blob: f6e19598dd0abfafa59c5908ca8080a8ddb40a34 [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#ifndef _SYMBOL_TABLE_INCLUDED_
#define _SYMBOL_TABLE_INCLUDED_
//
// Symbol table for parsing. Has these design characteristics:
//
// * Same symbol table can be used to compile many shaders, to preserve
// effort of creating and loading with the large numbers of built-in
// symbols.
//
// * Name mangling will be used to give each function a unique name
// so that symbol table lookups are never ambiguous. This allows
// a simpler symbol table structure.
//
// * Pushing and popping of scope, so symbol table will really be a stack
// of symbol tables. Searched from the top, with new inserts going into
// the top.
//
// * Constants: Compile time constant symbols will keep their values
// in the symbol table. The parser can substitute constants at parse
// time, including doing constant folding and constant propagation.
//
// * No temporaries: Temporaries made from operations (+, --, .xy, etc.)
// are tracked in the intermediate representation, not the symbol table.
//
#include <assert.h>
#include "common/angleutils.h"
#include "compiler/InfoSink.h"
#include "compiler/intermediate.h"
//
// Symbol base class. (Can build functions or variables out of these...)
//
class TSymbol {
public:
POOL_ALLOCATOR_NEW_DELETE(GlobalPoolAllocator)
TSymbol(const TString *n) : name(n) { }
virtual ~TSymbol() { /* don't delete name, it's from the pool */ }
const TString& getName() const { return *name; }
virtual const TString& getMangledName() const { return getName(); }
virtual bool isFunction() const { return false; }
virtual bool isVariable() const { return false; }
void setUniqueId(int id) { uniqueId = id; }
int getUniqueId() const { return uniqueId; }
virtual void dump(TInfoSink &infoSink) const = 0;
void relateToExtension(const TString& ext) { extension = ext; }
const TString& getExtension() const { return extension; }
private:
DISALLOW_COPY_AND_ASSIGN(TSymbol);
const TString *name;
unsigned int uniqueId; // For real comparing during code generation
TString extension;
};
//
// Variable class, meaning a symbol that's not a function.
//
// There could be a separate class heirarchy for Constant variables;
// Only one of int, bool, or float, (or none) is correct for
// any particular use, but it's easy to do this way, and doesn't
// seem worth having separate classes, and "getConst" can't simply return
// different values for different types polymorphically, so this is
// just simple and pragmatic.
//
class TVariable : public TSymbol {
public:
TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0) { }
virtual ~TVariable() { }
virtual bool isVariable() const { return true; }
TType& getType() { return type; }
const TType& getType() const { return type; }
bool isUserType() const { return userType; }
void setQualifier(TQualifier qualifier) { type.setQualifier(qualifier); }
virtual void dump(TInfoSink &infoSink) const;
ConstantUnion* getConstPointer()
{
if (!unionArray)
unionArray = new ConstantUnion[type.getObjectSize()];
return unionArray;
}
ConstantUnion* getConstPointer() const { return unionArray; }
void shareConstPointer( ConstantUnion *constArray)
{
if (unionArray == constArray)
return;
delete[] unionArray;
unionArray = constArray;
}
private:
DISALLOW_COPY_AND_ASSIGN(TVariable);
TType type;
bool userType;
// we are assuming that Pool Allocator will free the memory allocated to unionArray
// when this object is destroyed
ConstantUnion *unionArray;
};
//
// The function sub-class of symbols and the parser will need to
// share this definition of a function parameter.
//
struct TParameter {
TString *name;
TType* type;
};
//
// The function sub-class of a symbol.
//
class TFunction : public TSymbol {
public:
TFunction(TOperator o) :
TSymbol(0),
returnType(TType(EbtVoid, EbpUndefined)),
op(o),
defined(false) { }
TFunction(const TString *name, TType& retType, TOperator tOp = EOpNull) :
TSymbol(name),
returnType(retType),
mangledName(TFunction::mangleName(*name)),
op(tOp),
defined(false) { }
virtual ~TFunction();
virtual bool isFunction() const { return true; }
static TString mangleName(const TString& name) { return name + '('; }
static TString unmangleName(const TString& mangledName)
{
return TString(mangledName.c_str(), mangledName.find_first_of('('));
}
void addParameter(TParameter& p)
{
parameters.push_back(p);
mangledName = mangledName + p.type->getMangledName();
}
const TString& getMangledName() const { return mangledName; }
const TType& getReturnType() const { return returnType; }
void relateToOperator(TOperator o) { op = o; }
TOperator getBuiltInOp() const { return op; }
void setDefined() { defined = true; }
bool isDefined() { return defined; }
size_t getParamCount() const { return parameters.size(); }
const TParameter& getParam(size_t i) const { return parameters[i]; }
virtual void dump(TInfoSink &infoSink) const;
private:
DISALLOW_COPY_AND_ASSIGN(TFunction);
typedef TVector<TParameter> TParamList;
TParamList parameters;
TType returnType;
TString mangledName;
TOperator op;
bool defined;
};
class TSymbolTableLevel {
public:
typedef TMap<TString, TSymbol*> tLevel;
typedef tLevel::const_iterator const_iterator;
typedef const tLevel::value_type tLevelPair;
typedef std::pair<tLevel::iterator, bool> tInsertResult;
POOL_ALLOCATOR_NEW_DELETE(GlobalPoolAllocator)
TSymbolTableLevel() { }
~TSymbolTableLevel();
bool insert(TSymbol& symbol)
{
//
// returning true means symbol was added to the table
//
tInsertResult result;
result = level.insert(tLevelPair(symbol.getMangledName(), &symbol));
return result.second;
}
TSymbol* find(const TString& name) const
{
tLevel::const_iterator it = level.find(name);
if (it == level.end())
return 0;
else
return (*it).second;
}
const_iterator begin() const
{
return level.begin();
}
const_iterator end() const
{
return level.end();
}
void relateToOperator(const char* name, TOperator op);
void relateToExtension(const char* name, const TString& ext);
void dump(TInfoSink &infoSink) const;
protected:
tLevel level;
};
class TSymbolTable {
public:
TSymbolTable() : uniqueId(0)
{
//
// The symbol table cannot be used until push() is called, but
// the lack of an initial call to push() can be used to detect
// that the symbol table has not been preloaded with built-ins.
//
}
~TSymbolTable()
{
// level 0 is always built In symbols, so we never pop that out
while (table.size() > 1)
pop();
}
//
// When the symbol table is initialized with the built-ins, there should
// 'push' calls, so that built-ins are at level 0 and the shader
// globals are at level 1.
//
bool isEmpty() { return table.size() == 0; }
bool atBuiltInLevel() { return table.size() == 1; }
bool atGlobalLevel() { return table.size() <= 2; }
void push()
{
table.push_back(new TSymbolTableLevel);
precisionStack.push_back( PrecisionStackLevel() );
}
void pop()
{
delete table[currentLevel()];
table.pop_back();
precisionStack.pop_back();
}
bool insert(TSymbol& symbol)
{
symbol.setUniqueId(++uniqueId);
return table[currentLevel()]->insert(symbol);
}
TSymbol* find(const TString& name, bool* builtIn = 0, bool *sameScope = 0)
{
int level = currentLevel();
TSymbol* symbol;
do {
symbol = table[level]->find(name);
--level;
} while (symbol == 0 && level >= 0);
level++;
if (builtIn)
*builtIn = level == 0;
if (sameScope)
*sameScope = level == currentLevel();
return symbol;
}
TSymbol *findBuiltIn(const TString &name)
{
return table[0]->find(name);
}
TSymbolTableLevel* getGlobalLevel() {
assert(table.size() >= 2);
return table[1];
}
TSymbolTableLevel* getOuterLevel() {
assert(table.size() >= 2);
return table[currentLevel() - 1];
}
void relateToOperator(const char* name, TOperator op) {
table[0]->relateToOperator(name, op);
}
void relateToExtension(const char* name, const TString& ext) {
table[0]->relateToExtension(name, ext);
}
int getMaxSymbolId() { return uniqueId; }
void dump(TInfoSink &infoSink) const;
bool setDefaultPrecision( const TPublicType& type, TPrecision prec ){
if (IsSampler(type.type))
return true; // Skip sampler types for the time being
if (type.type != EbtFloat && type.type != EbtInt)
return false; // Only set default precision for int/float
if (type.size != 1 || type.matrix || type.array)
return false; // Not allowed to set for aggregate types
int indexOfLastElement = static_cast<int>(precisionStack.size()) - 1;
precisionStack[indexOfLastElement][type.type] = prec; // Uses map operator [], overwrites the current value
return true;
}
// Searches down the precisionStack for a precision qualifier for the specified TBasicType
TPrecision getDefaultPrecision( TBasicType type){
if( type != EbtFloat && type != EbtInt ) return EbpUndefined;
int level = static_cast<int>(precisionStack.size()) - 1;
assert( level >= 0); // Just to be safe. Should not happen.
PrecisionStackLevel::iterator it;
TPrecision prec = EbpUndefined; // If we dont find anything we return this. Should we error check this?
while( level >= 0 ){
it = precisionStack[level].find( type );
if( it != precisionStack[level].end() ){
prec = (*it).second;
break;
}
level--;
}
return prec;
}
protected:
int currentLevel() const { return static_cast<int>(table.size()) - 1; }
std::vector<TSymbolTableLevel*> table;
typedef std::map< TBasicType, TPrecision > PrecisionStackLevel;
std::vector< PrecisionStackLevel > precisionStack;
int uniqueId; // for unique identification in code generation
};
#endif // _SYMBOL_TABLE_INCLUDED_