blob: fec5c09cff1508e1f45bf835c0bdd361453d9ec0 [file] [log] [blame]
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2003, 2007 Apple Inc. All rights reserved.
* Copyright (C) 2003 Peter Kelly (pmk@post.com)
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "array_instance.h"
#include "JSGlobalObject.h"
#include "PropertyNameArray.h"
#include <wtf/Assertions.h>
using namespace std;
namespace KJS {
typedef HashMap<unsigned, JSValue*> SparseArrayValueMap;
struct ArrayStorage {
unsigned m_numValuesInVector;
SparseArrayValueMap* m_sparseValueMap;
JSValue* m_vector[1];
};
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer
static const unsigned maxArrayIndex = 0xFFFFFFFEU;
// Our policy for when to use a vector and when to use a sparse map.
// For all array indices under sparseArrayCutoff, we always use a vector.
// When indices greater than sparseArrayCutoff are involved, we use a vector
// as long as it is 1/8 full. If more sparse than that, we use a map.
// This value has to be a macro to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define sparseArrayCutoff 10000U
static const unsigned minDensityMultiplier = 8;
static const unsigned copyingSortCutoff = 50000;
const ClassInfo ArrayInstance::info = {"Array", 0, 0};
static inline size_t storageSize(unsigned vectorLength)
{
return sizeof(ArrayStorage) - sizeof(JSValue*) + vectorLength * sizeof(JSValue*);
}
static inline unsigned increasedVectorLength(unsigned newLength)
{
return (newLength * 3 + 1) / 2;
}
static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
return length / minDensityMultiplier <= numValues;
}
ArrayInstance::ArrayInstance(JSObject* prototype, unsigned initialLength)
: JSObject(prototype)
{
unsigned initialCapacity = min(initialLength, sparseArrayCutoff);
m_length = initialLength;
m_vectorLength = initialCapacity;
m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
Collector::reportExtraMemoryCost(initialCapacity * sizeof(JSValue*));
}
ArrayInstance::ArrayInstance(JSObject* prototype, const List& list)
: JSObject(prototype)
{
unsigned length = list.size();
m_length = length;
m_vectorLength = length;
ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length)));
storage->m_numValuesInVector = length;
storage->m_sparseValueMap = 0;
size_t i = 0;
List::const_iterator end = list.end();
for (List::const_iterator it = list.begin(); it != end; ++it, ++i)
storage->m_vector[i] = *it;
m_storage = storage;
// When the array is created non-empty, its cells are filled, so it's really no worse than
// a property map. Therefore don't report extra memory cost.
}
ArrayInstance::~ArrayInstance()
{
delete m_storage->m_sparseValueMap;
fastFree(m_storage);
}
JSValue* ArrayInstance::getItem(unsigned i) const
{
ASSERT(i <= maxArrayIndex);
ArrayStorage* storage = m_storage;
if (i < m_vectorLength) {
JSValue* value = storage->m_vector[i];
return value ? value : jsUndefined();
}
SparseArrayValueMap* map = storage->m_sparseValueMap;
if (!map)
return jsUndefined();
JSValue* value = map->get(i);
return value ? value : jsUndefined();
}
JSValue* ArrayInstance::lengthGetter(ExecState*, JSObject*, const Identifier&, const PropertySlot& slot)
{
return jsNumber(static_cast<ArrayInstance*>(slot.slotBase())->m_length);
}
ALWAYS_INLINE bool ArrayInstance::inlineGetOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
ArrayStorage* storage = m_storage;
if (i >= m_length) {
if (i > maxArrayIndex)
return getOwnPropertySlot(exec, Identifier::from(i), slot);
return false;
}
if (i < m_vectorLength) {
JSValue*& valueSlot = storage->m_vector[i];
if (valueSlot) {
slot.setValueSlot(this, &valueSlot);
return true;
}
} else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
if (i >= sparseArrayCutoff) {
SparseArrayValueMap::iterator it = map->find(i);
if (it != map->end()) {
slot.setValueSlot(this, &it->second);
return true;
}
}
}
return false;
}
bool ArrayInstance::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
if (propertyName == exec->propertyNames().length) {
slot.setCustom(this, lengthGetter);
return true;
}
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex)
return inlineGetOwnPropertySlot(exec, i, slot);
return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}
bool ArrayInstance::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
return inlineGetOwnPropertySlot(exec, i, slot);
}
// ECMA 15.4.5.1
void ArrayInstance::put(ExecState* exec, const Identifier& propertyName, JSValue* value, int attributes)
{
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex) {
put(exec, i, value, attributes);
return;
}
if (propertyName == exec->propertyNames().length) {
unsigned newLength = value->toUInt32(exec);
if (value->toNumber(exec) != static_cast<double>(newLength)) {
throwError(exec, RangeError, "Invalid array length.");
return;
}
setLength(newLength);
return;
}
JSObject::put(exec, propertyName, value, attributes);
}
void ArrayInstance::put(ExecState* exec, unsigned i, JSValue* value, int attributes)
{
if (i > maxArrayIndex) {
put(exec, Identifier::from(i), value, attributes);
return;
}
ArrayStorage* storage = m_storage;
unsigned length = m_length;
if (i >= length) {
length = i + 1;
m_length = length;
}
if (i < m_vectorLength) {
JSValue*& valueSlot = storage->m_vector[i];
storage->m_numValuesInVector += !valueSlot;
valueSlot = value;
return;
}
SparseArrayValueMap* map = storage->m_sparseValueMap;
if (i >= sparseArrayCutoff) {
// We miss some cases where we could compact the storage, such as a large array that is being filled from the end
// (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster.
if (!isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
if (!map) {
map = new SparseArrayValueMap;
storage->m_sparseValueMap = map;
}
map->set(i, value);
return;
}
}
// We have decided that we'll put the new item into the vector.
// Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
if (!map || map->isEmpty()) {
increaseVectorLength(i + 1);
storage = m_storage;
++storage->m_numValuesInVector;
storage->m_vector[i] = value;
return;
}
// Decide how many values it would be best to move from the map.
unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
unsigned newVectorLength = increasedVectorLength(i + 1);
for (unsigned j = max(m_vectorLength, sparseArrayCutoff); j < newVectorLength; ++j)
newNumValuesInVector += map->contains(j);
if (i >= sparseArrayCutoff)
newNumValuesInVector -= map->contains(i);
if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
unsigned proposedNewNumValuesInVector = newNumValuesInVector;
while (true) {
unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1);
for (unsigned j = max(newVectorLength, sparseArrayCutoff); j < proposedNewVectorLength; ++j)
proposedNewNumValuesInVector += map->contains(j);
if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
break;
newVectorLength = proposedNewVectorLength;
newNumValuesInVector = proposedNewNumValuesInVector;
}
}
storage = static_cast<ArrayStorage*>(fastRealloc(storage, storageSize(newVectorLength)));
unsigned vectorLength = m_vectorLength;
if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
for (unsigned j = vectorLength; j < newVectorLength; ++j)
storage->m_vector[j] = 0;
if (i > sparseArrayCutoff)
map->remove(i);
} else {
for (unsigned j = vectorLength; j < max(vectorLength, sparseArrayCutoff); ++j)
storage->m_vector[j] = 0;
for (unsigned j = max(vectorLength, sparseArrayCutoff); j < newVectorLength; ++j)
storage->m_vector[j] = map->take(j);
}
storage->m_vector[i] = value;
m_vectorLength = newVectorLength;
storage->m_numValuesInVector = newNumValuesInVector;
m_storage = storage;
}
bool ArrayInstance::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex)
return deleteProperty(exec, i);
if (propertyName == exec->propertyNames().length)
return false;
return JSObject::deleteProperty(exec, propertyName);
}
bool ArrayInstance::deleteProperty(ExecState* exec, unsigned i)
{
ArrayStorage* storage = m_storage;
if (i < m_vectorLength) {
JSValue*& valueSlot = storage->m_vector[i];
bool hadValue = valueSlot;
valueSlot = 0;
storage->m_numValuesInVector -= hadValue;
return hadValue;
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
if (i >= sparseArrayCutoff) {
SparseArrayValueMap::iterator it = map->find(i);
if (it != map->end()) {
map->remove(it);
return true;
}
}
}
if (i > maxArrayIndex)
return deleteProperty(exec, Identifier::from(i));
return false;
}
void ArrayInstance::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames)
{
// FIXME: Filling PropertyNameArray with an identifier for every integer
// is incredibly inefficient for large arrays. We need a different approach.
ArrayStorage* storage = m_storage;
unsigned usedVectorLength = min(m_length, m_vectorLength);
for (unsigned i = 0; i < usedVectorLength; ++i) {
if (storage->m_vector[i])
propertyNames.add(Identifier::from(i));
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
propertyNames.add(Identifier::from(it->first));
}
JSObject::getPropertyNames(exec, propertyNames);
}
void ArrayInstance::increaseVectorLength(unsigned newLength)
{
// This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
// to the vector. Callers have to account for that, because they can do it more efficiently.
ArrayStorage* storage = m_storage;
unsigned vectorLength = m_vectorLength;
ASSERT(newLength > vectorLength);
unsigned newVectorLength = increasedVectorLength(newLength);
storage = static_cast<ArrayStorage*>(fastRealloc(storage, storageSize(newVectorLength)));
m_vectorLength = newVectorLength;
for (unsigned i = vectorLength; i < newVectorLength; ++i)
storage->m_vector[i] = 0;
m_storage = storage;
}
void ArrayInstance::setLength(unsigned newLength)
{
ArrayStorage* storage = m_storage;
unsigned length = m_length;
if (newLength < length) {
unsigned usedVectorLength = min(length, m_vectorLength);
for (unsigned i = newLength; i < usedVectorLength; ++i) {
JSValue*& valueSlot = storage->m_vector[i];
bool hadValue = valueSlot;
valueSlot = 0;
storage->m_numValuesInVector -= hadValue;
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap copy = *map;
SparseArrayValueMap::iterator end = copy.end();
for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
if (it->first >= newLength)
map->remove(it->first);
}
if (map->isEmpty()) {
delete map;
storage->m_sparseValueMap = 0;
}
}
}
m_length = newLength;
}
void ArrayInstance::mark()
{
JSObject::mark();
ArrayStorage* storage = m_storage;
unsigned usedVectorLength = min(m_length, m_vectorLength);
for (unsigned i = 0; i < usedVectorLength; ++i) {
JSValue* value = storage->m_vector[i];
if (value && !value->marked())
value->mark();
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
JSValue* value = it->second;
if (!value->marked())
value->mark();
}
}
}
static int compareByStringPairForQSort(const void* a, const void* b)
{
const std::pair<JSValue*, UString>* va = static_cast<const std::pair<JSValue*, UString>*>(a);
const std::pair<JSValue*, UString>* vb = static_cast<const std::pair<JSValue*, UString>*>(b);
return compare(va->second, vb->second);
}
static ExecState* execForCompareByStringForQSort = 0;
static int compareByStringForQSort(const void* a, const void* b)
{
ExecState* exec = execForCompareByStringForQSort;
JSValue* va = *static_cast<JSValue* const*>(a);
JSValue* vb = *static_cast<JSValue* const*>(b);
ASSERT(!va->isUndefined());
ASSERT(!vb->isUndefined());
return compare(va->toString(exec), vb->toString(exec));
}
void ArrayInstance::sort(ExecState* exec)
{
unsigned lengthNotIncludingUndefined = compactForSorting();
if (lengthNotIncludingUndefined < copyingSortCutoff) {
// Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
// This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
// buffer. For large arrays, we fall back to a qsort on the JavaScriptValues to avoid creating copies.
Vector<std::pair<JSValue*, UString> > values(lengthNotIncludingUndefined);
for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
JSValue* value = m_storage->m_vector[i];
ASSERT(!value->isUndefined());
values[i].first = value;
values[i].second = value->toString(exec);
}
// FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
// than O(N log N).
#if HAVE(MERGESORT)
mergesort(values.begin(), values.size(), sizeof(std::pair<JSValue*, UString>), compareByStringPairForQSort);
#else
qsort(values.begin(), values.size(), sizeof(std::pair<JSValue*, UString>), compareByStringPairForQSort);
#endif
for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
m_storage->m_vector[i] = values[i].first;
return;
}
ExecState* oldExec = execForCompareByStringForQSort;
execForCompareByStringForQSort = exec;
qsort(m_storage->m_vector, lengthNotIncludingUndefined, sizeof(JSValue*), compareByStringForQSort);
execForCompareByStringForQSort = oldExec;
}
struct CompareWithCompareFunctionArguments {
CompareWithCompareFunctionArguments(ExecState *e, JSObject *cf)
: exec(e)
, compareFunction(cf)
, globalObject(e->dynamicGlobalObject())
{
}
ExecState *exec;
JSObject *compareFunction;
List arguments;
JSGlobalObject* globalObject;
};
static CompareWithCompareFunctionArguments* compareWithCompareFunctionArguments = 0;
static int compareWithCompareFunctionForQSort(const void* a, const void* b)
{
CompareWithCompareFunctionArguments *args = compareWithCompareFunctionArguments;
JSValue* va = *static_cast<JSValue* const*>(a);
JSValue* vb = *static_cast<JSValue* const*>(b);
ASSERT(!va->isUndefined());
ASSERT(!vb->isUndefined());
args->arguments.clear();
args->arguments.append(va);
args->arguments.append(vb);
double compareResult = args->compareFunction->call
(args->exec, args->globalObject, args->arguments)->toNumber(args->exec);
return compareResult < 0 ? -1 : compareResult > 0 ? 1 : 0;
}
void ArrayInstance::sort(ExecState* exec, JSObject* compareFunction)
{
size_t lengthNotIncludingUndefined = compactForSorting();
CompareWithCompareFunctionArguments* oldArgs = compareWithCompareFunctionArguments;
CompareWithCompareFunctionArguments args(exec, compareFunction);
compareWithCompareFunctionArguments = &args;
#if HAVE(MERGESORT)
// Because mergesort usually does fewer compares, it is faster than qsort here.
// However, because it requires extra copies of the storage buffer, don't use it for very
// large arrays.
// FIXME: A tree sort using a perfectly balanced tree (e.g. an AVL tree) could do an even
// better job of minimizing compares.
if (lengthNotIncludingUndefined < copyingSortCutoff) {
// During the sort, we could do a garbage collect, and it's important to still
// have references to every object in the array for ArrayInstance::mark.
// The mergesort algorithm does not guarantee this, so we sort a copy rather
// than the original.
size_t size = storageSize(m_vectorLength);
ArrayStorage* copy = static_cast<ArrayStorage*>(fastMalloc(size));
memcpy(copy, m_storage, size);
mergesort(copy->m_vector, lengthNotIncludingUndefined, sizeof(JSValue*), compareWithCompareFunctionForQSort);
fastFree(m_storage);
m_storage = copy;
compareWithCompareFunctionArguments = oldArgs;
return;
}
#endif
qsort(m_storage->m_vector, lengthNotIncludingUndefined, sizeof(JSValue*), compareWithCompareFunctionForQSort);
compareWithCompareFunctionArguments = oldArgs;
}
unsigned ArrayInstance::compactForSorting()
{
ArrayStorage* storage = m_storage;
unsigned usedVectorLength = min(m_length, m_vectorLength);
unsigned numDefined = 0;
unsigned numUndefined = 0;
for (; numDefined < usedVectorLength; ++numDefined) {
JSValue* v = storage->m_vector[numDefined];
if (!v || v->isUndefined())
break;
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
if (JSValue* v = storage->m_vector[i]) {
if (v->isUndefined())
++numUndefined;
else
storage->m_vector[numDefined++] = v;
}
}
unsigned newUsedVectorLength = numDefined + numUndefined;
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
if (newUsedVectorLength > m_vectorLength) {
increaseVectorLength(newUsedVectorLength);
storage = m_storage;
}
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
storage->m_vector[numDefined++] = it->second;
delete map;
storage->m_sparseValueMap = 0;
}
for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
storage->m_vector[i] = jsUndefined();
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
storage->m_vector[i] = 0;
return numDefined;
}
}