cast<void*>(region.end_addr),
reinterpret_cast<void*>(region.caller()));
RAW_CHECK(saved_regions_count < arraysize(saved_regions), "");
// Copy 'region' to saved_regions[saved_regions_count]
// together with the contents of its call_stack,
// then increment saved_regions_count.
saved_regions[saved_regions_count++] = region;
} else { // not a recusrive call
if (regions_ == NULL) // init regions_
InitRegionSetLocked();
recursive_insert = true;
// Do the actual insertion work to put new regions into regions_:
DoInsertRegionLocked(region);
HandleSavedRegionsLocked(&DoInsertRegionLocked);
recursive_insert = false;
}
}
// We strip out different number of stack frames in debug mode
// because less inlining happens in that case
#ifdef NDEBUG
static const int kStripFrames = 1;
#else
static const int kStripFrames = 3;
#endif
void MemoryRegionMap::RecordRegionAddition(const void* start, size_t size) {
// Record start/end info about this memory acquisition call in a new region:
Region region;
region.Create(start, size);
// First get the call stack info into the local varible 'region':
const int depth =
max_stack_depth_ > 0
? MallocHook::GetCallerStackTrace(const_cast<void**>(region.call_stack),
max_stack_depth_, kStripFrames + 1)
: 0;
region.set_call_stack_depth(depth); // record stack info fully
RAW_VLOG(10, "New global region %p..%p from %p",
reinterpret_cast<void*>(region.start_addr),
reinterpret_cast<void*>(region.end_addr),
reinterpret_cast<void*>(region.caller()));
// Note: none of the above allocates memory.
Lock(); // recursively lock
map_size_ += size;
InsertRegionLocked(region);
// This will (eventually) allocate storage for and copy over the stack data
// from region.call_stack_data_ that is pointed by region.call_stack().
if (bucket_table_ != NULL) {
HeapProfileBucket* b = GetBucket(depth, region.call_stack);
++b->allocs;
b->alloc_size += size;
if (!recursive_insert) {
recursive_insert = true;
RestoreSavedBucketsLocked();
recursive_insert = false;
}
}
Unlock();
}
void MemoryRegionMap::RecordRegionRemoval(const void* start, size_t size) {
Lock();
if (recursive_insert) {
// First remove the removed region from saved_regions, if it's
// there, to prevent overrunning saved_regions in recursive
// map/unmap call sequences, and also from later inserting regions
// which have already been unmapped.
uintptr_t start_addr = reinterpret_cast<uintptr_t>(start);
uintptr_t end_addr = start_addr + size;
int put_pos = 0;
int old_count = saved_regions_count;
for (int i = 0; i < old_count; ++i, ++put_pos) {
Region& r = saved_regions[i];
if (r.start_addr == start_addr && r.end_addr == end_addr) {
// An exact match, so it's safe to remove.
RecordRegionRemovalInBucket(r.call_stack_depth, r.call_stack, size);
--saved_regions_count;
--put_pos;
RAW_VLOG(10, ("Insta-Removing saved region %p..%p; "
"now have %d saved regions"),
reinterpret_cast<void*>(start_addr),
reinterpret_cast<void*>(end_addr),
saved_regions_count);
} else {
if (put_pos < i) {
saved_regions[put_pos] = saved_regions[i];
}
}
}
}
if (regions_ == NULL) { // We must have just unset the hooks,
// but this thread was already inside the hook.
Unlock();
return;
}
if (!recursive_insert) {
HandleSavedRegionsLocked(&InsertRegionLocked);
}
// first handle adding saved regions if any
uintptr_t start_addr = reinterpret_cast<uintptr_t>(start);
uintptr_t end_addr = start_addr + size;
// subtract start_addr, end_addr from all the regions
RAW_VLOG(10, "Removing global region %p..%p; have %" PRIuS " regions",
reinterpret_cast<void*>(start_addr),
reinterpret_cast<void*>(end_addr),
regions_->size());
Region sample;
sample.SetRegionSetKey(start_addr);
// Only iterate over the regions that might overlap start_addr..end_addr:
for (RegionSet::iterator region = regions_->lower_bound(sample);
region != regions_->end() && region->start_addr < end_addr;
/*noop*/) {
RAW_VLOG(13, "Looking at region %p..%p",
reinterpret_cast<void*>(region->start_addr),
reinterpret_cast<void*>(region->end_addr));
if (start_addr <= region->start_addr &&
region->end_addr <= end_addr) { // full deletion
RAW_VLOG(12, "Deleting region %p..%p",
reinterpret_cast<void*>(region->start_addr),
reinterpret_cast<void*>(region->end_addr));
RecordRegionRemovalInBucket(region->call_stack_depth, region->call_stack,
region->end_addr - region->start_addr);
RegionSet::iterator d = region;
++region;
regions_->erase(d);
continue;
} else if (region->start_addr < start_addr &&
end_addr < region->end_addr) { // cutting-out split
RAW_VLOG(12, "Splitting region %p..%p in two",
reinterpret_cast<void*>(region->start_addr),
reinterpret_cast<void*>(region->end_addr));
RecordRegionRemovalInBucket(region->call_stack_depth, region->call_stack,
end_addr - start_addr);
// Make another region for the start portion:
// The new region has to be the start portion because we can't
// just modify region->end_addr as it's the sorting key.
Region r = *region;
r.set_end_addr(start_addr);
InsertRegionLocked(r);
// cut *region from start:
const_cast<Region&>(*region).set_start_addr(end_addr);
} else if (end_addr > region->start_addr &&
start_addr <= region->start_addr) { // cut from start
RAW_VLOG(12, "Start-chopping region %p..%p",
reinterpret_cast<void*>(region->start_addr),
reinterpret_cast<void*>(region->end_addr));
RecordRegionRemovalInBucket(region->call_stack_depth, region->call_stack,
end_addr - region->start_addr);
const_cast<Region&>(*region).set_start_addr(end_addr);
} else if (start_addr > region->start_addr &&
start_addr < region->end_addr) { // cut from end
RAW_VLOG(12, "End-chopping region %p..%p",
reinterpret_cast<void*>(region->start_addr),
reinterpret_cast<void*>(region->end_addr));
RecordRegionRemovalInBucket(region->call_stack_depth, region->call_stack,
region->end_addr - start_addr);
// Can't just modify region->end_addr (it's the sorting key):
Region r = *region;
r.set_end_addr(start_addr);
RegionSet::iterator d = region;
++region;
// It's safe to erase before inserting since r is independent of *d:
// r contains an own copy of the call stack:
regions_->erase(d);
InsertRegionLocked(r);
continue;
}
++region;
}
RAW_VLOG(12, "Removed region %p..%p; have %" PRIuS " regions",
reinterpret_cast<void*>(start_addr),
reinterpret_cast<void*>(end_addr),
regions_->size());
if (VLOG_IS_ON(12)) LogAllLocked();
unmap_size_ += size;
Unlock();
}
void MemoryRegionMap::RecordRegionRemovalInBucket(int depth,
const void* const stack[],
size_t size) {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
if (bucket_table_ == NULL) return;
HeapProfileBucket* b = GetBucket(depth, stack);
++b->frees;
b->free_size += size;
}
void MemoryRegionMap::MmapHook(const void* result,
const void* start, size_t size,
int prot, int flags,
int fd, off_t offset) {
// TODO(maxim): replace all 0x%"PRIxS" by %p when RAW_VLOG uses a safe
// snprintf reimplementation that does not malloc to pretty-print NULL
RAW_VLOG(10, "MMap = 0x%" PRIxPTR " of %" PRIuS " at %" PRIu64 " "
"prot %d flags %d fd %d offs %" PRId64,
reinterpret_cast<uintptr_t>(result), size,
reinterpret_cast<uint64>(start), prot, flags, fd,
static_cast<int64>(offset));
if (result != reinterpret_cast<void*>(MAP_FAILED) && size != 0) {
RecordRegionAddition(result, size);
}
}
void MemoryRegionMap::MunmapHook(const void* ptr, size_t size) {
RAW_VLOG(10, "MUnmap of %p %" PRIuS, ptr, size);
if (size != 0) {
RecordRegionRemoval(ptr, size);
}
}
void MemoryRegionMap::MremapHook(const void* result,
const void* old_addr, size_t old_size,
size_t new_size, int flags,
const void* new_addr) {
RAW_VLOG(10, "MRemap = 0x%" PRIxPTR " of 0x%" PRIxPTR " %" PRIuS " "
"to %" PRIuS " flags %d new_addr=0x%" PRIxPTR,
(uintptr_t)result, (uintptr_t)old_addr,
old_size, new_size, flags,
flags & MREMAP_FIXED ? (uintptr_t)new_addr : 0);
if (result != reinterpret_cast<void*>(-1)) {
RecordRegionRemoval(old_addr, old_size);
RecordRegionAddition(result, new_size);
}
}
extern "C" void* __sbrk(ptrdiff_t increment); // defined in libc
void MemoryRegionMap::SbrkHook(const void* result, ptrdiff_t increment) {
RAW_VLOG(10, "Sbrk = 0x%" PRIxPTR " of %" PRIdS,
(uintptr_t)result, increment);
if (result != reinterpret_cast<void*>(-1)) {
if (increment > 0) {
void* new_end = sbrk(0);
RecordRegionAddition(result, reinterpret_cast<uintptr_t>(new_end) -
reinterpret_cast<uintptr_t>(result));
} else if (increment < 0) {
void* new_end = sbrk(0);
RecordRegionRemoval(new_end, reinterpret_cast<uintptr_t>(result) -
reinterpret_cast<uintptr_t>(new_end));
}
}
}
void MemoryRegionMap::LogAllLocked() {
RAW_CHECK(LockIsHeld(), "should be held (by this thread)");
RAW_LOG(INFO, "List of regions:");
uintptr_t previous = 0;
for (RegionSet::const_iterator r = regions_->begin();
r != regions_->end(); ++r) {
RAW_LOG(INFO, "Memory region 0x%" PRIxPTR "..0x%" PRIxPTR " "
"from 0x%" PRIxPTR " stack=%d",
r->start_addr, r->end_addr, r->caller(), r->is_stack);
RAW_CHECK(previous < r->end_addr, "wow, we messed up the set order");
// this must be caused by uncontrolled recursive operations on regions_
previous = r->end_addr;
}
RAW_LOG(INFO, "End of regions list");
}