blob: 3dd2cd8e6368cb32326cd2e434f9e2a2c2d4d9f6 [file] [log] [blame]
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Context.cpp: Implements the gl::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "libGLESv2/Context.h"
#include <algorithm>
#include <sstream>
#include "libEGL/Display.h"
#include "libGLESv2/main.h"
#include "libGLESv2/mathutil.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/Blit.h"
#include "libGLESv2/ResourceManager.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Fence.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Query.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/Texture.h"
#include "libGLESv2/VertexDataManager.h"
#include "libGLESv2/IndexDataManager.h"
#undef near
#undef far
namespace gl
{
static const char* makeStaticString(const std::string& str)
{
static std::set<std::string> strings;
std::set<std::string>::iterator it = strings.find(str);
if (it != strings.end())
return it->c_str();
return strings.insert(str).first->c_str();
}
Context::Context(const egl::Config *config, const gl::Context *shareContext, bool notifyResets, bool robustAccess) : mConfig(config)
{
ASSERT(robustAccess == false); // Unimplemented
mDisplay = NULL;
mDevice = NULL;
mFenceHandleAllocator.setBaseHandle(0);
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mState.depthClearValue = 1.0f;
mState.stencilClearValue = 0;
mState.cullFace = false;
mState.cullMode = GL_BACK;
mState.frontFace = GL_CCW;
mState.depthTest = false;
mState.depthFunc = GL_LESS;
mState.blend = false;
mState.sourceBlendRGB = GL_ONE;
mState.sourceBlendAlpha = GL_ONE;
mState.destBlendRGB = GL_ZERO;
mState.destBlendAlpha = GL_ZERO;
mState.blendEquationRGB = GL_FUNC_ADD;
mState.blendEquationAlpha = GL_FUNC_ADD;
mState.blendColor.red = 0;
mState.blendColor.green = 0;
mState.blendColor.blue = 0;
mState.blendColor.alpha = 0;
mState.stencilTest = false;
mState.stencilFunc = GL_ALWAYS;
mState.stencilRef = 0;
mState.stencilMask = -1;
mState.stencilWritemask = -1;
mState.stencilBackFunc = GL_ALWAYS;
mState.stencilBackRef = 0;
mState.stencilBackMask = - 1;
mState.stencilBackWritemask = -1;
mState.stencilFail = GL_KEEP;
mState.stencilPassDepthFail = GL_KEEP;
mState.stencilPassDepthPass = GL_KEEP;
mState.stencilBackFail = GL_KEEP;
mState.stencilBackPassDepthFail = GL_KEEP;
mState.stencilBackPassDepthPass = GL_KEEP;
mState.polygonOffsetFill = false;
mState.polygonOffsetFactor = 0.0f;
mState.polygonOffsetUnits = 0.0f;
mState.sampleAlphaToCoverage = false;
mState.sampleCoverage = false;
mState.sampleCoverageValue = 1.0f;
mState.sampleCoverageInvert = false;
mState.scissorTest = false;
mState.dither = true;
mState.generateMipmapHint = GL_DONT_CARE;
mState.fragmentShaderDerivativeHint = GL_DONT_CARE;
mState.lineWidth = 1.0f;
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = config->mDisplayMode.Width;
mState.viewportHeight = config->mDisplayMode.Height;
mState.zNear = 0.0f;
mState.zFar = 1.0f;
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = config->mDisplayMode.Width;
mState.scissorHeight = config->mDisplayMode.Height;
mState.colorMaskRed = true;
mState.colorMaskGreen = true;
mState.colorMaskBlue = true;
mState.colorMaskAlpha = true;
mState.depthMask = true;
if (shareContext != NULL)
{
mResourceManager = shareContext->mResourceManager;
mResourceManager->addRef();
}
else
{
mResourceManager = new ResourceManager();
}
// [OpenGL ES 2.0.24] section 3.7 page 83:
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
mTexture2DZero.set(new Texture2D(0));
mTextureCubeMapZero.set(new TextureCubeMap(0));
mState.activeSampler = 0;
bindArrayBuffer(0);
bindElementArrayBuffer(0);
bindTextureCubeMap(0);
bindTexture2D(0);
bindReadFramebuffer(0);
bindDrawFramebuffer(0);
bindRenderbuffer(0);
mState.currentProgram = 0;
mCurrentProgramBinary.set(NULL);
mState.packAlignment = 4;
mState.unpackAlignment = 4;
mState.packReverseRowOrder = false;
mExtensionString = NULL;
mRendererString = NULL;
mVertexDataManager = NULL;
mIndexDataManager = NULL;
mBlit = NULL;
mLineLoopIB = NULL;
mInvalidEnum = false;
mInvalidValue = false;
mInvalidOperation = false;
mOutOfMemory = false;
mInvalidFramebufferOperation = false;
mHasBeenCurrent = false;
mContextLost = false;
mResetStatus = GL_NO_ERROR;
mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT);
mRobustAccess = robustAccess;
mSupportsDXT1Textures = false;
mSupportsDXT3Textures = false;
mSupportsDXT5Textures = false;
mSupportsEventQueries = false;
mSupportsOcclusionQueries = false;
mNumCompressedTextureFormats = 0;
mMaxSupportedSamples = 0;
mMaskedClearSavedState = NULL;
markAllStateDirty();
}
Context::~Context()
{
if (mState.currentProgram != 0)
{
Program *programObject = mResourceManager->getProgram(mState.currentProgram);
if (programObject)
{
programObject->release();
}
mState.currentProgram = 0;
}
mCurrentProgramBinary.set(NULL);
while (!mFramebufferMap.empty())
{
deleteFramebuffer(mFramebufferMap.begin()->first);
}
while (!mFenceMap.empty())
{
deleteFence(mFenceMap.begin()->first);
}
while (!mQueryMap.empty())
{
deleteQuery(mQueryMap.begin()->first);
}
while (!mMultiSampleSupport.empty())
{
delete [] mMultiSampleSupport.begin()->second;
mMultiSampleSupport.erase(mMultiSampleSupport.begin());
}
for (int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for (int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; sampler++)
{
mState.samplerTexture[type][sampler].set(NULL);
}
}
for (int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
mIncompleteTextures[type].set(NULL);
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mState.vertexAttribute[i].mBoundBuffer.set(NULL);
}
for (int i = 0; i < QUERY_TYPE_COUNT; i++)
{
mState.activeQuery[i].set(NULL);
}
mState.arrayBuffer.set(NULL);
mState.elementArrayBuffer.set(NULL);
mState.renderbuffer.set(NULL);
mTexture2DZero.set(NULL);
mTextureCubeMapZero.set(NULL);
delete mVertexDataManager;
delete mIndexDataManager;
delete mBlit;
delete mLineLoopIB;
if (mMaskedClearSavedState)
{
mMaskedClearSavedState->Release();
}
mResourceManager->release();
}
void Context::makeCurrent(egl::Display *display, egl::Surface *surface)
{
mDisplay = display;
mDevice = mDisplay->getDevice();
if (!mHasBeenCurrent)
{
mDeviceCaps = mDisplay->getDeviceCaps();
mVertexDataManager = new VertexDataManager(this, mDevice);
mIndexDataManager = new IndexDataManager(this, mDevice);
mBlit = new Blit(this);
mSupportsShaderModel3 = mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0);
mMaximumPointSize = mDeviceCaps.MaxPointSize;
mSupportsVertexTexture = mDisplay->getVertexTextureSupport();
mSupportsNonPower2Texture = mDisplay->getNonPower2TextureSupport();
mSupportsInstancing = mDisplay->getInstancingSupport();
mMaxTextureDimension = std::min(std::min((int)mDeviceCaps.MaxTextureWidth, (int)mDeviceCaps.MaxTextureHeight),
(int)gl::IMPLEMENTATION_MAX_TEXTURE_SIZE);
mMaxCubeTextureDimension = std::min(mMaxTextureDimension, (int)gl::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE);
mMaxRenderbufferDimension = mMaxTextureDimension;
mMaxTextureLevel = log2(mMaxTextureDimension) + 1;
mMaxTextureAnisotropy = mDisplay->getTextureFilterAnisotropySupport();
TRACE("MaxTextureDimension=%d, MaxCubeTextureDimension=%d, MaxRenderbufferDimension=%d, MaxTextureLevel=%d, MaxTextureAnisotropy=%f",
mMaxTextureDimension, mMaxCubeTextureDimension, mMaxRenderbufferDimension, mMaxTextureLevel, mMaxTextureAnisotropy);
const D3DFORMAT renderBufferFormats[] =
{
D3DFMT_A8R8G8B8,
D3DFMT_X8R8G8B8,
D3DFMT_R5G6B5,
D3DFMT_D24S8
};
int max = 0;
for (unsigned int i = 0; i < sizeof(renderBufferFormats) / sizeof(D3DFORMAT); ++i)
{
bool *multisampleArray = new bool[D3DMULTISAMPLE_16_SAMPLES + 1];
mDisplay->getMultiSampleSupport(renderBufferFormats[i], multisampleArray);
mMultiSampleSupport[renderBufferFormats[i]] = multisampleArray;
for (int j = D3DMULTISAMPLE_16_SAMPLES; j >= 0; --j)
{
if (multisampleArray[j] && j != D3DMULTISAMPLE_NONMASKABLE && j > max)
{
max = j;
}
}
}
mMaxSupportedSamples = max;
mSupportsEventQueries = mDisplay->getEventQuerySupport();
mSupportsOcclusionQueries = mDisplay->getOcclusionQuerySupport();
mSupportsDXT1Textures = mDisplay->getDXT1TextureSupport();
mSupportsDXT3Textures = mDisplay->getDXT3TextureSupport();
mSupportsDXT5Textures = mDisplay->getDXT5TextureSupport();
mSupportsFloat32Textures = mDisplay->getFloat32TextureSupport(&mSupportsFloat32LinearFilter, &mSupportsFloat32RenderableTextures);
mSupportsFloat16Textures = mDisplay->getFloat16TextureSupport(&mSupportsFloat16LinearFilter, &mSupportsFloat16RenderableTextures);
mSupportsLuminanceTextures = mDisplay->getLuminanceTextureSupport();
mSupportsLuminanceAlphaTextures = mDisplay->getLuminanceAlphaTextureSupport();
mSupportsDepthTextures = mDisplay->getDepthTextureSupport();
mSupportsTextureFilterAnisotropy = mMaxTextureAnisotropy >= 2.0f;
mSupportsDerivativeInstructions = (mDeviceCaps.PS20Caps.Caps & D3DPS20CAPS_GRADIENTINSTRUCTIONS) != 0;
mSupports32bitIndices = mDeviceCaps.MaxVertexIndex >= (1 << 16);
mNumCompressedTextureFormats = 0;
if (supportsDXT1Textures())
{
mNumCompressedTextureFormats += 2;
}
if (supportsDXT3Textures())
{
mNumCompressedTextureFormats += 1;
}
if (supportsDXT5Textures())
{
mNumCompressedTextureFormats += 1;
}
initExtensionString();
initRendererString();
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = surface->getWidth();
mState.viewportHeight = surface->getHeight();
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = surface->getWidth();
mState.scissorHeight = surface->getHeight();
mHasBeenCurrent = true;
}
// Wrap the existing Direct3D 9 resources into GL objects and assign them to the '0' names
IDirect3DSurface9 *defaultRenderTarget = surface->getRenderTarget();
IDirect3DSurface9 *depthStencil = surface->getDepthStencil();
Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil);
Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero);
setFramebufferZero(framebufferZero);
if (defaultRenderTarget)
{
defaultRenderTarget->Release();
}
if (depthStencil)
{
depthStencil->Release();
}
markAllStateDirty();
}
// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
void Context::markAllStateDirty()
{
for (int t = 0; t < MAX_TEXTURE_IMAGE_UNITS; t++)
{
mAppliedTextureSerialPS[t] = 0;
}
for (int t = 0; t < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; t++)
{
mAppliedTextureSerialVS[t] = 0;
}
mAppliedProgramBinarySerial = 0;
mAppliedRenderTargetSerial = 0;
mAppliedDepthbufferSerial = 0;
mAppliedStencilbufferSerial = 0;
mAppliedIBSerial = 0;
mDepthStencilInitialized = false;
mViewportInitialized = false;
mRenderTargetDescInitialized = false;
mVertexDeclarationCache.markStateDirty();
mClearStateDirty = true;
mCullStateDirty = true;
mDepthStateDirty = true;
mMaskStateDirty = true;
mBlendStateDirty = true;
mStencilStateDirty = true;
mPolygonOffsetStateDirty = true;
mScissorStateDirty = true;
mSampleStateDirty = true;
mDitherStateDirty = true;
mFrontFaceDirty = true;
mDxUniformsDirty = true;
}
void Context::markDxUniformsDirty()
{
mDxUniformsDirty = true;
}
void Context::markContextLost()
{
if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT)
mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT;
mContextLost = true;
}
bool Context::isContextLost()
{
return mContextLost;
}
void Context::setClearColor(float red, float green, float blue, float alpha)
{
mState.colorClearValue.red = red;
mState.colorClearValue.green = green;
mState.colorClearValue.blue = blue;
mState.colorClearValue.alpha = alpha;
}
void Context::setClearDepth(float depth)
{
mState.depthClearValue = depth;
}
void Context::setClearStencil(int stencil)
{
mState.stencilClearValue = stencil;
}
void Context::setCullFace(bool enabled)
{
if (mState.cullFace != enabled)
{
mState.cullFace = enabled;
mCullStateDirty = true;
}
}
bool Context::isCullFaceEnabled() const
{
return mState.cullFace;
}
void Context::setCullMode(GLenum mode)
{
if (mState.cullMode != mode)
{
mState.cullMode = mode;
mCullStateDirty = true;
}
}
void Context::setFrontFace(GLenum front)
{
if (mState.frontFace != front)
{
mState.frontFace = front;
mFrontFaceDirty = true;
}
}
void Context::setDepthTest(bool enabled)
{
if (mState.depthTest != enabled)
{
mState.depthTest = enabled;
mDepthStateDirty = true;
}
}
bool Context::isDepthTestEnabled() const
{
return mState.depthTest;
}
void Context::setDepthFunc(GLenum depthFunc)
{
if (mState.depthFunc != depthFunc)
{
mState.depthFunc = depthFunc;
mDepthStateDirty = true;
}
}
void Context::setDepthRange(float zNear, float zFar)
{
mState.zNear = zNear;
mState.zFar = zFar;
}
void Context::setBlend(bool enabled)
{
if (mState.blend != enabled)
{
mState.blend = enabled;
mBlendStateDirty = true;
}
}
bool Context::isBlendEnabled() const
{
return mState.blend;
}
void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
if (mState.sourceBlendRGB != sourceRGB ||
mState.sourceBlendAlpha != sourceAlpha ||
mState.destBlendRGB != destRGB ||
mState.destBlendAlpha != destAlpha)
{
mState.sourceBlendRGB = sourceRGB;
mState.destBlendRGB = destRGB;
mState.sourceBlendAlpha = sourceAlpha;
mState.destBlendAlpha = destAlpha;
mBlendStateDirty = true;
}
}
void Context::setBlendColor(float red, float green, float blue, float alpha)
{
if (mState.blendColor.red != red ||
mState.blendColor.green != green ||
mState.blendColor.blue != blue ||
mState.blendColor.alpha != alpha)
{
mState.blendColor.red = red;
mState.blendColor.green = green;
mState.blendColor.blue = blue;
mState.blendColor.alpha = alpha;
mBlendStateDirty = true;
}
}
void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
if (mState.blendEquationRGB != rgbEquation ||
mState.blendEquationAlpha != alphaEquation)
{
mState.blendEquationRGB = rgbEquation;
mState.blendEquationAlpha = alphaEquation;
mBlendStateDirty = true;
}
}
void Context::setStencilTest(bool enabled)
{
if (mState.stencilTest != enabled)
{
mState.stencilTest = enabled;
mStencilStateDirty = true;
}
}
bool Context::isStencilTestEnabled() const
{
return mState.stencilTest;
}
void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
if (mState.stencilFunc != stencilFunc ||
mState.stencilRef != stencilRef ||
mState.stencilMask != stencilMask)
{
mState.stencilFunc = stencilFunc;
mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
mState.stencilMask = stencilMask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask)
{
if (mState.stencilBackFunc != stencilBackFunc ||
mState.stencilBackRef != stencilBackRef ||
mState.stencilBackMask != stencilBackMask)
{
mState.stencilBackFunc = stencilBackFunc;
mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
mState.stencilBackMask = stencilBackMask;
mStencilStateDirty = true;
}
}
void Context::setStencilWritemask(GLuint stencilWritemask)
{
if (mState.stencilWritemask != stencilWritemask)
{
mState.stencilWritemask = stencilWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackWritemask(GLuint stencilBackWritemask)
{
if (mState.stencilBackWritemask != stencilBackWritemask)
{
mState.stencilBackWritemask = stencilBackWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
if (mState.stencilFail != stencilFail ||
mState.stencilPassDepthFail != stencilPassDepthFail ||
mState.stencilPassDepthPass != stencilPassDepthPass)
{
mState.stencilFail = stencilFail;
mState.stencilPassDepthFail = stencilPassDepthFail;
mState.stencilPassDepthPass = stencilPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass)
{
if (mState.stencilBackFail != stencilBackFail ||
mState.stencilBackPassDepthFail != stencilBackPassDepthFail ||
mState.stencilBackPassDepthPass != stencilBackPassDepthPass)
{
mState.stencilBackFail = stencilBackFail;
mState.stencilBackPassDepthFail = stencilBackPassDepthFail;
mState.stencilBackPassDepthPass = stencilBackPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setPolygonOffsetFill(bool enabled)
{
if (mState.polygonOffsetFill != enabled)
{
mState.polygonOffsetFill = enabled;
mPolygonOffsetStateDirty = true;
}
}
bool Context::isPolygonOffsetFillEnabled() const
{
return mState.polygonOffsetFill;
}
void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
if (mState.polygonOffsetFactor != factor ||
mState.polygonOffsetUnits != units)
{
mState.polygonOffsetFactor = factor;
mState.polygonOffsetUnits = units;
mPolygonOffsetStateDirty = true;
}
}
void Context::setSampleAlphaToCoverage(bool enabled)
{
if (mState.sampleAlphaToCoverage != enabled)
{
mState.sampleAlphaToCoverage = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleAlphaToCoverageEnabled() const
{
return mState.sampleAlphaToCoverage;
}
void Context::setSampleCoverage(bool enabled)
{
if (mState.sampleCoverage != enabled)
{
mState.sampleCoverage = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleCoverageEnabled() const
{
return mState.sampleCoverage;
}
void Context::setSampleCoverageParams(GLclampf value, bool invert)
{
if (mState.sampleCoverageValue != value ||
mState.sampleCoverageInvert != invert)
{
mState.sampleCoverageValue = value;
mState.sampleCoverageInvert = invert;
mSampleStateDirty = true;
}
}
void Context::setScissorTest(bool enabled)
{
if (mState.scissorTest != enabled)
{
mState.scissorTest = enabled;
mScissorStateDirty = true;
}
}
bool Context::isScissorTestEnabled() const
{
return mState.scissorTest;
}
void Context::setDither(bool enabled)
{
if (mState.dither != enabled)
{
mState.dither = enabled;
mDitherStateDirty = true;
}
}
bool Context::isDitherEnabled() const
{
return mState.dither;
}
void Context::setLineWidth(GLfloat width)
{
mState.lineWidth = width;
}
void Context::setGenerateMipmapHint(GLenum hint)
{
mState.generateMipmapHint = hint;
}
void Context::setFragmentShaderDerivativeHint(GLenum hint)
{
mState.fragmentShaderDerivativeHint = hint;
// TODO: Propagate the hint to shader translator so we can write
// ddx, ddx_coarse, or ddx_fine depending on the hint.
// Ignore for now. It is valid for implementations to ignore hint.
}
void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.viewportX = x;
mState.viewportY = y;
mState.viewportWidth = width;
mState.viewportHeight = height;
}
void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
if (mState.scissorX != x || mState.scissorY != y ||
mState.scissorWidth != width || mState.scissorHeight != height)
{
mState.scissorX = x;
mState.scissorY = y;
mState.scissorWidth = width;
mState.scissorHeight = height;
mScissorStateDirty = true;
}
}
void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
{
if (mState.colorMaskRed != red || mState.colorMaskGreen != green ||
mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
{
mState.colorMaskRed = red;
mState.colorMaskGreen = green;
mState.colorMaskBlue = blue;
mState.colorMaskAlpha = alpha;
mMaskStateDirty = true;
}
}
void Context::setDepthMask(bool mask)
{
if (mState.depthMask != mask)
{
mState.depthMask = mask;
mMaskStateDirty = true;
}
}
void Context::setActiveSampler(unsigned int active)
{
mState.activeSampler = active;
}
GLuint Context::getReadFramebufferHandle() const
{
return mState.readFramebuffer;
}
GLuint Context::getDrawFramebufferHandle() const
{
return mState.drawFramebuffer;
}
GLuint Context::getRenderbufferHandle() const
{
return mState.renderbuffer.id();
}
GLuint Context::getArrayBufferHandle() const
{
return mState.arrayBuffer.id();
}
GLuint Context::getActiveQuery(GLenum target) const
{
Query *queryObject = NULL;
switch (target)
{
case GL_ANY_SAMPLES_PASSED_EXT:
queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED].get();
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE].get();
break;
default:
ASSERT(false);
}
if (queryObject)
{
return queryObject->id();
}
else
{
return 0;
}
}
void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled)
{
mState.vertexAttribute[attribNum].mArrayEnabled = enabled;
}
const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum)
{
return mState.vertexAttribute[attribNum];
}
void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
GLsizei stride, const void *pointer)
{
mState.vertexAttribute[attribNum].mBoundBuffer.set(boundBuffer);
mState.vertexAttribute[attribNum].mSize = size;
mState.vertexAttribute[attribNum].mType = type;
mState.vertexAttribute[attribNum].mNormalized = normalized;
mState.vertexAttribute[attribNum].mStride = stride;
mState.vertexAttribute[attribNum].mPointer = pointer;
}
const void *Context::getVertexAttribPointer(unsigned int attribNum) const
{
return mState.vertexAttribute[attribNum].mPointer;
}
const VertexAttributeArray &Context::getVertexAttributes()
{
return mState.vertexAttribute;
}
void Context::setPackAlignment(GLint alignment)
{
mState.packAlignment = alignment;
}
GLint Context::getPackAlignment() const
{
return mState.packAlignment;
}
void Context::setUnpackAlignment(GLint alignment)
{
mState.unpackAlignment = alignment;
}
GLint Context::getUnpackAlignment() const
{
return mState.unpackAlignment;
}
void Context::setPackReverseRowOrder(bool reverseRowOrder)
{
mState.packReverseRowOrder = reverseRowOrder;
}
bool Context::getPackReverseRowOrder() const
{
return mState.packReverseRowOrder;
}
GLuint Context::createBuffer()
{
return mResourceManager->createBuffer();
}
GLuint Context::createProgram()
{
return mResourceManager->createProgram();
}
GLuint Context::createShader(GLenum type)
{
return mResourceManager->createShader(type);
}
GLuint Context::createTexture()
{
return mResourceManager->createTexture();
}
GLuint Context::createRenderbuffer()
{
return mResourceManager->createRenderbuffer();
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
GLuint handle = mFramebufferHandleAllocator.allocate();
mFramebufferMap[handle] = NULL;
return handle;
}
GLuint Context::createFence()
{
GLuint handle = mFenceHandleAllocator.allocate();
mFenceMap[handle] = new Fence(mDisplay);
return handle;
}
// Returns an unused query name
GLuint Context::createQuery()
{
GLuint handle = mQueryHandleAllocator.allocate();
mQueryMap[handle] = NULL;
return handle;
}
void Context::deleteBuffer(GLuint buffer)
{
if (mResourceManager->getBuffer(buffer))
{
detachBuffer(buffer);
}
mResourceManager->deleteBuffer(buffer);
}
void Context::deleteShader(GLuint shader)
{
mResourceManager->deleteShader(shader);
}
void Context::deleteProgram(GLuint program)
{
mResourceManager->deleteProgram(program);
}
void Context::deleteTexture(GLuint texture)
{
if (mResourceManager->getTexture(texture))
{
detachTexture(texture);
}
mResourceManager->deleteTexture(texture);
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
if (mResourceManager->getRenderbuffer(renderbuffer))
{
detachRenderbuffer(renderbuffer);
}
mResourceManager->deleteRenderbuffer(renderbuffer);
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer);
if (framebufferObject != mFramebufferMap.end())
{
detachFramebuffer(framebuffer);
mFramebufferHandleAllocator.release(framebufferObject->first);
delete framebufferObject->second;
mFramebufferMap.erase(framebufferObject);
}
}
void Context::deleteFence(GLuint fence)
{
FenceMap::iterator fenceObject = mFenceMap.find(fence);
if (fenceObject != mFenceMap.end())
{
mFenceHandleAllocator.release(fenceObject->first);
delete fenceObject->second;
mFenceMap.erase(fenceObject);
}
}
void Context::deleteQuery(GLuint query)
{
QueryMap::iterator queryObject = mQueryMap.find(query);
if (queryObject != mQueryMap.end())
{
mQueryHandleAllocator.release(queryObject->first);
if (queryObject->second)
{
queryObject->second->release();
}
mQueryMap.erase(queryObject);
}
}
Buffer *Context::getBuffer(GLuint handle)
{
return mResourceManager->getBuffer(handle);
}
Shader *Context::getShader(GLuint handle)
{
return mResourceManager->getShader(handle);
}
Program *Context::getProgram(GLuint handle)
{
return mResourceManager->getProgram(handle);
}
Texture *Context::getTexture(GLuint handle)
{
return mResourceManager->getTexture(handle);
}
Renderbuffer *Context::getRenderbuffer(GLuint handle)
{
return mResourceManager->getRenderbuffer(handle);
}
Framebuffer *Context::getReadFramebuffer()
{
return getFramebuffer(mState.readFramebuffer);
}
Framebuffer *Context::getDrawFramebuffer()
{
return mBoundDrawFramebuffer;
}
void Context::bindArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.arrayBuffer.set(getBuffer(buffer));
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.elementArrayBuffer.set(getBuffer(buffer));
}
void Context::bindTexture2D(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_2D);
mState.samplerTexture[TEXTURE_2D][mState.activeSampler].set(getTexture(texture));
}
void Context::bindTextureCubeMap(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE);
mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].set(getTexture(texture));
}
void Context::bindReadFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer();
}
mState.readFramebuffer = framebuffer;
}
void Context::bindDrawFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer();
}
mState.drawFramebuffer = framebuffer;
mBoundDrawFramebuffer = getFramebuffer(framebuffer);
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
mResourceManager->checkRenderbufferAllocation(renderbuffer);
mState.renderbuffer.set(getRenderbuffer(renderbuffer));
}
void Context::useProgram(GLuint program)
{
GLuint priorProgram = mState.currentProgram;
mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged.
if (priorProgram != program)
{
Program *newProgram = mResourceManager->getProgram(program);
Program *oldProgram = mResourceManager->getProgram(priorProgram);
mCurrentProgramBinary.set(NULL);
mDxUniformsDirty = true;
if (newProgram)
{
newProgram->addRef();
mCurrentProgramBinary.set(newProgram->getProgramBinary());
}
if (oldProgram)
{
oldProgram->release();
}
}
}
void Context::linkProgram(GLuint program)
{
Program *programObject = mResourceManager->getProgram(program);
bool linked = programObject->link();
// if the current program was relinked successfully we
// need to install the new executables
if (linked && program == mState.currentProgram)
{
mCurrentProgramBinary.set(programObject->getProgramBinary());
mDxUniformsDirty = true;
}
}
void Context::setProgramBinary(GLuint program, const void *binary, GLint length)
{
Program *programObject = mResourceManager->getProgram(program);
bool loaded = programObject->setProgramBinary(binary, length);
// if the current program was reloaded successfully we
// need to install the new executables
if (loaded && program == mState.currentProgram)
{
mCurrentProgramBinary.set(programObject->getProgramBinary());
mDxUniformsDirty = true;
}
}
void Context::beginQuery(GLenum target, GLuint query)
{
// From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an <id>
// of zero, if the active query object name for <target> is non-zero (for the
// targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if
// the active query for either target is non-zero), if <id> is the name of an
// existing query object whose type does not match <target>, or if <id> is the
// active query object name for any query type, the error INVALID_OPERATION is
// generated.
// Ensure no other queries are active
// NOTE: If other queries than occlusion are supported, we will need to check
// separately that:
// a) The query ID passed is not the current active query for any target/type
// b) There are no active queries for the requested target (and in the case
// of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT,
// no query may be active for either if glBeginQuery targets either.
for (int i = 0; i < QUERY_TYPE_COUNT; i++)
{
if (mState.activeQuery[i].get() != NULL)
{
return error(GL_INVALID_OPERATION);
}
}
QueryType qType;
switch (target)
{
case GL_ANY_SAMPLES_PASSED_EXT:
qType = QUERY_ANY_SAMPLES_PASSED;
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE;
break;
default:
ASSERT(false);
return;
}
Query *queryObject = getQuery(query, true, target);
// check that name was obtained with glGenQueries
if (!queryObject)
{
return error(GL_INVALID_OPERATION);
}
// check for type mismatch
if (queryObject->getType() != target)
{
return error(GL_INVALID_OPERATION);
}
// set query as active for specified target
mState.activeQuery[qType].set(queryObject);
// begin query
queryObject->begin();
}
void Context::endQuery(GLenum target)
{
QueryType qType;
switch (target)
{
case GL_ANY_SAMPLES_PASSED_EXT:
qType = QUERY_ANY_SAMPLES_PASSED;
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE;
break;
default:
ASSERT(false);
return;
}
Query *queryObject = mState.activeQuery[qType].get();
if (queryObject == NULL)
{
return error(GL_INVALID_OPERATION);
}
queryObject->end();
mState.activeQuery[qType].set(NULL);
}
void Context::setFramebufferZero(Framebuffer *buffer)
{
delete mFramebufferMap[0];
mFramebufferMap[0] = buffer;
if (mState.drawFramebuffer == 0)
{
mBoundDrawFramebuffer = buffer;
}
}
void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer)
{
Renderbuffer *renderbufferObject = mState.renderbuffer.get();
renderbufferObject->setStorage(renderbuffer);
}
Framebuffer *Context::getFramebuffer(unsigned int handle)
{
FramebufferMap::iterator framebuffer = mFramebufferMap.find(handle);
if (framebuffer == mFramebufferMap.end())
{
return NULL;
}
else
{
return framebuffer->second;
}
}
Fence *Context::getFence(unsigned int handle)
{
FenceMap::iterator fence = mFenceMap.find(handle);
if (fence == mFenceMap.end())
{
return NULL;
}
else
{
return fence->second;
}
}
Query *Context::getQuery(unsigned int handle, bool create, GLenum type)
{
QueryMap::iterator query = mQueryMap.find(handle);
if (query == mQueryMap.end())
{
return NULL;
}
else
{
if (!query->second && create)
{
query->second = new Query(handle, type);
query->second->addRef();
}
return query->second;
}
}
Buffer *Context::getArrayBuffer()
{
return mState.arrayBuffer.get();
}
Buffer *Context::getElementArrayBuffer()
{
return mState.elementArrayBuffer.get();
}
ProgramBinary *Context::getCurrentProgramBinary()
{
return mCurrentProgramBinary.get();
}
Texture2D *Context::getTexture2D()
{
return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D));
}
TextureCubeMap *Context::getTextureCubeMap()
{
return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE));
}
Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type)
{
GLuint texid = mState.samplerTexture[type][sampler].id();
if (texid == 0) // Special case: 0 refers to different initial textures based on the target
{
switch (type)
{
default: UNREACHABLE();
case TEXTURE_2D: return mTexture2DZero.get();
case TEXTURE_CUBE: return mTextureCubeMapZero.get();
}
}
return mState.samplerTexture[type][sampler].get();
}
bool Context::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SHADER_COMPILER: *params = GL_TRUE; break;
case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break;
case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break;
case GL_COLOR_WRITEMASK:
params[0] = mState.colorMaskRed;
params[1] = mState.colorMaskGreen;
params[2] = mState.colorMaskBlue;
params[3] = mState.colorMaskAlpha;
break;
case GL_CULL_FACE: *params = mState.cullFace; break;
case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFill; break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverage; break;
case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break;
case GL_SCISSOR_TEST: *params = mState.scissorTest; break;
case GL_STENCIL_TEST: *params = mState.stencilTest; break;
case GL_DEPTH_TEST: *params = mState.depthTest; break;
case GL_BLEND: *params = mState.blend; break;
case GL_DITHER: *params = mState.dither; break;
case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break;
default:
return false;
}
return true;
}
bool Context::getFloatv(GLenum pname, GLfloat *params)
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch (pname)
{
case GL_LINE_WIDTH: *params = mState.lineWidth; break;
case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break;
case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break;
case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break;
case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break;
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = gl::ALIASED_LINE_WIDTH_RANGE_MIN;
params[1] = gl::ALIASED_LINE_WIDTH_RANGE_MAX;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = gl::ALIASED_POINT_SIZE_RANGE_MIN;
params[1] = getMaximumPointSize();
break;
case GL_DEPTH_RANGE:
params[0] = mState.zNear;
params[1] = mState.zFar;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = mState.colorClearValue.red;
params[1] = mState.colorClearValue.green;
params[2] = mState.colorClearValue.blue;
params[3] = mState.colorClearValue.alpha;
break;
case GL_BLEND_COLOR:
params[0] = mState.blendColor.red;
params[1] = mState.blendColor.green;
params[2] = mState.blendColor.blue;
params[3] = mState.blendColor.alpha;
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
if (!supportsTextureFilterAnisotropy())
{
return false;
}
*params = mMaxTextureAnisotropy;
break;
default:
return false;
}
return true;
}
bool Context::getIntegerv(GLenum pname, GLint *params)
{
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// Context::getFloatv.
switch (pname)
{
case GL_MAX_VERTEX_ATTRIBS: *params = gl::MAX_VERTEX_ATTRIBS; break;
case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = gl::MAX_VERTEX_UNIFORM_VECTORS; break;
case GL_MAX_VARYING_VECTORS: *params = getMaximumVaryingVectors(); break;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = getMaximumCombinedTextureImageUnits(); break;
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = getMaximumVertexTextureImageUnits(); break;
case GL_MAX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = getMaximumFragmentUniformVectors(); break;
case GL_MAX_RENDERBUFFER_SIZE: *params = getMaximumRenderbufferDimension(); break;
case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break;
case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break;
case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.id(); break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.id(); break;
//case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: *params = mState.drawFramebuffer; break;
case GL_READ_FRAMEBUFFER_BINDING_ANGLE: *params = mState.readFramebuffer; break;
case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.id(); break;
case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break;
case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break;
case GL_PACK_REVERSE_ROW_ORDER_ANGLE: *params = mState.packReverseRowOrder; break;
case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break;
case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; break;
case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break;
case GL_STENCIL_FUNC: *params = mState.stencilFunc; break;
case GL_STENCIL_REF: *params = mState.stencilRef; break;
case GL_STENCIL_VALUE_MASK: *params = mState.stencilMask; break;
case GL_STENCIL_BACK_FUNC: *params = mState.stencilBackFunc; break;
case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break;
case GL_STENCIL_BACK_VALUE_MASK: *params = mState.stencilBackMask; break;
case GL_STENCIL_FAIL: *params = mState.stencilFail; break;
case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; break;
case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; break;
case GL_STENCIL_BACK_FAIL: *params = mState.stencilBackFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.stencilBackPassDepthFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.stencilBackPassDepthPass; break;
case GL_DEPTH_FUNC: *params = mState.depthFunc; break;
case GL_BLEND_SRC_RGB: *params = mState.sourceBlendRGB; break;
case GL_BLEND_SRC_ALPHA: *params = mState.sourceBlendAlpha; break;
case GL_BLEND_DST_RGB: *params = mState.destBlendRGB; break;
case GL_BLEND_DST_ALPHA: *params = mState.destBlendAlpha; break;
case GL_BLEND_EQUATION_RGB: *params = mState.blendEquationRGB; break;
case GL_BLEND_EQUATION_ALPHA: *params = mState.blendEquationAlpha; break;
case GL_STENCIL_WRITEMASK: *params = mState.stencilWritemask; break;
case GL_STENCIL_BACK_WRITEMASK: *params = mState.stencilBackWritemask; break;
case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break;
case GL_SUBPIXEL_BITS: *params = 4; break;
case GL_MAX_TEXTURE_SIZE: *params = getMaximumTextureDimension(); break;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = getMaximumCubeTextureDimension(); break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
params[0] = mNumCompressedTextureFormats;
break;
case GL_MAX_SAMPLES_ANGLE:
{
GLsizei maxSamples = getMaxSupportedSamples();
if (maxSamples != 0)
{
*params = maxSamples;
}
else
{
return false;
}
break;
}
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
if (framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE)
{
switch (pname)
{
case GL_SAMPLE_BUFFERS:
if (framebuffer->getSamples() != 0)
{
*params = 1;
}
else
{
*params = 0;
}
break;
case GL_SAMPLES:
*params = framebuffer->getSamples();
break;
}
}
else
{
*params = 0;
}
}
break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
{
GLenum format, type;
if (getCurrentReadFormatType(&format, &type))
{
if (pname == GL_IMPLEMENTATION_COLOR_READ_FORMAT)
*params = format;
else
*params = type;
}
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
int maxDimension = std::max(getMaximumRenderbufferDimension(), getMaximumTextureDimension());
params[0] = maxDimension;
params[1] = maxDimension;
}
break;
case GL_COMPRESSED_TEXTURE_FORMATS:
{
if (supportsDXT1Textures())
{
*params++ = GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
*params++ = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
}
if (supportsDXT3Textures())
{
*params++ = GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE;
}
if (supportsDXT5Textures())
{
*params++ = GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE;
}
}
break;
case GL_VIEWPORT:
params[0] = mState.viewportX;
params[1] = mState.viewportY;
params[2] = mState.viewportWidth;
params[3] = mState.viewportHeight;
break;
case GL_SCISSOR_BOX:
params[0] = mState.scissorX;
params[1] = mState.scissorY;
params[2] = mState.scissorWidth;
params[3] = mState.scissorHeight;
break;
case GL_CULL_FACE_MODE: *params = mState.cullMode; break;
case GL_FRONT_FACE: *params = mState.frontFace; break;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::Renderbuffer *colorbuffer = framebuffer->getColorbuffer();
if (colorbuffer)
{
switch (pname)
{
case GL_RED_BITS: *params = colorbuffer->getRedSize(); break;
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break;
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break;
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break;
}
}
else
{
*params = 0;
}
}
break;
case GL_DEPTH_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
if (depthbuffer)
{
*params = depthbuffer->getDepthSize();
}
else
{
*params = 0;
}
}
break;
case GL_STENCIL_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
if (stencilbuffer)
{
*params = stencilbuffer->getStencilSize();
}
else
{
*params = 0;
}
}
break;
case GL_TEXTURE_BINDING_2D:
{
if (mState.activeSampler > getMaximumCombinedTextureImageUnits() - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].id();
}
break;
case GL_TEXTURE_BINDING_CUBE_MAP:
{
if (mState.activeSampler > getMaximumCombinedTextureImageUnits() - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].id();
}
break;
case GL_RESET_NOTIFICATION_STRATEGY_EXT:
*params = mResetStrategy;
break;
case GL_NUM_PROGRAM_BINARY_FORMATS_OES:
*params = 1;
break;
case GL_PROGRAM_BINARY_FORMATS_OES:
*params = GL_PROGRAM_BINARY_ANGLE;
break;
default:
return false;
}
return true;
}
bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams)
{
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch (pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS:
{
*type = GL_INT;
*numParams = mNumCompressedTextureFormats;
}
break;
case GL_SHADER_BINARY_FORMATS:
{
*type = GL_INT;
*numParams = 0;
}
break;
case GL_MAX_VERTEX_ATTRIBS:
case GL_MAX_VERTEX_UNIFORM_VECTORS:
case GL_MAX_VARYING_VECTORS:
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
case GL_MAX_RENDERBUFFER_SIZE:
case GL_NUM_SHADER_BINARY_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
case GL_FRAMEBUFFER_BINDING:
case GL_RENDERBUFFER_BINDING:
case GL_CURRENT_PROGRAM:
case GL_PACK_ALIGNMENT:
case GL_PACK_REVERSE_ROW_ORDER_ANGLE:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_STENCIL_BACK_FUNC:
case GL_STENCIL_BACK_VALUE_MASK:
case GL_STENCIL_BACK_REF:
case GL_STENCIL_BACK_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB:
case GL_BLEND_SRC_ALPHA:
case GL_BLEND_DST_RGB:
case GL_BLEND_DST_ALPHA:
case GL_BLEND_EQUATION_RGB:
case GL_BLEND_EQUATION_ALPHA:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_BACK_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
case GL_RESET_NOTIFICATION_STRATEGY_EXT:
case GL_NUM_PROGRAM_BINARY_FORMATS_OES:
case GL_PROGRAM_BINARY_FORMATS_OES:
{
*type = GL_INT;
*numParams = 1;
}
break;
case GL_MAX_SAMPLES_ANGLE:
{
if (getMaxSupportedSamples() != 0)
{
*type = GL_INT;
*numParams = 1;
}
else
{
return false;
}
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
*type = GL_INT;
*numParams = 2;
}
break;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
{
*type = GL_INT;
*numParams = 4;
}
break;
case GL_SHADER_COMPILER:
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
case GL_CONTEXT_ROBUST_ACCESS_EXT:
{
*type = GL_BOOL;
*numParams = 1;
}
break;
case GL_COLOR_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 4;
}
break;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
{
*type = GL_FLOAT;
*numParams = 1;
}
break;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
{
*type = GL_FLOAT;
*numParams = 2;
}
break;
case GL_COLOR_CLEAR_VALUE:
case GL_BLEND_COLOR:
{
*type = GL_FLOAT;
*numParams = 4;
}
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
if (!supportsTextureFilterAnisotropy())
{
return false;
}
*type = GL_FLOAT;
*numParams = 1;
break;
default:
return false;
}
return true;
}
// Applies the render target surface, depth stencil surface, viewport rectangle and
// scissor rectangle to the Direct3D 9 device
bool Context::applyRenderTarget(bool ignoreViewport)
{
Framebuffer *framebufferObject = getDrawFramebuffer();
if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION, false);
}
// if there is no color attachment we must synthesize a NULL colorattachment
// to keep the D3D runtime happy. This should only be possible if depth texturing.
Renderbuffer *renderbufferObject = NULL;
if (framebufferObject->getColorbufferType() != GL_NONE)
{
renderbufferObject = framebufferObject->getColorbuffer();
}
else
{
renderbufferObject = framebufferObject->getNullColorbuffer();
}
if (!renderbufferObject)
{
ERR("unable to locate renderbuffer for FBO.");
return false;
}
bool renderTargetChanged = false;
unsigned int renderTargetSerial = renderbufferObject->getSerial();
if (renderTargetSerial != mAppliedRenderTargetSerial)
{
IDirect3DSurface9 *renderTarget = renderbufferObject->getRenderTarget();
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return false; // Context must be lost
}
mDevice->SetRenderTarget(0, renderTarget);
mAppliedRenderTargetSerial = renderTargetSerial;
mScissorStateDirty = true; // Scissor area must be clamped to render target's size-- this is different for different render targets.
renderTargetChanged = true;
renderTarget->Release();
}
IDirect3DSurface9 *depthStencil = NULL;
unsigned int depthbufferSerial = 0;
unsigned int stencilbufferSerial = 0;
if (framebufferObject->getDepthbufferType() != GL_NONE)
{
Renderbuffer *depthbuffer = framebufferObject->getDepthbuffer();
depthStencil = depthbuffer->getDepthStencil();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
depthbufferSerial = depthbuffer->getSerial();
}
else if (framebufferObject->getStencilbufferType() != GL_NONE)
{
Renderbuffer *stencilbuffer = framebufferObject->getStencilbuffer();
depthStencil = stencilbuffer->getDepthStencil();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
stencilbufferSerial = stencilbuffer->getSerial();
}
if (depthbufferSerial != mAppliedDepthbufferSerial ||
stencilbufferSerial != mAppliedStencilbufferSerial ||
!mDepthStencilInitialized)
{
mDevice->SetDepthStencilSurface(depthStencil);
mAppliedDepthbufferSerial = depthbufferSerial;
mAppliedStencilbufferSerial = stencilbufferSerial;
mDepthStencilInitialized = true;
}
if (depthStencil)
{
depthStencil->Release();
}
if (!mRenderTargetDescInitialized || renderTargetChanged)
{
IDirect3DSurface9 *renderTarget = renderbufferObject->getRenderTarget();
if (!renderTarget)
{
return false; // Context must be lost
}
renderTarget->GetDesc(&mRenderTargetDesc);
mRenderTargetDescInitialized = true;
renderTarget->Release();
}
D3DVIEWPORT9 viewport;
float zNear = clamp01(mState.zNear);
float zFar = clamp01(mState.zFar);
if (ignoreViewport)
{
viewport.X = 0;
viewport.Y = 0;
viewport.Width = mRenderTargetDesc.Width;
viewport.Height = mRenderTargetDesc.Height;
viewport.MinZ = 0.0f;
viewport.MaxZ = 1.0f;
}
else
{
viewport.X = clamp(mState.viewportX, 0L, static_cast<LONG>(mRenderTargetDesc.Width));
viewport.Y = clamp(mState.viewportY, 0L, static_cast<LONG>(mRenderTargetDesc.Height));
viewport.Width = clamp(mState.viewportWidth, 0L, static_cast<LONG>(mRenderTargetDesc.Width) - static_cast<LONG>(viewport.X));
viewport.Height = clamp(mState.viewportHeight, 0L, static_cast<LONG>(mRenderTargetDesc.Height) - static_cast<LONG>(viewport.Y));
viewport.MinZ = zNear;
viewport.MaxZ = zFar;
}
if (viewport.Width <= 0 || viewport.Height <= 0)
{
return false; // Nothing to render
}
if (renderTargetChanged || !mViewportInitialized || memcmp(&viewport, &mSetViewport, sizeof mSetViewport) != 0)
{
mDevice->SetViewport(&viewport);
mSetViewport = viewport;
mViewportInitialized = true;
mDxUniformsDirty = true;
}
if (mScissorStateDirty)
{
if (mState.scissorTest)
{
RECT rect;
rect.left = clamp(mState.scissorX, 0L, static_cast<LONG>(mRenderTargetDesc.Width));
rect.top = clamp(mState.scissorY, 0L, static_cast<LONG>(mRenderTargetDesc.Height));
rect.right = clamp(mState.scissorX + mState.scissorWidth, 0L, static_cast<LONG>(mRenderTargetDesc.Width));
rect.bottom = clamp(mState.scissorY + mState.scissorHeight, 0L, static_cast<LONG>(mRenderTargetDesc.Height));
mDevice->SetScissorRect(&rect);
mDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE);
}
else
{
mDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE);
}
mScissorStateDirty = false;
}
if (mState.currentProgram && mDxUniformsDirty)
{
ProgramBinary *programBinary = getCurrentProgramBinary();
GLint halfPixelSize = programBinary->getDxHalfPixelSizeLocation();
GLfloat xy[2] = {1.0f / viewport.Width, -1.0f / viewport.Height};
programBinary->setUniform2fv(halfPixelSize, 1, xy);
// These values are used for computing gl_FragCoord in Program::linkVaryings().
GLint coord = programBinary->getDxCoordLocation();
GLfloat whxy[4] = {mState.viewportWidth / 2.0f, mState.viewportHeight / 2.0f,
(float)mState.viewportX + mState.viewportWidth / 2.0f,
(float)mState.viewportY + mState.viewportHeight / 2.0f};
programBinary->setUniform4fv(coord, 1, whxy);
GLint depth = programBinary->getDxDepthLocation();
GLfloat dz[2] = {(zFar - zNear) / 2.0f, (zNear + zFar) / 2.0f};
programBinary->setUniform2fv(depth, 1, dz);
GLint depthRange = programBinary->getDxDepthRangeLocation();
GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear};
programBinary->setUniform3fv(depthRange, 1, nearFarDiff);
mDxUniformsDirty = false;
}
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device
void Context::applyState(GLenum drawMode)
{
ProgramBinary *programBinary = getCurrentProgramBinary();
Framebuffer *framebufferObject = getDrawFramebuffer();
GLint frontCCW = programBinary->getDxFrontCCWLocation();
GLint ccw = (mState.frontFace == GL_CCW);
programBinary->setUniform1iv(frontCCW, 1, &ccw);
GLint pointsOrLines = programBinary->getDxPointsOrLinesLocation();
GLint alwaysFront = !isTriangleMode(drawMode);
programBinary->setUniform1iv(pointsOrLines, 1, &alwaysFront);
D3DADAPTER_IDENTIFIER9 *identifier = mDisplay->getAdapterIdentifier();
bool zeroColorMaskAllowed = identifier->VendorId != 0x1002;
// Apparently some ATI cards have a bug where a draw with a zero color
// write mask can cause later draws to have incorrect results. Instead,
// set a nonzero color write mask but modify the blend state so that no
// drawing is done.
// http://code.google.com/p/angleproject/issues/detail?id=169
if (mCullStateDirty || mFrontFaceDirty)
{
if (mState.cullFace)
{
mDevice->SetRenderState(D3DRS_CULLMODE, es2dx::ConvertCullMode(mState.cullMode, mState.frontFace));
}
else
{
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
}
mCullStateDirty = false;
}
if (mDepthStateDirty)
{
if (mState.depthTest)
{
mDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);
mDevice->SetRenderState(D3DRS_ZFUNC, es2dx::ConvertComparison(mState.depthFunc));
}
else
{
mDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
}
mDepthStateDirty = false;
}
if (!zeroColorMaskAllowed && (mMaskStateDirty || mBlendStateDirty))
{
mBlendStateDirty = true;
mMaskStateDirty = true;
}
if (mBlendStateDirty)
{
if (mState.blend)
{
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
if (mState.sourceBlendRGB != GL_CONSTANT_ALPHA && mState.sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA &&
mState.destBlendRGB != GL_CONSTANT_ALPHA && mState.destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA)
{
mDevice->SetRenderState(D3DRS_BLENDFACTOR, es2dx::ConvertColor(mState.blendColor));
}
else
{
mDevice->SetRenderState(D3DRS_BLENDFACTOR, D3DCOLOR_RGBA(unorm<8>(mState.blendColor.alpha),
unorm<8>(mState.blendColor.alpha),
unorm<8>(mState.blendColor.alpha),
unorm<8>(mState.blendColor.alpha)));
}
mDevice->SetRenderState(D3DRS_SRCBLEND, es2dx::ConvertBlendFunc(mState.sourceBlendRGB));
mDevice->SetRenderState(D3DRS_DESTBLEND, es2dx::ConvertBlendFunc(mState.destBlendRGB));
mDevice->SetRenderState(D3DRS_BLENDOP, es2dx::ConvertBlendOp(mState.blendEquationRGB));
if (mState.sourceBlendRGB != mState.sourceBlendAlpha ||
mState.destBlendRGB != mState.destBlendAlpha ||
mState.blendEquationRGB != mState.blendEquationAlpha)
{
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetRenderState(D3DRS_SRCBLENDALPHA, es2dx::ConvertBlendFunc(mState.sourceBlendAlpha));
mDevice->SetRenderState(D3DRS_DESTBLENDALPHA, es2dx::ConvertBlendFunc(mState.destBlendAlpha));
mDevice->SetRenderState(D3DRS_BLENDOPALPHA, es2dx::ConvertBlendOp(mState.blendEquationAlpha));
}
else
{
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE);
}
}
else
{
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
mBlendStateDirty = false;
}
if (mStencilStateDirty || mFrontFaceDirty)
{
if (mState.stencilTest && framebufferObject->hasStencil())
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE);
// FIXME: Unsupported by D3D9
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILREF = D3DRS_STENCILREF;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILMASK = D3DRS_STENCILMASK;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILWRITEMASK = D3DRS_STENCILWRITEMASK;
if (mState.stencilWritemask != mState.stencilBackWritemask ||
mState.stencilRef != mState.stencilBackRef ||
mState.stencilMask != mState.stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are invalid under WebGL.");
return error(GL_INVALID_OPERATION);
}
// get the maximum size of the stencil ref
gl::Renderbuffer *stencilbuffer = framebufferObject->getStencilbuffer();
GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1;
mDevice->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK, mState.stencilWritemask);
mDevice->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC,
es2dx::ConvertComparison(mState.stencilFunc));
mDevice->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF, (mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
mDevice->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK, mState.stencilMask);
mDevice->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL,
es2dx::ConvertStencilOp(mState.stencilFail));
mDevice->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL,
es2dx::ConvertStencilOp(mState.stencilPassDepthFail));
mDevice->SetRenderState(mState.frontFace == GL_CCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS,
es2dx::ConvertStencilOp(mState.stencilPassDepthPass));
mDevice->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK, mState.stencilBackWritemask);
mDevice->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC,
es2dx::ConvertComparison(mState.stencilBackFunc));
mDevice->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF, (mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
mDevice->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK, mState.stencilBackMask);
mDevice->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL,
es2dx::ConvertStencilOp(mState.stencilBackFail));
mDevice->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL,
es2dx::ConvertStencilOp(mState.stencilBackPassDepthFail));
mDevice->SetRenderState(mState.frontFace == GL_CW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS,
es2dx::ConvertStencilOp(mState.stencilBackPassDepthPass));
}
else
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
mStencilStateDirty = false;
mFrontFaceDirty = false;
}
if (mMaskStateDirty)
{
int colorMask = es2dx::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen,
mState.colorMaskBlue, mState.colorMaskAlpha);
if (colorMask == 0 && !zeroColorMaskAllowed)
{
// Enable green channel, but set blending so nothing will be drawn.
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_GREEN);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
mDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
mDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
mDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_ADD);
}
else
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, colorMask);
}
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, mState.depthMask ? TRUE : FALSE);
mMaskStateDirty = false;
}
if (mPolygonOffsetStateDirty)
{
if (mState.polygonOffsetFill)
{
gl::Renderbuffer *depthbuffer = framebufferObject->getDepthbuffer();
if (depthbuffer)
{
mDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, *((DWORD*)&mState.polygonOffsetFactor));
float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize()));
mDevice->SetRenderState(D3DRS_DEPTHBIAS, *((DWORD*)&depthBias));
}
}
else
{
mDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, 0);
mDevice->SetRenderState(D3DRS_DEPTHBIAS, 0);
}
mPolygonOffsetStateDirty = false;
}
if (mSampleStateDirty)
{
if (mState.sampleAlphaToCoverage)
{
FIXME("Sample alpha to coverage is unimplemented.");
}
mDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, TRUE);
if (mState.sampleCoverage)
{
unsigned int mask = 0;
if (mState.sampleCoverageValue != 0)
{
float threshold = 0.5f;
for (int i = 0; i < framebufferObject->getSamples(); ++i)
{
mask <<= 1;
if ((i + 1) * mState.sampleCoverageValue >= threshold)
{
threshold += 1.0f;
mask |= 1;
}
}
}
if (mState.sampleCoverageInvert)
{
mask = ~mask;
}
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, mask);
}
else
{
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
}
mSampleStateDirty = false;
}
if (mDitherStateDirty)
{
mDevice->SetRenderState(D3DRS_DITHERENABLE, mState.dither ? TRUE : FALSE);
mDitherStateDirty = false;
}
}
GLenum Context::applyVertexBuffer(GLint first, GLsizei count, GLsizei instances, GLsizei *repeatDraw)
{
TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS];
GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes, instances);
if (err != GL_NO_ERROR)
{
return err;
}
ProgramBinary *programBinary = getCurrentProgramBinary();
return mVertexDeclarationCache.applyDeclaration(mDevice, attributes, programBinary, instances, repeatDraw);
}
// Applies the indices and element array bindings to the Direct3D 9 device
GLenum Context::applyIndexBuffer(const GLvoid *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer.get(), indices, indexInfo);
if (err == GL_NO_ERROR)
{
if (indexInfo->serial != mAppliedIBSerial)
{
mDevice->SetIndices(indexInfo->indexBuffer);
mAppliedIBSerial = indexInfo->serial;
}
}
return err;
}
// Applies the shaders and shader constants to the Direct3D 9 device
void Context::applyShaders()
{
ProgramBinary *programBinary = getCurrentProgramBinary();
if (programBinary->getSerial() != mAppliedProgramBinarySerial)
{
IDirect3DVertexShader9 *vertexShader = programBinary->getVertexShader();
IDirect3DPixelShader9 *pixelShader = programBinary->getPixelShader();
mDevice->SetPixelShader(pixelShader);
mDevice->SetVertexShader(vertexShader);
programBinary->dirtyAllUniforms();
mAppliedProgramBinarySerial = programBinary->getSerial();
}
programBinary->applyUniforms();
}
// Applies the textures and sampler states to the Direct3D 9 device
void Context::applyTextures()
{
applyTextures(SAMPLER_PIXEL);
if (mSupportsVertexTexture)
{
applyTextures(SAMPLER_VERTEX);
}
}
// For each Direct3D 9 sampler of either the pixel or vertex stage,
// looks up the corresponding OpenGL texture image unit and texture type,
// and sets the texture and its addressing/filtering state (or NULL when inactive).
void Context::applyTextures(SamplerType type)
{
ProgramBinary *programBinary = getCurrentProgramBinary();
int samplerCount = (type == SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; // Range of Direct3D 9 samplers of given sampler type
unsigned int *appliedTextureSerial = (type == SAMPLER_PIXEL) ? mAppliedTextureSerialPS : mAppliedTextureSerialVS;
int d3dSamplerOffset = (type == SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0;
int samplerRange = programBinary->getUsedSamplerRange(type);
for (int samplerIndex = 0; samplerIndex < samplerRange; samplerIndex++)
{
int textureUnit = programBinary->getSamplerMapping(type, samplerIndex); // OpenGL texture image unit index
int d3dSampler = samplerIndex + d3dSamplerOffset;
if (textureUnit != -1)
{
TextureType textureType = programBinary->getSamplerTextureType(type, samplerIndex);
Texture *texture = getSamplerTexture(textureUnit, textureType);
if (!texture->isSamplerComplete())
{
texture = getIncompleteTexture(textureType);
}
unsigned int texSerial = texture->getTextureSerial();
if (appliedTextureSerial[samplerIndex] != texSerial || texture->hasDirtyParameters() || texture->hasDirtyImages())
{
IDirect3DBaseTexture9 *d3dTexture = texture->getTexture();
if (appliedTextureSerial[samplerIndex] != texSerial || texture->hasDirtyParameters())
{
GLenum wrapS = texture->getWrapS();
GLenum wrapT = texture->getWrapT();
GLenum minFilter = texture->getMinFilter();
GLenum magFilter = texture->getMagFilter();
float maxAnisotropy = texture->getMaxAnisotropy();
mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSU, es2dx::ConvertTextureWrap(wrapS));
mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSV, es2dx::ConvertTextureWrap(wrapT));
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAGFILTER, es2dx::ConvertMagFilter(magFilter, maxAnisotropy));
D3DTEXTUREFILTERTYPE d3dMinFilter, d3dMipFilter;
es2dx::ConvertMinFilter(minFilter, &d3dMinFilter, &d3dMipFilter, maxAnisotropy);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MINFILTER, d3dMinFilter);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MIPFILTER, d3dMipFilter);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXMIPLEVEL, texture->getLodOffset());
if (supportsTextureFilterAnisotropy())
{
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXANISOTROPY, (DWORD)maxAnisotropy);
}
}
if (appliedTextureSerial[samplerIndex] != texSerial || texture->hasDirtyImages())
{
mDevice->SetTexture(d3dSampler, d3dTexture);
}
appliedTextureSerial[samplerIndex] = texSerial;
texture->resetDirty();
}
}
else
{
if (appliedTextureSerial[samplerIndex] != 0)
{
mDevice->SetTexture(d3dSampler, NULL);
appliedTextureSerial[samplerIndex] = 0;
}
}
}
for (int samplerIndex = samplerRange; samplerIndex < samplerCount; samplerIndex++)
{
if (appliedTextureSerial[samplerIndex] != 0)
{
mDevice->SetTexture(samplerIndex + d3dSamplerOffset, NULL);
appliedTextureSerial[samplerIndex] = 0;
}
}
}
void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
{
Framebuffer *framebuffer = getReadFramebuffer();
if (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if (getReadFramebufferHandle() != 0 && framebuffer->getSamples() != 0)
{
return error(GL_INVALID_OPERATION);
}
GLsizei outputPitch = ComputePitch(width, ConvertSizedInternalFormat(format, type), mState.packAlignment);
// sized query sanity check
if (bufSize)
{
int requiredSize = outputPitch * height;
if (requiredSize > *bufSize)
{
return error(GL_INVALID_OPERATION);
}
}
IDirect3DSurface9 *renderTarget = framebuffer->getRenderTarget();
if (!renderTarget)
{
return; // Context must be lost, return silently
}
D3DSURFACE_DESC desc;
renderTarget->GetDesc(&desc);
if (desc.MultiSampleType != D3DMULTISAMPLE_NONE)
{
UNIMPLEMENTED(); // FIXME: Requires resolve using StretchRect into non-multisampled render target
renderTarget->Release();
return error(GL_OUT_OF_MEMORY);
}
HRESULT result;
IDirect3DSurface9 *systemSurface = NULL;
bool directToPixels = !getPackReverseRowOrder() && getPackAlignment() <= 4 && mDisplay->isD3d9ExDevice() &&
x == 0 && y == 0 && UINT(width) == desc.Width && UINT(height) == desc.Height &&
desc.Format == D3DFMT_A8R8G8B8 && format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE;
if (directToPixels)
{
// Use the pixels ptr as a shared handle to write directly into client's memory
result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format,
D3DPOOL_SYSTEMMEM, &systemSurface, &pixels);
if (FAILED(result))
{
// Try again without the shared handle
directToPixels = false;
}
}
if (!directToPixels)
{
result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format,
D3DPOOL_SYSTEMMEM, &systemSurface, NULL);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
renderTarget->Release();
return error(GL_OUT_OF_MEMORY);
}
}
result = mDevice->GetRenderTargetData(renderTarget, systemSurface);
renderTarget->Release();
renderTarget = NULL;
if (FAILED(result))
{
systemSurface->Release();
// It turns out that D3D will sometimes produce more error
// codes than those documented.
if (checkDeviceLost(result))
return error(GL_OUT_OF_MEMORY);
else
{
UNREACHABLE();
return;
}
}
if (directToPixels)
{
systemSurface->Release();
return;
}
RECT rect;
rect.left = clamp(x, 0L, static_cast<LONG>(desc.Width));
rect.top = clamp(y, 0L, static_cast<LONG>(desc.Height));
rect.right = clamp(x + width, 0L, static_cast<LONG>(desc.Width));
rect.bottom = clamp(y + height, 0L, static_cast<LONG>(desc.Height));
D3DLOCKED_RECT lock;
result = systemSurface->LockRect(&lock, &rect, D3DLOCK_READONLY);
if (FAILED(result))
{
UNREACHABLE();
systemSurface->Release();
return; // No sensible error to generate
}
unsigned char *dest = (unsigned char*)pixels;
unsigned short *dest16 = (unsigned short*)pixels;
unsigned char *source;
int inputPitch;
if (getPackReverseRowOrder())
{
source = ((unsigned char*)lock.pBits) + lock.Pitch * (rect.bottom - rect.top - 1);
inputPitch = -lock.Pitch;
}
else
{
source = (unsigned char*)lock.pBits;
inputPitch = lock.Pitch;
}
unsigned int fastPixelSize = 0;
if (desc.Format == D3DFMT_A8R8G8B8 &&
format == GL_BGRA_EXT &&
type == GL_UNSIGNED_BYTE)
{
fastPixelSize = 4;
}
else if ((desc.Format == D3DFMT_A4R4G4B4 &&
format == GL_BGRA_EXT &&
type == GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT) ||
(desc.Format == D3DFMT_A1R5G5B5 &&
format == GL_BGRA_EXT &&
type == GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT))
{
fastPixelSize = 2;
}
else if (desc.Format == D3DFMT_A16B16G16R16F &&
format == GL_RGBA &&
type == GL_HALF_FLOAT_OES)
{
fastPixelSize = 8;
}
else if (desc.Format == D3DFMT_A32B32G32R32F &&
format == GL_RGBA &&
type == GL_FLOAT)
{
fastPixelSize = 16;
}
for (int j = 0; j < rect.bottom - rect.top; j++)
{
if (fastPixelSize != 0)
{
// Fast path for formats which require no translation:
// D3DFMT_A8R8G8B8 to BGRA/UNSIGNED_BYTE
// D3DFMT_A4R4G4B4 to BGRA/UNSIGNED_SHORT_4_4_4_4_REV_EXT
// D3DFMT_A1R5G5B5 to BGRA/UNSIGNED_SHORT_1_5_5_5_REV_EXT
// D3DFMT_A16B16G16R16F to RGBA/HALF_FLOAT_OES
// D3DFMT_A32B32G32R32F to RGBA/FLOAT
//
// Note that buffers with no alpha go through the slow path below.
memcpy(dest + j * outputPitch,
source + j * inputPitch,
(rect.right - rect.left) * fastPixelSize);
continue;
}
else if (desc.Format == D3DFMT_A8R8G8B8 &&
format == GL_RGBA &&
type == GL_UNSIGNED_BYTE)
{
// Fast path for swapping red with blue
for (int i = 0; i < rect.right - rect.left; i++)
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch);
*(unsigned int*)(dest + 4 * i + j * outputPitch) =
(argb & 0xFF00FF00) | // Keep alpha and green
(argb & 0x00FF0000) >> 16 | // Move red to blue
(argb & 0x000000FF) << 16; // Move blue to red
}
continue;
}
for (int i = 0; i < rect.right - rect.left; i++)
{
float r;
float g;
float b;
float a;
switch (desc.Format)
{
case D3DFMT_R5G6B5:
{
unsigned short rgb = *(unsigned short*)(source + 2 * i + j * inputPitch);
a = 1.0f;
b = (rgb & 0x001F) * (1.0f / 0x001F);
g = (rgb & 0x07E0) * (1.0f / 0x07E0);
r = (rgb & 0xF800) * (1.0f / 0xF800);
}
break;
case D3DFMT_A1R5G5B5:
{
unsigned short argb = *(unsigned short*)(source + 2 * i + j * inputPitch);
a = (argb & 0x8000) ? 1.0f : 0.0f;
b = (argb & 0x001F) * (1.0f / 0x001F);
g = (argb & 0x03E0) * (1.0f / 0x03E0);
r = (argb & 0x7C00) * (1.0f / 0x7C00);
}
break;
case D3DFMT_A8R8G8B8:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = (argb & 0xFF000000) * (1.0f / 0xFF000000);
b = (argb & 0x000000FF) * (1.0f / 0x000000FF);
g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case D3DFMT_X8R8G8B8:
{
unsigned int xrgb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = 1.0f;
b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF);
g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case D3DFMT_A2R10G10B10:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = (argb & 0xC0000000) * (1.0f / 0xC0000000);
b = (argb & 0x000003FF) * (1.0f / 0x000003FF);
g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00);
r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000);
}
break;
case D3DFMT_A32B32G32R32F:
{
// float formats in D3D are stored rgba, rather than the other way round
r = *((float*)(source + 16 * i + j * inputPitch) + 0);
g = *((float*)(source + 16 * i + j * inputPitch) + 1);
b = *((float*)(source + 16 * i + j * inputPitch) + 2);
a = *((float*)(source + 16 * i + j * inputPitch) + 3);
}
break;
case D3DFMT_A16B16G16R16F:
{
// float formats in D3D are stored rgba, rather than the other way round
r = float16ToFloat32(*((unsigned short*)(source + 8 * i + j * inputPitch) + 0));
g = float16ToFloat32(*((unsigned short*)(source + 8 * i + j * inputPitch) + 1));
b = float16ToFloat32(*((unsigned short*)(source + 8 * i + j * inputPitch) + 2));
a = float16ToFloat32(*((unsigned short*)(source + 8 * i + j * inputPitch) + 3));
}
break;
default:
UNIMPLEMENTED(); // FIXME
UNREACHABLE();
return;
}
switch (format)
{
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f);
break;
default: UNREACHABLE();
}
break;
case GL_BGRA_EXT:
switch (type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(15 * a + 0.5f) << 12)|
((unsigned short)(15 * r + 0.5f) << 8) |
((unsigned short)(15 * g + 0.5f) << 4) |
((unsigned short)(15 * b + 0.5f) << 0);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)( a + 0.5f) << 15) |
((unsigned short)(31 * r + 0.5f) << 10) |
((unsigned short)(31 * g + 0.5f) << 5) |
((unsigned short)(31 * b + 0.5f) << 0);
break;
default: UNREACHABLE();
}
break;
case GL_RGB:
switch (type)
{
case GL_UNSIGNED_SHORT_5_6_5:
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(31 * b + 0.5f) << 0) |
((unsigned short)(63 * g + 0.5f) << 5) |
((unsigned short)(31 * r + 0.5f) << 11);
break;
case GL_UNSIGNED_BYTE:
dest[3 * i + j * outputPitch + 0] = (unsigned char)(255 * r + 0.5f);
dest[3 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[3 * i + j * outputPitch + 2] = (unsigned char)(255 * b + 0.5f);
break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
}
systemSurface->UnlockRect();
systemSurface->Release();
}
void Context::clear(GLbitfield mask)
{
Framebuffer *framebufferObject = getDrawFramebuffer();
if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
DWORD flags = 0;
if (mask & GL_COLOR_BUFFER_BIT)
{
mask &= ~GL_COLOR_BUFFER_BIT;
if (framebufferObject->getColorbufferType() != GL_NONE)
{
flags |= D3DCLEAR_TARGET;
}
}
if (mask & GL_DEPTH_BUFFER_BIT)
{
mask &= ~GL_DEPTH_BUFFER_BIT;
if (mState.depthMask && framebufferObject->getDepthbufferType() != GL_NONE)
{
flags |= D3DCLEAR_ZBUFFER;
}
}
GLuint stencilUnmasked = 0x0;
if (mask & GL_STENCIL_BUFFER_BIT)
{
mask &= ~GL_STENCIL_BUFFER_BIT;
if (framebufferObject->getStencilbufferType() != GL_NONE)
{
IDirect3DSurface9 *depthStencil = framebufferObject->getStencilbuffer()->getDepthStencil();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return;
}
D3DSURFACE_DESC desc;
depthStencil->GetDesc(&desc);
depthStencil->Release();
unsigned int stencilSize = dx2es::GetStencilSize(desc.Format);
stencilUnmasked = (0x1 << stencilSize) - 1;
if (stencilUnmasked != 0x0)
{
flags |= D3DCLEAR_STENCIL;
}
}
}
if (mask != 0)
{
return error(GL_INVALID_VALUE);
}
if (!applyRenderTarget(true)) // Clips the clear to the scissor rectangle but not the viewport
{
return;
}
D3DCOLOR color = D3DCOLOR_ARGB(unorm<8>(mState.colorClearValue.alpha),
unorm<8>(mState.colorClearValue.red),
unorm<8>(mState.colorClearValue.green),
unorm<8>(mState.colorClearValue.blue));
float depth = clamp01(mState.depthClearValue);
int stencil = mState.stencilClearValue & 0x000000FF;
bool alphaUnmasked = (dx2es::GetAlphaSize(mRenderTargetDesc.Format) == 0) || mState.colorMaskAlpha;
const bool needMaskedStencilClear = (flags & D3DCLEAR_STENCIL) &&
(mState.stencilWritemask & stencilUnmasked) != stencilUnmasked;
const bool needMaskedColorClear = (flags & D3DCLEAR_TARGET) &&
!(mState.colorMaskRed && mState.colorMaskGreen &&
mState.colorMaskBlue && alphaUnmasked);
if (needMaskedColorClear || needMaskedStencilClear)
{
// State which is altered in all paths from this point to the clear call is saved.
// State which is altered in only some paths will be flagged dirty in the case that
// that path is taken.
HRESULT hr;
if (mMaskedClearSavedState == NULL)
{
hr = mDevice->BeginStateBlock();
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
mDevice->SetPixelShader(NULL);
mDevice->SetVertexShader(NULL);
mDevice->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE);
mDevice->SetStreamSource(0, NULL, 0, 0);
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mDevice->SetStreamSourceFreq(i, 1);
}
hr = mDevice->EndStateBlock(&mMaskedClearSavedState);
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
}
ASSERT(mMaskedClearSavedState != NULL);
if (mMaskedClearSavedState != NULL)
{
hr = mMaskedClearSavedState->Capture();
ASSERT(SUCCEEDED(hr));
}
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
if (flags & D3DCLEAR_TARGET)
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, es2dx::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha));
}
else
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
}
if (stencilUnmasked != 0x0 && (flags & D3DCLEAR_STENCIL))
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, FALSE);
mDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_STENCILREF, stencil);
mDevice->SetRenderState(D3DRS_STENCILWRITEMASK, mState.stencilWritemask);
mDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE);
mDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE);
mDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);
mStencilStateDirty = true;
}
else
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
mDevice->SetPixelShader(NULL);
mDevice->SetVertexShader(NULL);
mDevice->SetFVF(D3DFVF_XYZRHW);
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mDevice->SetStreamSourceFreq(i, 1);
}
float quad[4][4]; // A quadrilateral covering the target, aligned to match the edges
quad[0][0] = -0.5f;
quad[0][1] = mRenderTargetDesc.Height - 0.5f;
quad[0][2] = 0.0f;
quad[0][3] = 1.0f;
quad[1][0] = mRenderTargetDesc.Width - 0.5f;
quad[1][1] = mRenderTargetDesc.Height - 0.5f;
quad[1][2] = 0.0f;
quad[1][3] = 1.0f;
quad[2][0] = -0.5f;
quad[2][1] = -0.5f;
quad[2][2] = 0.0f;
quad[2][3] = 1.0f;
quad[3][0] = mRenderTargetDesc.Width - 0.5f;
quad[3][1] = -0.5f;
quad[3][2] = 0.0f;
quad[3][3] = 1.0f;
mDisplay->startScene();
mDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, quad, sizeof(float[4]));
if (flags & D3DCLEAR_ZBUFFER)
{
mDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
mDevice->Clear(0, NULL, D3DCLEAR_ZBUFFER, color, depth, stencil);
}
if (mMaskedClearSavedState != NULL)
{
mMaskedClearSavedState->Apply();
}
}
else if (flags)
{
mDevice->Clear(0, NULL, flags, color, depth, stencil);
}
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances)
{
if (!mState.currentProgram)
{
return error(GL_INVALID_OPERATION);
}
D3DPRIMITIVETYPE primitiveType;
int primitiveCount;
if(!es2dx::ConvertPrimitiveType(mode, count, &primitiveType, &primitiveCount))
return error(GL_INVALID_ENUM);
if (primitiveCount <= 0)
{
return;
}
if (!applyRenderTarget(false))
{
return;
}
applyState(mode);
GLsizei repeatDraw = 1;
GLenum err = applyVertexBuffer(first, count, instances, &repeatDraw);
if (err != GL_NO_ERROR)
{
return error(err);
}
applyShaders();
applyTextures();
if (!getCurrentProgramBinary()->validateSamplers(NULL))
{
return error(GL_INVALID_OPERATION);
}
if (!skipDraw(mode))
{
mDisplay->startScene();
if (mode == GL_LINE_LOOP)
{
drawLineLoop(count, GL_NONE, NULL, 0);
}
else if (instances > 0)
{
StaticIndexBuffer *countingIB = mIndexDataManager->getCountingIndices(count);
if (countingIB)
{
if (mAppliedIBSerial != countingIB->getSerial())
{
mDevice->SetIndices(countingIB->getBuffer());
mAppliedIBSerial = countingIB->getSerial();
}
for (int i = 0; i < repeatDraw; i++)
{
mDevice->DrawIndexedPrimitive(primitiveType, 0, 0, count, 0, primitiveCount);
}
}
else
{
ERR("Could not create a counting index buffer for glDrawArraysInstanced.");
return error(GL_OUT_OF_MEMORY);
}
}
else // Regular case
{
mDevice->DrawPrimitive(primitiveType, 0, primitiveCount);
}
}
}
void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei instances)
{
if (!mState.currentProgram)
{
return error(GL_INVALID_OPERATION);
}
if (!indices && !mState.elementArrayBuffer)
{
return error(GL_INVALID_OPERATION);
}
D3DPRIMITIVETYPE primitiveType;
int primitiveCount;
if(!es2dx::ConvertPrimitiveType(mode, count, &primitiveType, &primitiveCount))
return error(GL_INVALID_ENUM);
if (primitiveCount <= 0)
{
return;
}
if (!applyRenderTarget(false))
{
return;
}
applyState(mode);
TranslatedIndexData indexInfo;
GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo);
if (err != GL_NO_ERROR)
{
return error(err);
}
GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
GLsizei repeatDraw = 1;
err = applyVertexBuffer(indexInfo.minIndex, vertexCount, instances, &repeatDraw);
if (err != GL_NO_ERROR)
{
return error(err);
}
applyShaders();
applyTextures();
if (!getCurrentProgramBinary()->validateSamplers(NULL))
{
return error(GL_INVALID_OPERATION);
}
if (!skipDraw(mode))
{
mDisplay->startScene();
if (mode == GL_LINE_LOOP)
{
drawLineLoop(count, type, indices, indexInfo.minIndex);
}
else
{
for (int i = 0; i < repeatDraw; i++)
{
mDevice->DrawIndexedPrimitive(primitiveType, -(INT)indexInfo.minIndex, indexInfo.minIndex, vertexCount, indexInfo.startIndex, primitiveCount);
}
}
}
}
// Implements glFlush when block is false, glFinish when block is true
void Context::sync(bool block)
{
mDisplay->sync(block);
}
void Context::drawLineLoop(GLsizei count, GLenum type, const GLvoid *indices, int minIndex)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && mState.elementArrayBuffer.get())
{
Buffer *indexBuffer = mState.elementArrayBuffer.get();
intptr_t offset = reinterpret_cast<intptr_t>(indices);
indices = static_cast<const GLubyte*>(indexBuffer->data()) + offset;
}
UINT startIndex = 0;
bool succeeded = false;
if (supports32bitIndices())
{
const int spaceNeeded = (count + 1) * sizeof(unsigned int);
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBuffer(mDevice, INITIAL_INDEX_BUFFER_SIZE, D3DFMT_INDEX32);
}
if (mLineLoopIB)
{
mLineLoopIB->reserveSpace(spaceNeeded, GL_UNSIGNED_INT);
UINT offset = 0;
unsigned int *data = static_cast<unsigned int*>(mLineLoopIB->map(spaceNeeded, &offset));
startIndex = offset / 4;
if (data)
{
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint*>(indices)[i];
}
data[count] = static_cast<const GLuint*>(indices)[0];
break;
default: UNREACHABLE();
}
mLineLoopIB->unmap();
succeeded = true;
}
}
}
else
{
const int spaceNeeded = (count + 1) * sizeof(unsigned short);
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBuffer(mDevice, INITIAL_INDEX_BUFFER_SIZE, D3DFMT_INDEX16);
}
if (mLineLoopIB)
{
mLineLoopIB->reserveSpace(spaceNeeded, GL_UNSIGNED_SHORT);
UINT offset = 0;
unsigned short *data = static_cast<unsigned short*>(mLineLoopIB->map(spaceNeeded, &offset));
startIndex = offset / 2;
if (data)
{
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint*>(indices)[i];
}
data[count] = static_cast<const GLuint*>(indices)[0];
break;
default: UNREACHABLE();
}
mLineLoopIB->unmap();
succeeded = true;
}
}
}
if (succeeded)
{
if (mAppliedIBSerial != mLineLoopIB->getSerial())
{
mDevice->SetIndices(mLineLoopIB->getBuffer());
mAppliedIBSerial = mLineLoopIB->getSerial();
}
mDevice->DrawIndexedPrimitive(D3DPT_LINESTRIP, -minIndex, minIndex, count, startIndex, count);
}
else
{
ERR("Could not create a looping index buffer for GL_LINE_LOOP.");
return error(GL_OUT_OF_MEMORY);
}
}
void Context::recordInvalidEnum()
{
mInvalidEnum = true;
}
void Context::recordInvalidValue()
{
mInvalidValue = true;
}
void Context::recordInvalidOperation()
{
mInvalidOperation = true;
}
void Context::recordOutOfMemory()
{
mOutOfMemory = true;
}
void Context::recordInvalidFramebufferOperation()
{
mInvalidFramebufferOperation = true;
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if (mInvalidEnum)
{
mInvalidEnum = false;
return GL_INVALID_ENUM;
}
if (mInvalidValue)
{
mInvalidValue = false;
return GL_INVALID_VALUE;
}
if (mInvalidOperation)
{
mInvalidOperation = false;
return GL_INVALID_OPERATION;
}
if (mOutOfMemory)
{
mOutOfMemory = false;
return GL_OUT_OF_MEMORY;
}
if (mInvalidFramebufferOperation)
{
mInvalidFramebufferOperation = false;
return GL_INVALID_FRAMEBUFFER_OPERATION;
}
return GL_NO_ERROR;
}
GLenum Context::getResetStatus()
{
if (mResetStatus == GL_NO_ERROR)
{
bool lost = mDisplay->testDeviceLost();
if (lost)
{
mDisplay->notifyDeviceLost(); // Sets mResetStatus
}
}
GLenum status = mResetStatus;
if (mResetStatus != GL_NO_ERROR)
{
if (mDisplay->testDeviceResettable())
{
mResetStatus = GL_NO_ERROR;
}
}
return status;
}
bool Context::isResetNotificationEnabled()
{
return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT);
}
bool Context::supportsShaderModel3() const
{
return mSupportsShaderModel3;
}
float Context::getMaximumPointSize() const
{
return mSupportsShaderModel3 ? mMaximumPointSize : ALIASED_POINT_SIZE_RANGE_MAX_SM2;
}
int Context::getMaximumVaryingVectors() const
{
return mSupportsShaderModel3 ? MAX_VARYING_VECTORS_SM3 : MAX_VARYING_VECTORS_SM2;
}
unsigned int Context::getMaximumVertexTextureImageUnits() const
{
return mSupportsVertexTexture ? MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF : 0;
}
unsigned int Context::getMaximumCombinedTextureImageUnits() const
{
return MAX_TEXTURE_IMAGE_UNITS + getMaximumVertexTextureImageUnits();
}
int Context::getMaximumFragmentUniformVectors() const
{
return mSupportsShaderModel3 ? MAX_FRAGMENT_UNIFORM_VECTORS_SM3 : MAX_FRAGMENT_UNIFORM_VECTORS_SM2;
}
int Context::getMaxSupportedSamples() const
{
return mMaxSupportedSamples;
}
int Context::getNearestSupportedSamples(D3DFORMAT format, int requested) const
{
if (requested == 0)
{
return requested;
}
std::map<D3DFORMAT, bool *>::const_iterator itr = mMultiSampleSupport.find(format);
if (itr == mMultiSampleSupport.end())
{
return -1;
}
for (int i = requested; i <= D3DMULTISAMPLE_16_SAMPLES; ++i)
{
if (itr->second[i] && i != D3DMULTISAMPLE_NONMASKABLE)
{
return i;
}
}
return -1;
}
bool Context::supportsEventQueries() const
{
return mSupportsEventQueries;
}
bool Context::supportsOcclusionQueries() const
{
return mSupportsOcclusionQueries;
}
bool Context::supportsDXT1Textures() const
{
return mSupportsDXT1Textures;
}
bool Context::supportsDXT3Textures() const
{
return mSupportsDXT3Textures;
}
bool Context::supportsDXT5Textures() const
{
return mSupportsDXT5Textures;
}
bool Context::supportsFloat32Textures() const
{
return mSupportsFloat32Textures;
}
bool Context::supportsFloat32LinearFilter() const
{
return mSupportsFloat32LinearFilter;
}
bool Context::supportsFloat32RenderableTextures() const
{
return mSupportsFloat32RenderableTextures;
}
bool Context::supportsFloat16Textures() const
{
return mSupportsFloat16Textures;
}
bool Context::supportsFloat16LinearFilter() const
{
return mSupportsFloat16LinearFilter;
}
bool Context::supportsFloat16RenderableTextures() const
{
return mSupportsFloat16RenderableTextures;
}
int Context::getMaximumRenderbufferDimension() const
{
return mMaxRenderbufferDimension;
}
int Context::getMaximumTextureDimension() const
{
return mMaxTextureDimension;
}
int Context::getMaximumCubeTextureDimension() const
{
return mMaxCubeTextureDimension;
}
int Context::getMaximumTextureLevel() const
{
return mMaxTextureLevel;
}
bool Context::supportsLuminanceTextures() const
{
return mSupportsLuminanceTextures;
}
bool Context::supportsLuminanceAlphaTextures() const
{
return mSupportsLuminanceAlphaTextures;
}
bool Context::supportsDepthTextures() const
{
return mSupportsDepthTextures;
}
bool Context::supports32bitIndices() const
{
return mSupports32bitIndices;
}
bool Context::supportsNonPower2Texture() const
{
return mSupportsNonPower2Texture;
}
bool Context::supportsInstancing() const
{
return mSupportsInstancing;
}
bool Context::supportsTextureFilterAnisotropy() const
{
return mSupportsTextureFilterAnisotropy;
}
bool Context::supportsDerivativeInstructions() const
{
return mSupportsDerivativeInstructions;
}
float Context::getTextureMaxAnisotropy() const
{
return mMaxTextureAnisotropy;
}
bool Context::getCurrentReadFormatType(GLenum *format, GLenum *type)
{
Framebuffer *framebuffer = getReadFramebuffer();
if (!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_OPERATION, false);
}
Renderbuffer *renderbuffer = framebuffer->getColorbuffer();
if (!renderbuffer)
{
return error(GL_INVALID_OPERATION, false);
}
if(!dx2es::ConvertReadBufferFormat(renderbuffer->getD3DFormat(), format, type))
{
ASSERT(false);
return false;
}
return true;
}
void Context::detachBuffer(GLuint buffer)
{
// [OpenGL ES 2.0.24] section 2.9 page 22:
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
if (mState.arrayBuffer.id() == buffer)
{
mState.arrayBuffer.set(NULL);
}
if (mState.elementArrayBuffer.id() == buffer)
{
mState.elementArrayBuffer.set(NULL);
}
for (int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if (mState.vertexAttribute[attribute].mBoundBuffer.id() == buffer)
{
mState.vertexAttribute[attribute].mBoundBuffer.set(NULL);
}
}
}
void Context::detachTexture(GLuint texture)
{
// [OpenGL ES 2.0.24] section 3.8 page 84:
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
// rebound to texture object zero
for (int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for (int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; sampler++)
{
if (mState.samplerTexture[type][sampler].id() == texture)
{
mState.samplerTexture[type][sampler].set(NULL);
}
}
}
// [OpenGL ES 2.0.24] section 4.4 page 112:
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
// image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if (readFramebuffer)
{
readFramebuffer->detachTexture(texture);
}
if (drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachTexture(texture);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 107:
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if (mState.readFramebuffer == framebuffer)
{
bindReadFramebuffer(0);
}
if (mState.drawFramebuffer == framebuffer)
{
bindDrawFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 109:
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
// had been executed with the target RENDERBUFFER and name of zero.
if (mState.renderbuffer.id() == renderbuffer)
{
bindRenderbuffer(0);
}
// [OpenGL ES 2.0.24] section 4.4 page 111:
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
// point to which this image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if (readFramebuffer)
{
readFramebuffer->detachRenderbuffer(renderbuffer);
}
if (drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachRenderbuffer(renderbuffer);
}
}
Texture *Context::getIncompleteTexture(TextureType type)
{
Texture *t = mIncompleteTextures[type].get();
if (t == NULL)
{
static const GLubyte color[] = { 0, 0, 0, 255 };
switch (type)
{
default:
UNREACHABLE();
// default falls through to TEXTURE_2D
case TEXTURE_2D:
{
Texture2D *incomplete2d = new Texture2D(Texture::INCOMPLETE_TEXTURE_ID);
incomplete2d->setImage(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
t = incomplete2d;
}
break;
case TEXTURE_CUBE:
{
TextureCubeMap *incompleteCube = new TextureCubeMap(Texture::INCOMPLETE_TEXTURE_ID);
incompleteCube->setImagePosX(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegX(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImagePosY(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegY(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImagePosZ(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegZ(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
t = incompleteCube;
}
break;
}
mIncompleteTextures[type].set(t);
}
return t;
}
bool Context::skipDraw(GLenum drawMode)
{
if (drawMode == GL_POINTS)
{
// ProgramBinary assumes non-point rendering if gl_PointSize isn't written,
// which affects varying interpolation. Since the value of gl_PointSize is
// undefined when not written, just skip drawing to avoid unexpected results.
if (!getCurrentProgramBinary()->usesPointSize())
{
// This is stictly speaking not an error, but developers should be
// notified of risking undefined behavior.
ERR("Point rendering without writing to gl_PointSize.");
return true;
}
}
else if (isTriangleMode(drawMode))
{
if (mState.cullFace && mState.cullMode == GL_FRONT_AND_BACK)
{
return true;
}
}
return false;
}
bool Context::isTriangleMode(GLenum drawMode)
{
switch (drawMode)
{
case GL_TRIANGLES:
case GL_TRIANGLE_FAN:
case GL_TRIANGLE_STRIP:
return true;
case GL_POINTS:
case GL_LINES:
case GL_LINE_LOOP:
case GL_LINE_STRIP:
return false;
default: UNREACHABLE();
}
return false;
}
void Context::setVertexAttrib(GLuint index, const GLfloat *values)
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mState.vertexAttribute[index].mCurrentValue[0] = values[0];
mState.vertexAttribute[index].mCurrentValue[1] = values[1];
mState.vertexAttribute[index].mCurrentValue[2] = values[2];
mState.vertexAttribute[index].mCurrentValue[3] = values[3];
mVertexDataManager->dirtyCurrentValue(index);
}
void Context::setVertexAttribDivisor(GLuint index, GLuint divisor)
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mState.vertexAttribute[index].mDivisor = divisor;
}
// keep list sorted in following order
// OES extensions
// EXT extensions
// Vendor extensions
void Context::initExtensionString()
{
std::string extensionString = "";
// OES extensions
if (supports32bitIndices())
{
extensionString += "GL_OES_element_index_uint ";
}
extensionString += "GL_OES_packed_depth_stencil ";
extensionString += "GL_OES_get_program_binary ";
extensionString += "GL_OES_rgb8_rgba8 ";
if (supportsDerivativeInstructions())
{
extensionString += "GL_OES_standard_derivatives ";
}
if (supportsFloat16Textures())
{
extensionString += "GL_OES_texture_half_float ";
}
if (supportsFloat16LinearFilter())
{
extensionString += "GL_OES_texture_half_float_linear ";
}
if (supportsFloat32Textures())
{
extensionString += "GL_OES_texture_float ";
}
if (supportsFloat32LinearFilter())
{
extensionString += "GL_OES_texture_float_linear ";
}
if (supportsNonPower2Texture())
{
extensionString += "GL_OES_texture_npot ";
}
// Multi-vendor (EXT) extensions
if (supportsOcclusionQueries())
{
extensionString += "GL_EXT_occlusion_query_boolean ";
}
extensionString += "GL_EXT_read_format_bgra ";
extensionString += "GL_EXT_robustness ";
if (supportsDXT1Textures())
{
extensionString += "GL_EXT_texture_compression_dxt1 ";
}
if (supportsTextureFilterAnisotropy())
{
extensionString += "GL_EXT_texture_filter_anisotropic ";
}
extensionString += "GL_EXT_texture_format_BGRA8888 ";
extensionString += "GL_EXT_texture_storage ";
// ANGLE-specific extensions
if (supportsDepthTextures())
{
extensionString += "GL_ANGLE_depth_texture ";
}
extensionString += "GL_ANGLE_framebuffer_blit ";
if (getMaxSupportedSamples() != 0)
{
extensionString += "GL_ANGLE_framebuffer_multisample ";
}
if (supportsInstancing())
{
extensionString += "GL_ANGLE_instanced_arrays ";
}
extensionString += "GL_ANGLE_pack_reverse_row_order ";
if (supportsDXT3Textures())
{
extensionString += "GL_ANGLE_texture_compression_dxt3 ";
}
if (supportsDXT5Textures())
{
extensionString += "GL_ANGLE_texture_compression_dxt5 ";
}
extensionString += "GL_ANGLE_texture_usage ";
extensionString += "GL_ANGLE_translated_shader_source ";
// Other vendor-specific extensions
if (supportsEventQueries())
{
extensionString += "GL_NV_fence ";
}
std::string::size_type end = extensionString.find_last_not_of(' ');
if (end != std::string::npos)
{
extensionString.resize(end+1);
}
mExtensionString = makeStaticString(extensionString);
}
const char *Context::getExtensionString() const
{
return mExtensionString;
}
void Context::initRendererString()
{
D3DADAPTER_IDENTIFIER9 *identifier = mDisplay->getAdapterIdentifier();
std::ostringstream rendererString;
rendererString << "ANGLE (";
rendererString << identifier->Description;
if (mDisplay->isD3d9ExDevice())
{
rendererString << " Direct3D9Ex";
}
else
{
rendererString << " Direct3D9";
}
rendererString << " vs_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.VertexShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.VertexShaderVersion);
rendererString << " ps_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion) << ")";
mRendererString = makeStaticString(rendererString.str());
}
const char *Context::getRendererString() const
{
return mRendererString;
}
void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask)
{
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if (!readFramebuffer || readFramebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE ||
!drawFramebuffer || drawFramebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if (drawFramebuffer->getSamples() != 0)
{
return error(GL_INVALID_OPERATION);
}
int readBufferWidth = readFramebuffer->getColorbuffer()->getWidth();
int readBufferHeight = readFramebuffer->getColorbuffer()->getHeight();
int drawBufferWidth = drawFramebuffer->getColorbuffer()->getWidth();
int drawBufferHeight = drawFramebuffer->getColorbuffer()->getHeight();
RECT sourceRect;
RECT destRect;
if (srcX0 < srcX1)
{
sourceRect.left = srcX0;
sourceRect.right = srcX1;
destRect.left = dstX0;
destRect.right = dstX1;
}
else
{
sourceRect.left = srcX1;
destRect.left = dstX1;
sourceRect.right = srcX0;
destRect.right = dstX0;
}
if (srcY0 < srcY1)
{
sourceRect.bottom = srcY1;
destRect.bottom = dstY1;
sourceRect.top = srcY0;
destRect.top = dstY0;
}
else
{
sourceRect.bottom = srcY0;
destRect.bottom = dstY0;
sourceRect.top = srcY1;
destRect.top = dstY1;
}
RECT sourceScissoredRect = sourceRect;
RECT destScissoredRect = destRect;
if (mState.scissorTest)
{
// Only write to parts of the destination framebuffer which pass the scissor test
// Please note: the destRect is now in D3D-style coordinates, so the *top* of the
// rect will be checked against scissorY, rather than the bottom.
if (destRect.left < mState.scissorX)
{
int xDiff = mState.scissorX - destRect.left;
destScissoredRect.left = mState.scissorX;
sourceScissoredRect.left += xDiff;
}
if (destRect.right > mState.scissorX + mState.scissorWidth)
{
int xDiff = destRect.right - (mState.scissorX + mState.scissorWidth);
destScissoredRect.right = mState.scissorX + mState.scissorWidth;
sourceScissoredRect.right -= xDiff;
}
if (destRect.top < mState.scissorY)
{
int yDiff = mState.scissorY - destRect.top;
destScissoredRect.top = mState.scissorY;
sourceScissoredRect.top += yDiff;
}
if (destRect.bottom > mState.scissorY + mState.scissorHeight)
{
int yDiff = destRect.bottom - (mState.scissorY + mState.scissorHeight);
destScissoredRect.bottom = mState.scissorY + mState.scissorHeight;
sourceScissoredRect.bottom -= yDiff;
}
}
bool blitRenderTarget = false;
bool blitDepthStencil = false;
RECT sourceTrimmedRect = sourceScissoredRect;
RECT destTrimmedRect = destScissoredRect;
// The source & destination rectangles also may need to be trimmed if they fall out of the bounds of
// the actual draw and read surfaces.
if (sourceTrimmedRect.left < 0)
{
int xDiff = 0 - sourceTrimmedRect.left;
sourceTrimmedRect.left = 0;
destTrimmedRect.left += xDiff;
}
if (sourceTrimmedRect.right > readBufferWidth)
{
int xDiff = sourceTrimmedRect.right - readBufferWidth;
sourceTrimmedRect.right = readBufferWidth;
destTrimmedRect.right -= xDiff;
}
if (sourceTrimmedRect.top < 0)
{
int yDiff = 0 - sourceTrimmedRect.top;
sourceTrimmedRect.top = 0;
destTrimmedRect.top += yDiff;
}
if (sourceTrimmedRect.bottom > readBufferHeight)
{
int yDiff = sourceTrimmedRect.bottom - readBufferHeight;
sourceTrimmedRect.bottom = readBufferHeight;
destTrimmedRect.bottom -= yDiff;
}
if (destTrimmedRect.left < 0)
{
int xDiff = 0 - destTrimmedRect.left;
destTrimmedRect.left = 0;
sourceTrimmedRect.left += xDiff;
}
if (destTrimmedRect.right > drawBufferWidth)
{
int xDiff = destTrimmedRect.right - drawBufferWidth;
destTrimmedRect.right = drawBufferWidth;
sourceTrimmedRect.right -= xDiff;
}
if (destTrimmedRect.top < 0)
{
int yDiff = 0 - destTrimmedRect.top;
destTrimmedRect.top = 0;
sourceTrimmedRect.top += yDiff;
}
if (destTrimmedRect.bottom > drawBufferHeight)
{
int yDiff = destTrimmedRect.bottom - drawBufferHeight;
destTrimmedRect.bottom = drawBufferHeight;
sourceTrimmedRect.bottom -= yDiff;
}
bool partialBufferCopy = false;
if (sourceTrimmedRect.bottom - sourceTrimmedRect.top < readBufferHeight ||
sourceTrimmedRect.right - sourceTrimmedRect.left < readBufferWidth ||
destTrimmedRect.bottom - destTrimmedRect.top < drawBufferHeight ||
destTrimmedRect.right - destTrimmedRect.left < drawBufferWidth ||
sourceTrimmedRect.top != 0 || destTrimmedRect.top != 0 || sourceTrimmedRect.left != 0 || destTrimmedRect.left != 0)
{
partialBufferCopy = true;
}
if (mask & GL_COLOR_BUFFER_BIT)
{
const bool validReadType = readFramebuffer->getColorbufferType() == GL_TEXTURE_2D ||
readFramebuffer->getColorbufferType() == GL_RENDERBUFFER;
const bool validDrawType = drawFramebuffer->getColorbufferType() == GL_TEXTURE_2D ||
drawFramebuffer->getColorbufferType() == GL_RENDERBUFFER;
if (!validReadType || !validDrawType ||
readFramebuffer->getColorbuffer()->getD3DFormat() != drawFramebuffer->getColorbuffer()->getD3DFormat())
{
ERR("Color buffer format conversion in BlitFramebufferANGLE not supported by this implementation");
return error(GL_INVALID_OPERATION);
}
if (partialBufferCopy && readFramebuffer->getSamples() != 0)
{
return error(GL_INVALID_OPERATION);
}
blitRenderTarget = true;
}
if (mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT))
{
Renderbuffer *readDSBuffer = NULL;
Renderbuffer *drawDSBuffer = NULL;
// We support OES_packed_depth_stencil, and do not support a separately attached depth and stencil buffer, so if we have
// both a depth and stencil buffer, it will be the same buffer.
if (mask & GL_DEPTH_BUFFER_BIT)
{
if (readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer())
{
if (readFramebuffer->getDepthbufferType() != drawFramebuffer->getDepthbufferType() ||
readFramebuffer->getDepthbuffer()->getD3DFormat() != drawFramebuffer->getDepthbuffer()->getD3DFormat())
{
return error(GL_INVALID_OPERATION);
}
blitDepthStencil = true;
readDSBuffer = readFramebuffer->getDepthbuffer();
drawDSBuffer = drawFramebuffer->getDepthbuffer();
}
}
if (mask & GL_STENCIL_BUFFER_BIT)
{
if (readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer())
{
if (readFramebuffer->getStencilbufferType() != drawFramebuffer->getStencilbufferType() ||
readFramebuffer->getStencilbuffer()->getD3DFormat() != drawFramebuffer->getStencilbuffer()->getD3DFormat())
{
return error(GL_INVALID_OPERATION);
}
blitDepthStencil = true;
readDSBuffer = readFramebuffer->getStencilbuffer();
drawDSBuffer = drawFramebuffer->getStencilbuffer();
}
}
if (partialBufferCopy)
{
ERR("Only whole-buffer depth and stencil blits are supported by this implementation.");
return error(GL_INVALID_OPERATION); // only whole-buffer copies are permitted
}
if ((drawDSBuffer && drawDSBuffer->getSamples() != 0) ||
(readDSBuffer && readDSBuffer->getSamples() != 0))
{
return error(GL_INVALID_OPERATION);
}
}
if (blitRenderTarget || blitDepthStencil)
{
mDisplay->endScene();
if (blitRenderTarget)
{
IDirect3DSurface9* readRenderTarget = readFramebuffer->getRenderTarget();
IDirect3DSurface9* drawRenderTarget = drawFramebuffer->getRenderTarget();
HRESULT result = mDevice->StretchRect(readRenderTarget, &sourceTrimmedRect,
drawRenderTarget, &destTrimmedRect, D3DTEXF_NONE);
readRenderTarget->Release();
drawRenderTarget->Release();
if (FAILED(result))
{
ERR("BlitFramebufferANGLE failed: StretchRect returned %x.", result);
return;
}
}
if (blitDepthStencil)
{
IDirect3DSurface9* readDepthStencil = readFramebuffer->getDepthStencil();
IDirect3DSurface9* drawDepthStencil = drawFramebuffer->getDepthStencil();
HRESULT result = mDevice->StretchRect(readDepthStencil, NULL, drawDepthStencil, NULL, D3DTEXF_NONE);
readDepthStencil->Release();
drawDepthStencil->Release();
if (FAILED(result))
{
ERR("BlitFramebufferANGLE failed: StretchRect returned %x.", result);
return;
}
}
}
}
VertexDeclarationCache::VertexDeclarationCache() : mMaxLru(0)
{
for (int i = 0; i < NUM_VERTEX_DECL_CACHE_ENTRIES; i++)
{
mVertexDeclCache[i].vertexDeclaration = NULL;
mVertexDeclCache[i].lruCount = 0;
}
}
VertexDeclarationCache::~VertexDeclarationCache()
{
for (int i = 0; i < NUM_VERTEX_DECL_CACHE_ENTRIES; i++)
{
if (mVertexDeclCache[i].vertexDeclaration)
{
mVertexDeclCache[i].vertexDeclaration->Release();
}
}
}
GLenum VertexDeclarationCache::applyDeclaration(IDirect3DDevice9 *device, TranslatedAttribute attributes[], ProgramBinary *programBinary, GLsizei instances, GLsizei *repeatDraw)
{
*repeatDraw = 1;
int indexedAttribute = MAX_VERTEX_ATTRIBS;
int instancedAttribute = MAX_VERTEX_ATTRIBS;
if (instances > 0)
{
// Find an indexed attribute to be mapped to D3D stream 0
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if (attributes[i].active)
{
if (indexedAttribute == MAX_VERTEX_ATTRIBS)
{
if (attributes[i].divisor == 0)
{
indexedAttribute = i;
}
}
else if (instancedAttribute == MAX_VERTEX_ATTRIBS)
{
if (attributes[i].divisor != 0)
{
instancedAttribute = i;
}
}
else break; // Found both an indexed and instanced attribute
}
}
if (indexedAttribute == MAX_VERTEX_ATTRIBS)
{
return GL_INVALID_OPERATION;
}
}
D3DVERTEXELEMENT9 elements[MAX_VERTEX_ATTRIBS + 1];
D3DVERTEXELEMENT9 *element = &elements[0];
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if (attributes[i].active)
{
int stream = i;
if (instances > 0)
{
// Due to a bug on ATI cards we can't enable instancing when none of the attributes are instanced.
if (instancedAttribute == MAX_VERTEX_ATTRIBS)
{
*repeatDraw = instances;
}
else
{
if (i == indexedAttribute)
{
stream = 0;
}
else if (i == 0)
{
stream = indexedAttribute;
}
UINT frequency = 1;
if (attributes[i].divisor == 0)
{
frequency = D3DSTREAMSOURCE_INDEXEDDATA | instances;
}
else
{
frequency = D3DSTREAMSOURCE_INSTANCEDATA | attributes[i].divisor;
}
device->SetStreamSourceFreq(stream, frequency);
mInstancingEnabled = true;
}
}
if (mAppliedVBs[stream].serial != attributes[i].serial ||
mAppliedVBs[stream].stride != attributes[i].stride ||
mAppliedVBs[stream].offset != attributes[i].offset)
{
device->SetStreamSource(stream, attributes[i].vertexBuffer, attributes[i].offset, attributes[i].stride);
mAppliedVBs[stream].serial = attributes[i].serial;
mAppliedVBs[stream].stride = attributes[i].stride;
mAppliedVBs[stream].offset = attributes[i].offset;
}
element->Stream = stream;
element->Offset = 0;
element->Type = attributes[i].type;
element->Method = D3DDECLMETHOD_DEFAULT;
element->Usage = D3DDECLUSAGE_TEXCOORD;
element->UsageIndex = programBinary->getSemanticIndex(i);
element++;
}
}
if (instances == 0 || instancedAttribute == MAX_VERTEX_ATTRIBS)
{
if (mInstancingEnabled)
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
device->SetStreamSourceFreq(i, 1);
}
mInstancingEnabled = false;
}
}
static const D3DVERTEXELEMENT9 end = D3DDECL_END();
*(element++) = end;
for (int i = 0; i < NUM_VERTEX_DECL_CACHE_ENTRIES; i++)
{
VertexDeclCacheEntry *entry = &mVertexDeclCache[i];
if (memcmp(entry->cachedElements, elements, (element - elements) * sizeof(D3DVERTEXELEMENT9)) == 0 && entry->vertexDeclaration)
{
entry->lruCount = ++mMaxLru;
if(entry->vertexDeclaration != mLastSetVDecl)
{
device->SetVertexDeclaration(entry->vertexDeclaration);
mLastSetVDecl = entry->vertexDeclaration;
}
return GL_NO_ERROR;
}
}
VertexDeclCacheEntry *lastCache = mVertexDeclCache;
for (int i = 0; i < NUM_VERTEX_DECL_CACHE_ENTRIES; i++)
{
if (mVertexDeclCache[i].lruCount < lastCache->lruCount)
{
lastCache = &mVertexDeclCache[i];
}
}
if (lastCache->vertexDeclaration != NULL)
{
lastCache->vertexDeclaration->Release();
lastCache->vertexDeclaration = NULL;
// mLastSetVDecl is set to the replacement, so we don't have to worry
// about it.
}
memcpy(lastCache->cachedElements, elements, (element - elements) * sizeof(D3DVERTEXELEMENT9));
device->CreateVertexDeclaration(elements, &lastCache->vertexDeclaration);
device->SetVertexDeclaration(lastCache->vertexDeclaration);
mLastSetVDecl = lastCache->vertexDeclaration;
lastCache->lruCount = ++mMaxLru;
return GL_NO_ERROR;
}
void VertexDeclarationCache::markStateDirty()
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mAppliedVBs[i].serial = 0;
}
mLastSetVDecl = NULL;
mInstancingEnabled = true; // Forces it to be disabled when not used
}
}
extern "C"
{
gl::Context *glCreateContext(const egl::Config *config, const gl::Context *shareContext, bool notifyResets, bool robustAccess)
{
return new gl::Context(config, shareContext, notifyResets, robustAccess);
}
void glDestroyContext(gl::Context *context)
{
delete context;
if (context == gl::getContext())
{
gl::makeCurrent(NULL, NULL, NULL);
}
}
void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface)
{
gl::makeCurrent(context, display, surface);
}
gl::Context *glGetCurrentContext()
{
return gl::getContext();
}
}