blob: 2c57c62399b04a10eb7b997bad556f42c695064c [file] [log] [blame]
//
// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libGLESv2/BinaryStream.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/ProgramBinary.h"
#include "common/debug.h"
#include "common/version.h"
#include "libGLESv2/main.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/utilities.h"
#include <string>
#if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL)
#define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3
#endif
namespace gl
{
std::string str(int i)
{
char buffer[20];
snprintf(buffer, sizeof(buffer), "%d", i);
return buffer;
}
Uniform::Uniform(GLenum type, const std::string &_name, unsigned int arraySize)
: type(type), _name(_name), name(ProgramBinary::undecorateUniform(_name)), arraySize(arraySize)
{
int bytes = UniformInternalSize(type) * arraySize;
data = new unsigned char[bytes];
memset(data, 0, bytes);
dirty = true;
}
Uniform::~Uniform()
{
delete[] data;
}
bool Uniform::isArray()
{
size_t dot = _name.find_last_of('.');
if (dot == std::string::npos) dot = -1;
return _name.compare(dot + 1, dot + 4, "ar_") == 0;
}
UniformLocation::UniformLocation(const std::string &_name, unsigned int element, unsigned int index)
: name(ProgramBinary::undecorateUniform(_name)), element(element), index(index)
{
}
unsigned int ProgramBinary::mCurrentSerial = 1;
ProgramBinary::ProgramBinary() : RefCountObject(0), mSerial(issueSerial())
{
mDevice = getDevice();
mPixelExecutable = NULL;
mVertexExecutable = NULL;
mConstantTablePS = NULL;
mConstantTableVS = NULL;
mValidated = false;
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
mSemanticIndex[index] = -1;
}
for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
{
mSamplersPS[index].active = false;
}
for (int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; index++)
{
mSamplersVS[index].active = false;
}
mUsedVertexSamplerRange = 0;
mUsedPixelSamplerRange = 0;
mDxDepthRangeLocation = -1;
mDxDepthLocation = -1;
mDxCoordLocation = -1;
mDxHalfPixelSizeLocation = -1;
mDxFrontCCWLocation = -1;
mDxPointsOrLinesLocation = -1;
}
ProgramBinary::~ProgramBinary()
{
if (mPixelExecutable)
{
mPixelExecutable->Release();
}
if (mVertexExecutable)
{
mVertexExecutable->Release();
}
delete mConstantTablePS;
delete mConstantTableVS;
while (!mUniforms.empty())
{
delete mUniforms.back();
mUniforms.pop_back();
}
}
unsigned int ProgramBinary::getSerial() const
{
return mSerial;
}
unsigned int ProgramBinary::issueSerial()
{
return mCurrentSerial++;
}
IDirect3DPixelShader9 *ProgramBinary::getPixelShader()
{
return mPixelExecutable;
}
IDirect3DVertexShader9 *ProgramBinary::getVertexShader()
{
return mVertexExecutable;
}
GLuint ProgramBinary::getAttributeLocation(const char *name)
{
if (name)
{
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
if (mLinkedAttribute[index].name == std::string(name))
{
return index;
}
}
}
return -1;
}
int ProgramBinary::getSemanticIndex(int attributeIndex)
{
ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
return mSemanticIndex[attributeIndex];
}
// Returns one more than the highest sampler index used.
GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
{
switch (type)
{
case SAMPLER_PIXEL:
return mUsedPixelSamplerRange;
case SAMPLER_VERTEX:
return mUsedVertexSamplerRange;
default:
UNREACHABLE();
return 0;
}
}
bool ProgramBinary::usesPointSize() const
{
return mUsesPointSize;
}
// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex)
{
GLint logicalTextureUnit = -1;
switch (type)
{
case SAMPLER_PIXEL:
ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
if (mSamplersPS[samplerIndex].active)
{
logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
}
break;
case SAMPLER_VERTEX:
ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
if (mSamplersVS[samplerIndex].active)
{
logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
}
break;
default: UNREACHABLE();
}
if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)getContext()->getMaximumCombinedTextureImageUnits())
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
{
switch (type)
{
case SAMPLER_PIXEL:
ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
ASSERT(mSamplersPS[samplerIndex].active);
return mSamplersPS[samplerIndex].textureType;
case SAMPLER_VERTEX:
ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
ASSERT(mSamplersVS[samplerIndex].active);
return mSamplersVS[samplerIndex].textureType;
default: UNREACHABLE();
}
return TEXTURE_2D;
}
GLint ProgramBinary::getUniformLocation(std::string name)
{
unsigned int subscript = 0;
// Strip any trailing array operator and retrieve the subscript
size_t open = name.find_last_of('[');
size_t close = name.find_last_of(']');
if (open != std::string::npos && close == name.length() - 1)
{
subscript = atoi(name.substr(open + 1).c_str());
name.erase(open);
}
unsigned int numUniforms = mUniformIndex.size();
for (unsigned int location = 0; location < numUniforms; location++)
{
if (mUniformIndex[location].name == name &&
mUniformIndex[location].element == subscript)
{
return location;
}
}
return -1;
}
bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
target[0] = v[0];
target[1] = 0;
target[2] = 0;
target[3] = 0;
target += 4;
v += 1;
}
}
else if (targetUniform->type == GL_BOOL)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element;
for (int i = 0; i < count; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
target[0] = v[0];
target[1] = v[1];
target[2] = 0;
target[3] = 0;
target += 4;
v += 2;
}
}
else if (targetUniform->type == GL_BOOL_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2;
for (int i = 0; i < count * 2; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
target[0] = v[0];
target[1] = v[1];
target[2] = v[2];
target[3] = 0;
target += 4;
v += 3;
}
}
else if (targetUniform->type == GL_BOOL_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3;
for (int i = 0; i < count * 3; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
v, 4 * sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count * 4; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight>
void transposeMatrix(T *target, const GLfloat *value)
{
int copyWidth = std::min(targetWidth, srcWidth);
int copyHeight = std::min(targetHeight, srcHeight);
for (int x = 0; x < copyWidth; x++)
{
for (int y = 0; y < copyHeight; y++)
{
target[x * targetWidth + y] = (T)value[y * srcWidth + x];
}
}
// clear unfilled right side
for (int y = 0; y < copyHeight; y++)
{
for (int x = srcWidth; x < targetWidth; x++)
{
target[y * targetWidth + x] = (T)0;
}
}
// clear unfilled bottom.
for (int y = srcHeight; y < targetHeight; y++)
{
for (int x = 0; x < targetWidth; x++)
{
target[y * targetWidth + x] = (T)0;
}
}
}
bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT2)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8;
for (int i = 0; i < count; i++)
{
transposeMatrix<GLfloat,4,2,2,2>(target, value);
target += 8;
value += 4;
}
return true;
}
bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT3)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12;
for (int i = 0; i < count; i++)
{
transposeMatrix<GLfloat,4,3,3,3>(target, value);
target += 12;
value += 9;
}
return true;
}
bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT4)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16);
for (int i = 0; i < count; i++)
{
transposeMatrix<GLfloat,4,4,4,4>(target, value);
target += 16;
value += 16;
}
return true;
}
bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT ||
targetUniform->type == GL_SAMPLER_2D ||
targetUniform->type == GL_SAMPLER_CUBE)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint),
v, sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element;
for (int i = 0; i < count; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2,
v, 2 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2;
for (int i = 0; i < count * 2; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3,
v, 3 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3;
for (int i = 0; i < count * 3; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4,
v, 4 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count * 4; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
// sized queries -- ensure the provided buffer is large enough
if (bufSize)
{
int requiredBytes = UniformExternalSize(targetUniform->type);
if (*bufSize < requiredBytes)
{
return false;
}
}
switch (targetUniform->type)
{
case GL_FLOAT_MAT2:
transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
break;
case GL_FLOAT_MAT3:
transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
break;
case GL_FLOAT_MAT4:
transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
break;
default:
{
unsigned int count = UniformExternalComponentCount(targetUniform->type);
unsigned int internalCount = UniformInternalComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * internalCount;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
}
}
break;
case GL_FLOAT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLfloat),
count * sizeof(GLfloat));
break;
case GL_INT:
{
GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * internalCount;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (float)intParams[i];
}
}
break;
default: UNREACHABLE();
}
}
}
return true;
}
bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
// sized queries -- ensure the provided buffer is large enough
if (bufSize)
{
int requiredBytes = UniformExternalSize(targetUniform->type);
if (*bufSize < requiredBytes)
{
return false;
}
}
switch (targetUniform->type)
{
case GL_FLOAT_MAT2:
{
transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
}
break;
case GL_FLOAT_MAT3:
{
transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
}
break;
case GL_FLOAT_MAT4:
{
transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
}
break;
default:
{
unsigned int count = UniformExternalComponentCount(targetUniform->type);
unsigned int internalCount = UniformInternalComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * internalCount;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)boolParams[i];
}
}
break;
case GL_FLOAT:
{
GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * internalCount;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)floatParams[i];
}
}
break;
case GL_INT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLint),
count * sizeof(GLint));
break;
default: UNREACHABLE();
}
}
}
return true;
}
void ProgramBinary::dirtyAllUniforms()
{
unsigned int numUniforms = mUniforms.size();
for (unsigned int index = 0; index < numUniforms; index++)
{
mUniforms[index]->dirty = true;
}
}
// Applies all the uniforms set for this program object to the Direct3D 9 device
void ProgramBinary::applyUniforms()
{
for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) {
Uniform *targetUniform = *ub;
if (targetUniform->dirty)
{
int arraySize = targetUniform->arraySize;
GLfloat *f = (GLfloat*)targetUniform->data;
GLint *i = (GLint*)targetUniform->data;
GLboolean *b = (GLboolean*)targetUniform->data;
switch (targetUniform->type)
{
case GL_BOOL: applyUniformnbv(targetUniform, arraySize, 1, b); break;
case GL_BOOL_VEC2: applyUniformnbv(targetUniform, arraySize, 2, b); break;
case GL_BOOL_VEC3: applyUniformnbv(targetUniform, arraySize, 3, b); break;
case GL_BOOL_VEC4: applyUniformnbv(targetUniform, arraySize, 4, b); break;
case GL_FLOAT:
case GL_FLOAT_VEC2:
case GL_FLOAT_VEC3:
case GL_FLOAT_VEC4:
case GL_FLOAT_MAT2:
case GL_FLOAT_MAT3:
case GL_FLOAT_MAT4: applyUniformnfv(targetUniform, f); break;
case GL_SAMPLER_2D:
case GL_SAMPLER_CUBE:
case GL_INT: applyUniform1iv(targetUniform, arraySize, i); break;
case GL_INT_VEC2: applyUniform2iv(targetUniform, arraySize, i); break;
case GL_INT_VEC3: applyUniform3iv(targetUniform, arraySize, i); break;
case GL_INT_VEC4: applyUniform4iv(targetUniform, arraySize, i); break;
default:
UNREACHABLE();
}
targetUniform->dirty = false;
}
}
}
// Compiles the HLSL code of the attached shaders into executable binaries
ID3D10Blob *ProgramBinary::compileToBinary(InfoLog &infoLog, const char *hlsl, const char *profile, D3DConstantTable **constantTable)
{
if (!hlsl)
{
return NULL;
}
HRESULT result = S_OK;
UINT flags = 0;
std::string sourceText;
if (perfActive())
{
flags |= D3DCOMPILE_DEBUG;
#ifdef NDEBUG
flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL;
#else
flags |= D3DCOMPILE_SKIP_OPTIMIZATION;
#endif
std::string sourcePath = getTempPath();
sourceText = std::string("#line 2 \"") + sourcePath + std::string("\"\n\n") + std::string(hlsl);
writeFile(sourcePath.c_str(), sourceText.c_str(), sourceText.size());
}
else
{
flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL;
sourceText = hlsl;
}
// Sometimes D3DCompile will fail with the default compilation flags for complicated shaders when it would otherwise pass with alternative options.
// Try the default flags first and if compilation fails, try some alternatives.
const static UINT extraFlags[] =
{
0,
D3DCOMPILE_AVOID_FLOW_CONTROL,
D3DCOMPILE_PREFER_FLOW_CONTROL
};
const static char * const extraFlagNames[] =
{
"default",
"avoid flow control",
"prefer flow control"
};
for (int i = 0; i < sizeof(extraFlags) / sizeof(UINT); ++i)
{
ID3D10Blob *errorMessage = NULL;
ID3D10Blob *binary = NULL;
result = getDisplay()->compileShaderSource(hlsl, g_fakepath, profile, flags | extraFlags[i], &binary, &errorMessage);
if (errorMessage)
{
const char *message = (const char*)errorMessage->GetBufferPointer();
infoLog.appendSanitized(message);
TRACE("\n%s", hlsl);
TRACE("\n%s", message);
errorMessage->Release();
errorMessage = NULL;
}
if (SUCCEEDED(result))
{
D3DConstantTable *table = new D3DConstantTable(binary->GetBufferPointer(), binary->GetBufferSize());
if (table->error())
{
delete table;
binary->Release();
return NULL;
}
*constantTable = table;
return binary;
}
else
{
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY, (ID3D10Blob*) NULL);
}
infoLog.append("Warning: D3D shader compilation failed with ");
infoLog.append(extraFlagNames[i]);
infoLog.append(" flags.");
if (i + 1 < sizeof(extraFlagNames) / sizeof(char*))
{
infoLog.append(" Retrying with ");
infoLog.append(extraFlagNames[i + 1]);
infoLog.append(".\n");
}
}
}
return NULL;
}
// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
// Returns the number of used varying registers, or -1 if unsuccesful
int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader)
{
Context *context = getContext();
const int maxVaryingVectors = context->getMaximumVaryingVectors();
for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
{
int n = VariableRowCount(varying->type) * varying->size;
int m = VariableColumnCount(varying->type);
bool success = false;
if (m == 2 || m == 3 || m == 4)
{
for (int r = 0; r <= maxVaryingVectors - n && !success; r++)
{
bool available = true;
for (int y = 0; y < n && available; y++)
{
for (int x = 0; x < m && available; x++)
{
if (packing[r + y][x])
{
available = false;
}
}
}
if (available)
{
varying->reg = r;
varying->col = 0;
for (int y = 0; y < n; y++)
{
for (int x = 0; x < m; x++)
{
packing[r + y][x] = &*varying;
}
}
success = true;
}
}
if (!success && m == 2)
{
for (int r = maxVaryingVectors - n; r >= 0 && !success; r--)
{
bool available = true;
for (int y = 0; y < n && available; y++)
{
for (int x = 2; x < 4 && available; x++)
{
if (packing[r + y][x])
{
available = false;
}
}
}
if (available)
{
varying->reg = r;
varying->col = 2;
for (int y = 0; y < n; y++)
{
for (int x = 2; x < 4; x++)
{
packing[r + y][x] = &*varying;
}
}
success = true;
}
}
}
}
else if (m == 1)
{
int space[4] = {0};
for (int y = 0; y < maxVaryingVectors; y++)
{
for (int x = 0; x < 4; x++)
{
space[x] += packing[y][x] ? 0 : 1;
}
}
int column = 0;
for (int x = 0; x < 4; x++)
{
if (space[x] >= n && space[x] < space[column])
{
column = x;
}
}
if (space[column] >= n)
{
for (int r = 0; r < maxVaryingVectors; r++)
{
if (!packing[r][column])
{
varying->reg = r;
for (int y = r; y < r + n; y++)
{
packing[y][column] = &*varying;
}
break;
}
}
varying->col = column;
success = true;
}
}
else UNREACHABLE();
if (!success)
{
infoLog.append("Could not pack varying %s", varying->name.c_str());
return -1;
}
}
// Return the number of used registers
int registers = 0;
for (int r = 0; r < maxVaryingVectors; r++)
{
if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
{
registers++;
}
}
return registers;
}
bool ProgramBinary::linkVaryings(InfoLog &infoLog, std::string& pixelHLSL, std::string& vertexHLSL, FragmentShader *fragmentShader, VertexShader *vertexShader)
{
if (pixelHLSL.empty() || vertexHLSL.empty())
{
return false;
}
// Reset the varying register assignments
for (VaryingList::iterator fragVar = fragmentShader->mVaryings.begin(); fragVar != fragmentShader->mVaryings.end(); fragVar++)
{
fragVar->reg = -1;
fragVar->col = -1;
}
for (VaryingList::iterator vtxVar = vertexShader->mVaryings.begin(); vtxVar != vertexShader->mVaryings.end(); vtxVar++)
{
vtxVar->reg = -1;
vtxVar->col = -1;
}
// Map the varyings to the register file
const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL};
int registers = packVaryings(infoLog, packing, fragmentShader);
if (registers < 0)
{
return false;
}
// Write the HLSL input/output declarations
Context *context = getContext();
const bool sm3 = context->supportsShaderModel3();
const int maxVaryingVectors = context->getMaximumVaryingVectors();
if (registers == maxVaryingVectors && fragmentShader->mUsesFragCoord)
{
infoLog.append("No varying registers left to support gl_FragCoord");
return false;
}
for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++)
{
bool matched = false;
for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++)
{
if (output->name == input->name)
{
if (output->type != input->type || output->size != input->size)
{
infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
return false;
}
output->reg = input->reg;
output->col = input->col;
matched = true;
break;
}
}
if (!matched)
{
infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
return false;
}
}
mUsesPointSize = vertexShader->mUsesPointSize;
std::string varyingSemantic = (mUsesPointSize && sm3) ? "COLOR" : "TEXCOORD";
vertexHLSL += "struct VS_INPUT\n"
"{\n";
int semanticIndex = 0;
for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
{
switch (attribute->type)
{
case GL_FLOAT: vertexHLSL += " float "; break;
case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break;
case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break;
case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break;
case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break;
case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break;
case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break;
default: UNREACHABLE();
}
vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n";
semanticIndex += VariableRowCount(attribute->type);
}
vertexHLSL += "};\n"
"\n"
"struct VS_OUTPUT\n"
"{\n"
" float4 gl_Position : POSITION;\n";
for (int r = 0; r < registers; r++)
{
int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
}
if (fragmentShader->mUsesFragCoord)
{
vertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n";
}
if (vertexShader->mUsesPointSize && sm3)
{
vertexHLSL += " float gl_PointSize : PSIZE;\n";
}
vertexHLSL += "};\n"
"\n"
"VS_OUTPUT main(VS_INPUT input)\n"
"{\n";
for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
{
vertexHLSL += " " + decorateAttribute(attribute->name) + " = ";
if (VariableRowCount(attribute->type) > 1) // Matrix
{
vertexHLSL += "transpose";
}
vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n";
}
vertexHLSL += "\n"
" gl_main();\n"
"\n"
" VS_OUTPUT output;\n"
" output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n"
" output.gl_Position.y = -(gl_Position.y + dx_HalfPixelSize.y * gl_Position.w);\n"
" output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
" output.gl_Position.w = gl_Position.w;\n";
if (vertexShader->mUsesPointSize && sm3)
{
vertexHLSL += " output.gl_PointSize = gl_PointSize;\n";
}
if (fragmentShader->mUsesFragCoord)
{
vertexHLSL += " output.gl_FragCoord = gl_Position;\n";
}
for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
int r = varying->reg + i * rows + j;
vertexHLSL += " output.v" + str(r);
bool sharedRegister = false; // Register used by multiple varyings
for (int x = 0; x < 4; x++)
{
if (packing[r][x] && packing[r][x] != packing[r][0])
{
sharedRegister = true;
break;
}
}
if(sharedRegister)
{
vertexHLSL += ".";
for (int x = 0; x < 4; x++)
{
if (packing[r][x] == &*varying)
{
switch(x)
{
case 0: vertexHLSL += "x"; break;
case 1: vertexHLSL += "y"; break;
case 2: vertexHLSL += "z"; break;
case 3: vertexHLSL += "w"; break;
}
}
}
}
vertexHLSL += " = " + varying->name;
if (varying->array)
{
vertexHLSL += "[" + str(i) + "]";
}
if (rows > 1)
{
vertexHLSL += "[" + str(j) + "]";
}
vertexHLSL += ";\n";
}
}
}
}
vertexHLSL += "\n"
" return output;\n"
"}\n";
pixelHLSL += "struct PS_INPUT\n"
"{\n";
for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
std::string n = str(varying->reg + i * rows + j);
pixelHLSL += " float4 v" + n + " : " + varyingSemantic + n + ";\n";
}
}
}
else UNREACHABLE();
}
if (fragmentShader->mUsesFragCoord)
{
pixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n";
if (sm3) {
pixelHLSL += " float2 dx_VPos : VPOS;\n";
}
}
if (fragmentShader->mUsesPointCoord && sm3)
{
pixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n";
}
if (fragmentShader->mUsesFrontFacing)
{
pixelHLSL += " float vFace : VFACE;\n";
}
pixelHLSL += "};\n"
"\n"
"struct PS_OUTPUT\n"
"{\n"
" float4 gl_Color[1] : COLOR;\n"
"};\n"
"\n"
"PS_OUTPUT main(PS_INPUT input)\n"
"{\n";
if (fragmentShader->mUsesFragCoord)
{
pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n";
if (sm3)
{
pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n"
" gl_FragCoord.y = input.dx_VPos.y + 0.5;\n";
}
else
{
// dx_Coord contains the viewport width/2, height/2, center.x and center.y. See Context::applyRenderTarget()
pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Coord.x + dx_Coord.z;\n"
" gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_Coord.y + dx_Coord.w;\n";
}
pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n"
" gl_FragCoord.w = rhw;\n";
}
if (fragmentShader->mUsesPointCoord && sm3)
{
pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n";
pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n";
}
if (fragmentShader->mUsesFrontFacing)
{
pixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n";
}
for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
std::string n = str(varying->reg + i * rows + j);
pixelHLSL += " " + varying->name;
if (varying->array)
{
pixelHLSL += "[" + str(i) + "]";
}
if (rows > 1)
{
pixelHLSL += "[" + str(j) + "]";
}
switch (VariableColumnCount(varying->type))
{
case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break;
case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break;
case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break;
case 4: pixelHLSL += " = input.v" + n + ";\n"; break;
default: UNREACHABLE();
}
}
}
}
else UNREACHABLE();
}
pixelHLSL += "\n"
" gl_main();\n"
"\n"
" PS_OUTPUT output;\n"
" output.gl_Color[0] = gl_Color[0];\n"
"\n"
" return output;\n"
"}\n";
return true;
}
bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length)
{
BinaryInputStream stream(binary, length);
int format = 0;
stream.read(&format);
if (format != GL_PROGRAM_BINARY_ANGLE)
{
infoLog.append("Invalid program binary format.");
return false;
}
int version = 0;
stream.read(&version);
if (version != VERSION_DWORD)
{
infoLog.append("Invalid program binary version.");
return false;
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.read(&mLinkedAttribute[i].type);
std::string name;
stream.read(&name);
mLinkedAttribute[i].name = name;
stream.read(&mSemanticIndex[i]);
}
for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
stream.read(&mSamplersPS[i].active);
stream.read(&mSamplersPS[i].logicalTextureUnit);
int textureType;
stream.read(&textureType);
mSamplersPS[i].textureType = (TextureType) textureType;
}
for (unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; ++i)
{
stream.read(&mSamplersVS[i].active);
stream.read(&mSamplersVS[i].logicalTextureUnit);
int textureType;
stream.read(&textureType);
mSamplersVS[i].textureType = (TextureType) textureType;
}
stream.read(&mUsedVertexSamplerRange);
stream.read(&mUsedPixelSamplerRange);
stream.read(&mUsesPointSize);
size_t size;
stream.read(&size);
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniforms.resize(size);
for (unsigned int i = 0; i < size; ++i)
{
GLenum type;
std::string _name;
unsigned int arraySize;
stream.read(&type);
stream.read(&_name);
stream.read(&arraySize);
mUniforms[i] = new Uniform(type, _name, arraySize);
stream.read(&mUniforms[i]->ps.float4Index);
stream.read(&mUniforms[i]->ps.samplerIndex);
stream.read(&mUniforms[i]->ps.boolIndex);
stream.read(&mUniforms[i]->ps.registerCount);
stream.read(&mUniforms[i]->vs.float4Index);
stream.read(&mUniforms[i]->vs.samplerIndex);
stream.read(&mUniforms[i]->vs.boolIndex);
stream.read(&mUniforms[i]->vs.registerCount);
}
stream.read(&size);
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniformIndex.resize(size);
for (unsigned int i = 0; i < size; ++i)
{
stream.read(&mUniformIndex[i].name);
stream.read(&mUniformIndex[i].element);
stream.read(&mUniformIndex[i].index);
}
stream.read(&mDxDepthRangeLocation);
stream.read(&mDxDepthLocation);
stream.read(&mDxCoordLocation);
stream.read(&mDxHalfPixelSizeLocation);
stream.read(&mDxFrontCCWLocation);
stream.read(&mDxPointsOrLinesLocation);
unsigned int pixelShaderSize;
stream.read(&pixelShaderSize);
unsigned int vertexShaderSize;
stream.read(&vertexShaderSize);
const char *ptr = (const char*) binary + stream.offset();
const D3DCAPS9 *binaryIdentifier = (const D3DCAPS9*) ptr;
ptr += sizeof(GUID);
D3DADAPTER_IDENTIFIER9 *currentIdentifier = getDisplay()->getAdapterIdentifier();
if (memcmp(&currentIdentifier->DeviceIdentifier, binaryIdentifier, sizeof(GUID)) != 0)
{
infoLog.append("Invalid program binary.");
return false;
}
const char *pixelShaderFunction = ptr;
ptr += pixelShaderSize;
const char *vertexShaderFunction = ptr;
ptr += vertexShaderSize;
mPixelExecutable = getDisplay()->createPixelShader(reinterpret_cast<const DWORD*>(pixelShaderFunction), pixelShaderSize);
if (!mPixelExecutable)
{
infoLog.append("Could not create pixel shader.");
return false;
}
mVertexExecutable = getDisplay()->createVertexShader(reinterpret_cast<const DWORD*>(vertexShaderFunction), vertexShaderSize);
if (!mVertexExecutable)
{
infoLog.append("Could not create vertex shader.");
mPixelExecutable->Release();
mPixelExecutable = NULL;
return false;
}
return true;
}
bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length)
{
BinaryOutputStream stream;
stream.write(GL_PROGRAM_BINARY_ANGLE);
stream.write(VERSION_DWORD);
for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.write(mLinkedAttribute[i].type);
stream.write(mLinkedAttribute[i].name);
stream.write(mSemanticIndex[i]);
}
for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
stream.write(mSamplersPS[i].active);
stream.write(mSamplersPS[i].logicalTextureUnit);
stream.write((int) mSamplersPS[i].textureType);
}
for (unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; ++i)
{
stream.write(mSamplersVS[i].active);
stream.write(mSamplersVS[i].logicalTextureUnit);
stream.write((int) mSamplersVS[i].textureType);
}
stream.write(mUsedVertexSamplerRange);
stream.write(mUsedPixelSamplerRange);
stream.write(mUsesPointSize);
stream.write(mUniforms.size());
for (unsigned int i = 0; i < mUniforms.size(); ++i)
{
stream.write(mUniforms[i]->type);
stream.write(mUniforms[i]->_name);
stream.write(mUniforms[i]->arraySize);
stream.write(mUniforms[i]->ps.float4Index);
stream.write(mUniforms[i]->ps.samplerIndex);
stream.write(mUniforms[i]->ps.boolIndex);
stream.write(mUniforms[i]->ps.registerCount);
stream.write(mUniforms[i]->vs.float4Index);
stream.write(mUniforms[i]->vs.samplerIndex);
stream.write(mUniforms[i]->vs.boolIndex);
stream.write(mUniforms[i]->vs.registerCount);
}
stream.write(mUniformIndex.size());
for (unsigned int i = 0; i < mUniformIndex.size(); ++i)
{
stream.write(mUniformIndex[i].name);
stream.write(mUniformIndex[i].element);
stream.write(mUniformIndex[i].index);
}
stream.write(mDxDepthRangeLocation);
stream.write(mDxDepthLocation);
stream.write(mDxCoordLocation);
stream.write(mDxHalfPixelSizeLocation);
stream.write(mDxFrontCCWLocation);
stream.write(mDxPointsOrLinesLocation);
UINT pixelShaderSize;
HRESULT result = mPixelExecutable->GetFunction(NULL, &pixelShaderSize);
ASSERT(SUCCEEDED(result));
stream.write(pixelShaderSize);
UINT vertexShaderSize;
result = mVertexExecutable->GetFunction(NULL, &vertexShaderSize);
ASSERT(SUCCEEDED(result));
stream.write(vertexShaderSize);
D3DADAPTER_IDENTIFIER9 *identifier = getDisplay()->getAdapterIdentifier();
GLsizei streamLength = stream.length();
const void *streamData = stream.data();
GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize;
if (totalLength > bufSize)
{
if (length)
{
*length = 0;
}
return false;
}
if (binary)
{
char *ptr = (char*) binary;
memcpy(ptr, streamData, streamLength);
ptr += streamLength;
memcpy(ptr, &identifier->DeviceIdentifier, sizeof(GUID));
ptr += sizeof(GUID);
result = mPixelExecutable->GetFunction(ptr, &pixelShaderSize);
ASSERT(SUCCEEDED(result));
ptr += pixelShaderSize;
result = mVertexExecutable->GetFunction(ptr, &vertexShaderSize);
ASSERT(SUCCEEDED(result));
ptr += vertexShaderSize;
ASSERT(ptr - totalLength == binary);
}
if (length)
{
*length = totalLength;
}
return true;
}
GLint ProgramBinary::getLength()
{
GLint length;
if (save(NULL, INT_MAX, &length))
{
return length;
}
else
{
return 0;
}
}
bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
{
if (!fragmentShader || !fragmentShader->isCompiled())
{
return false;
}
if (!vertexShader || !vertexShader->isCompiled())
{
return false;
}
std::string pixelHLSL = fragmentShader->getHLSL();
std::string vertexHLSL = vertexShader->getHLSL();
if (!linkVaryings(infoLog, pixelHLSL, vertexHLSL, fragmentShader, vertexShader))
{
return false;
}
Context *context = getContext();
const char *vertexProfile = context->supportsShaderModel3() ? "vs_3_0" : "vs_2_0";
const char *pixelProfile = context->supportsShaderModel3() ? "ps_3_0" : "ps_2_0";
ID3D10Blob *vertexBinary = compileToBinary(infoLog, vertexHLSL.c_str(), vertexProfile, &mConstantTableVS);
ID3D10Blob *pixelBinary = compileToBinary(infoLog, pixelHLSL.c_str(), pixelProfile, &mConstantTablePS);
if (vertexBinary && pixelBinary)
{
mVertexExecutable = getDisplay()->createVertexShader((DWORD*)vertexBinary->GetBufferPointer(), vertexBinary->GetBufferSize());
if (!mVertexExecutable)
{
return error(GL_OUT_OF_MEMORY, false);
}
mPixelExecutable = getDisplay()->createPixelShader((DWORD*)pixelBinary->GetBufferPointer(), pixelBinary->GetBufferSize());
if (!mPixelExecutable)
{
mVertexExecutable->Release();
mVertexExecutable = NULL;
return error(GL_OUT_OF_MEMORY, false);
}
vertexBinary->Release();
pixelBinary->Release();
vertexBinary = NULL;
pixelBinary = NULL;
if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader))
{
return false;
}
if (!linkUniforms(infoLog, GL_FRAGMENT_SHADER, mConstantTablePS))
{
return false;
}
if (!linkUniforms(infoLog, GL_VERTEX_SHADER, mConstantTableVS))
{
return false;
}
// these uniforms are searched as already-decorated because gl_ and dx_
// are reserved prefixes, and do not receive additional decoration
mDxDepthRangeLocation = getUniformLocation("dx_DepthRange");
mDxDepthLocation = getUniformLocation("dx_Depth");
mDxCoordLocation = getUniformLocation("dx_Coord");
mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize");
mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW");
mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines");
context->markDxUniformsDirty();
return true;
}
return false;
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
{
unsigned int usedLocations = 0;
// Link attributes that have a binding location
for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
{
int location = attributeBindings.getAttributeBinding(attribute->name);
if (location != -1) // Set by glBindAttribLocation
{
if (!mLinkedAttribute[location].name.empty())
{
// Multiple active attributes bound to the same location; not an error
}
mLinkedAttribute[location] = *attribute;
int rows = VariableRowCount(attribute->type);
if (rows + location > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
return false;
}
for (int i = 0; i < rows; i++)
{
usedLocations |= 1 << (location + i);
}
}
}
// Link attributes that don't have a binding location
for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
{
int location = attributeBindings.getAttributeBinding(attribute->name);
if (location == -1) // Not set by glBindAttribLocation
{
int rows = VariableRowCount(attribute->type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Too many active attributes (%s)", attribute->name.c_str());
return false; // Fail to link
}
mLinkedAttribute[availableIndex] = *attribute;
}
}
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
{
int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1);
for (int r = 0; r < rows; r++)
{
mSemanticIndex[attributeIndex++] = index++;
}
}
return true;
}
bool ProgramBinary::linkUniforms(InfoLog &infoLog, GLenum shader, D3DConstantTable *constantTable)
{
for (unsigned int constantIndex = 0; constantIndex < constantTable->constants(); constantIndex++)
{
const D3DConstant *constant = constantTable->getConstant(constantIndex);
if (!defineUniform(infoLog, shader, constant))
{
return false;
}
}
return true;
}
// Adds the description of a constant found in the binary shader to the list of uniforms
// Returns true if succesful (uniform not already defined)
bool ProgramBinary::defineUniform(InfoLog &infoLog, GLenum shader, const D3DConstant *constant, std::string name)
{
if (constant->registerSet == D3DConstant::RS_SAMPLER)
{
for (unsigned int i = 0; i < constant->registerCount; i++)
{
const D3DConstant *psConstant = mConstantTablePS->getConstantByName(constant->name.c_str());
const D3DConstant *vsConstant = mConstantTableVS->getConstantByName(constant->name.c_str());
if (psConstant)
{
unsigned int samplerIndex = psConstant->registerIndex + i;
if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
mSamplersPS[samplerIndex].active = true;
mSamplersPS[samplerIndex].textureType = (constant->type == D3DConstant::PT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D;
mSamplersPS[samplerIndex].logicalTextureUnit = 0;
mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange);
}
else
{
infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
return false;
}
}
if (vsConstant)
{
unsigned int samplerIndex = vsConstant->registerIndex + i;
if (samplerIndex < getContext()->getMaximumVertexTextureImageUnits())
{
mSamplersVS[samplerIndex].active = true;
mSamplersVS[samplerIndex].textureType = (constant->type == D3DConstant::PT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D;
mSamplersVS[samplerIndex].logicalTextureUnit = 0;
mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange);
}
else
{
infoLog.append("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", getContext()->getMaximumVertexTextureImageUnits());
return false;
}
}
}
}
switch(constant->typeClass)
{
case D3DConstant::CLASS_STRUCT:
{
for (unsigned int arrayIndex = 0; arrayIndex < constant->elements; arrayIndex++)
{
for (unsigned int field = 0; field < constant->structMembers[arrayIndex].size(); field++)
{
const D3DConstant *fieldConstant = constant->structMembers[arrayIndex][field];
std::string structIndex = (constant->elements > 1) ? ("[" + str(arrayIndex) + "]") : "";
if (!defineUniform(infoLog, shader, fieldConstant, name + constant->name + structIndex + "."))
{
return false;
}
}
}
return true;
}
case D3DConstant::CLASS_SCALAR:
case D3DConstant::CLASS_VECTOR:
case D3DConstant::CLASS_MATRIX_COLUMNS:
case D3DConstant::CLASS_OBJECT:
return defineUniform(shader, constant, name + constant->name);
default:
UNREACHABLE();
return false;
}
}
bool ProgramBinary::defineUniform(GLenum shader, const D3DConstant *constant, const std::string &_name)
{
Uniform *uniform = createUniform(constant, _name);
if(!uniform)
{
return false;
}
// Check if already defined
GLint location = getUniformLocation(uniform->name);
GLenum type = uniform->type;
if (location >= 0)
{
delete uniform;
uniform = mUniforms[mUniformIndex[location].index];
}
if (shader == GL_FRAGMENT_SHADER) uniform->ps.set(constant);
if (shader == GL_VERTEX_SHADER) uniform->vs.set(constant);
if (location >= 0)
{
return uniform->type == type;
}
mUniforms.push_back(uniform);
unsigned int uniformIndex = mUniforms.size() - 1;
for (unsigned int i = 0; i < uniform->arraySize; ++i)
{
mUniformIndex.push_back(UniformLocation(_name, i, uniformIndex));
}
return true;
}
Uniform *ProgramBinary::createUniform(const D3DConstant *constant, const std::string &_name)
{
if (constant->rows == 1) // Vectors and scalars
{
switch (constant->type)
{
case D3DConstant::PT_SAMPLER2D:
switch (constant->columns)
{
case 1: return new Uniform(GL_SAMPLER_2D, _name, constant->elements);
default: UNREACHABLE();
}
break;
case D3DConstant::PT_SAMPLERCUBE:
switch (constant->columns)
{
case 1: return new Uniform(GL_SAMPLER_CUBE, _name, constant->elements);
default: UNREACHABLE();
}
break;
case D3DConstant::PT_BOOL:
switch (constant->columns)
{
case 1: return new Uniform(GL_BOOL, _name, constant->elements);
case 2: return new Uniform(GL_BOOL_VEC2, _name, constant->elements);
case 3: return new Uniform(GL_BOOL_VEC3, _name, constant->elements);
case 4: return new Uniform(GL_BOOL_VEC4, _name, constant->elements);
default: UNREACHABLE();
}
break;
case D3DConstant::PT_INT:
switch (constant->columns)
{
case 1: return new Uniform(GL_INT, _name, constant->elements);
case 2: return new Uniform(GL_INT_VEC2, _name, constant->elements);
case 3: return new Uniform(GL_INT_VEC3, _name, constant->elements);
case 4: return new Uniform(GL_INT_VEC4, _name, constant->elements);
default: UNREACHABLE();
}
break;
case D3DConstant::PT_FLOAT:
switch (constant->columns)
{
case 1: return new Uniform(GL_FLOAT, _name, constant->elements);
case 2: return new Uniform(GL_FLOAT_VEC2, _name, constant->elements);
case 3: return new Uniform(GL_FLOAT_VEC3, _name, constant->elements);
case 4: return new Uniform(GL_FLOAT_VEC4, _name, constant->elements);
default: UNREACHABLE();
}
break;
default:
UNREACHABLE();
}
}
else if (constant->rows == constant->columns) // Square matrices
{
switch (constant->type)
{
case D3DConstant::PT_FLOAT:
switch (constant->rows)
{
case 2: return new Uniform(GL_FLOAT_MAT2, _name, constant->elements);
case 3: return new Uniform(GL_FLOAT_MAT3, _name, constant->elements);
case 4: return new Uniform(GL_FLOAT_MAT4, _name, constant->elements);
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
return 0;
}
// This method needs to match OutputHLSL::decorate
std::string ProgramBinary::decorateAttribute(const std::string &name)
{
if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0)
{
return "_" + name;
}
return name;
}
std::string ProgramBinary::undecorateUniform(const std::string &_name)
{
std::string name = _name;
// Remove any structure field decoration
size_t pos = 0;
while ((pos = name.find("._", pos)) != std::string::npos)
{
name.replace(pos, 2, ".");
}
// Remove the leading decoration
if (name[0] == '_')
{
return name.substr(1);
}
else if (name.compare(0, 3, "ar_") == 0)
{
return name.substr(3);
}
return name;
}
void ProgramBinary::applyUniformnbv(Uniform *targetUniform, GLsizei count, int width, const GLboolean *v)
{
float vector[D3D9_MAX_FLOAT_CONSTANTS * 4];
BOOL boolVector[D3D9_MAX_BOOL_CONSTANTS];
if (targetUniform->ps.float4Index >= 0 || targetUniform->vs.float4Index >= 0)
{
ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
for (int i = 0; i < count; i++)
{
for (int j = 0; j < 4; j++)
{
if (j < width)
{
vector[i * 4 + j] = (v[i * width + j] == GL_FALSE) ? 0.0f : 1.0f;
}
else
{
vector[i * 4 + j] = 0.0f;
}
}
}
}
if (targetUniform->ps.boolIndex >= 0 || targetUniform->vs.boolIndex >= 0)
{
int psCount = targetUniform->ps.boolIndex >= 0 ? targetUniform->ps.registerCount : 0;
int vsCount = targetUniform->vs.boolIndex >= 0 ? targetUniform->vs.registerCount : 0;
int copyCount = std::min(count * width, std::max(psCount, vsCount));
ASSERT(copyCount <= D3D9_MAX_BOOL_CONSTANTS);
for (int i = 0; i < copyCount; i++)
{
boolVector[i] = v[i] != GL_FALSE;
}
}
if (targetUniform->ps.float4Index >= 0)
{
mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, vector, targetUniform->ps.registerCount);
}
if (targetUniform->ps.boolIndex >= 0)
{
mDevice->SetPixelShaderConstantB(targetUniform->ps.boolIndex, boolVector, targetUniform->ps.registerCount);
}
if (targetUniform->vs.float4Index >= 0)
{
mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, vector, targetUniform->vs.registerCount);
}
if (targetUniform->vs.boolIndex >= 0)
{
mDevice->SetVertexShaderConstantB(targetUniform->vs.boolIndex, boolVector, targetUniform->vs.registerCount);
}
}
bool ProgramBinary::applyUniformnfv(Uniform *targetUniform, const GLfloat *v)
{
if (targetUniform->ps.registerCount)
{
mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, v, targetUniform->ps.registerCount);
}
if (targetUniform->vs.registerCount)
{
mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, v, targetUniform->vs.registerCount);
}
return true;
}
bool ProgramBinary::applyUniform1iv(Uniform *targetUniform, GLsizei count, const GLint *v)
{
ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
Vector4 vector[D3D9_MAX_FLOAT_CONSTANTS];
for (int i = 0; i < count; i++)
{
vector[i] = Vector4((float)v[i], 0, 0, 0);
}
if (targetUniform->ps.registerCount)
{
if (targetUniform->ps.samplerIndex >= 0)
{
unsigned int firstIndex = targetUniform->ps.samplerIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
ASSERT(mSamplersPS[samplerIndex].active);
mSamplersPS[samplerIndex].logicalTextureUnit = v[i];
}
}
}
else
{
ASSERT(targetUniform->ps.float4Index >= 0);
mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, (const float*)vector, targetUniform->ps.registerCount);
}
}
if (targetUniform->vs.registerCount)
{
if (targetUniform->vs.samplerIndex >= 0)
{
unsigned int firstIndex = targetUniform->vs.samplerIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF)
{
ASSERT(mSamplersVS[samplerIndex].active);
mSamplersVS[samplerIndex].logicalTextureUnit = v[i];
}
}
}
else
{
ASSERT(targetUniform->vs.float4Index >= 0);
mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, (const float *)vector, targetUniform->vs.registerCount);
}
}
return true;
}
bool ProgramBinary::applyUniform2iv(Uniform *targetUniform, GLsizei count, const GLint *v)
{
ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
Vector4 vector[D3D9_MAX_FLOAT_CONSTANTS];
for (int i = 0; i < count; i++)
{
vector[i] = Vector4((float)v[0], (float)v[1], 0, 0);
v += 2;
}
applyUniformniv(targetUniform, count, vector);
return true;
}
bool ProgramBinary::applyUniform3iv(Uniform *targetUniform, GLsizei count, const GLint *v)
{
ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
Vector4 vector[D3D9_MAX_FLOAT_CONSTANTS];
for (int i = 0; i < count; i++)
{
vector[i] = Vector4((float)v[0], (float)v[1], (float)v[2], 0);
v += 3;
}
applyUniformniv(targetUniform, count, vector);
return true;
}
bool ProgramBinary::applyUniform4iv(Uniform *targetUniform, GLsizei count, const GLint *v)
{
ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS);
Vector4 vector[D3D9_MAX_FLOAT_CONSTANTS];
for (int i = 0; i < count; i++)
{
vector[i] = Vector4((float)v[0], (float)v[1], (float)v[2], (float)v[3]);
v += 4;
}
applyUniformniv(targetUniform, count, vector);
return true;
}
void ProgramBinary::applyUniformniv(Uniform *targetUniform, GLsizei count, const Vector4 *vector)
{
if (targetUniform->ps.registerCount)
{
ASSERT(targetUniform->ps.float4Index >= 0);
mDevice->SetPixelShaderConstantF(targetUniform->ps.float4Index, (const float *)vector, targetUniform->ps.registerCount);
}
if (targetUniform->vs.registerCount)
{
ASSERT(targetUniform->vs.float4Index >= 0);
mDevice->SetVertexShaderConstantF(targetUniform->vs.float4Index, (const float *)vector, targetUniform->vs.registerCount);
}
}
bool ProgramBinary::isValidated() const
{
return mValidated;
}
void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
// Skip over inactive attributes
unsigned int activeAttribute = 0;
unsigned int attribute;
for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if (mLinkedAttribute[attribute].name.empty())
{
continue;
}
if (activeAttribute == index)
{
break;
}
activeAttribute++;
}
if (bufsize > 0)
{
const char *string = mLinkedAttribute[attribute].name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = 1; // Always a single 'type' instance
*type = mLinkedAttribute[attribute].type;
}
GLint ProgramBinary::getActiveAttributeCount()
{
int count = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
count++;
}
}
return count;
}
GLint ProgramBinary::getActiveAttributeMaxLength()
{
int maxLength = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
}
}
return maxLength;
}
void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
// Skip over internal uniforms
unsigned int activeUniform = 0;
unsigned int uniform;
for (uniform = 0; uniform < mUniforms.size(); uniform++)
{
if (mUniforms[uniform]->name.compare(0, 3, "dx_") == 0)
{
continue;
}
if (activeUniform == index)
{
break;
}
activeUniform++;
}
ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount()
if (bufsize > 0)
{
std::string string = mUniforms[uniform]->name;
if (mUniforms[uniform]->isArray())
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = mUniforms[uniform]->arraySize;
*type = mUniforms[uniform]->type;
}
GLint ProgramBinary::getActiveUniformCount()
{
int count = 0;
unsigned int numUniforms = mUniforms.size();
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0)
{
count++;
}
}
return count;
}
GLint ProgramBinary::getActiveUniformMaxLength()
{
int maxLength = 0;
unsigned int numUniforms = mUniforms.size();
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0)
{
int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
if (mUniforms[uniformIndex]->isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
return maxLength;
}
void ProgramBinary::validate(InfoLog &infoLog)
{
applyUniforms();
if (!validateSamplers(&infoLog))
{
mValidated = false;
}
else
{
mValidated = true;
}
}
bool ProgramBinary::validateSamplers(InfoLog *infoLog)
{
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
const unsigned int maxCombinedTextureImageUnits = getContext()->getMaximumCombinedTextureImageUnits();
TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF];
for (unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; ++i)
{
textureUnitType[i] = TEXTURE_UNKNOWN;
}
for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
{
if (mSamplersPS[i].active)
{
unsigned int unit = mSamplersPS[i].logicalTextureUnit;
if (unit >= maxCombinedTextureImageUnits)
{
if (infoLog)
{
infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
}
return false;
}
if (textureUnitType[unit] != TEXTURE_UNKNOWN)
{
if (mSamplersPS[i].textureType != textureUnitType[unit])
{
if (infoLog)
{
infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitType[unit] = mSamplersPS[i].textureType;
}
}
}
for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
{
if (mSamplersVS[i].active)
{
unsigned int unit = mSamplersVS[i].logicalTextureUnit;
if (unit >= maxCombinedTextureImageUnits)
{
if (infoLog)
{
infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
}
return false;
}
if (textureUnitType[unit] != TEXTURE_UNKNOWN)
{
if (mSamplersVS[i].textureType != textureUnitType[unit])
{
if (infoLog)
{
infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitType[unit] = mSamplersVS[i].textureType;
}
}
}
return true;
}
GLint ProgramBinary::getDxDepthRangeLocation() const
{
return mDxDepthRangeLocation;
}
GLint ProgramBinary::getDxDepthLocation() const
{
return mDxDepthLocation;
}
GLint ProgramBinary::getDxCoordLocation() const
{
return mDxCoordLocation;
}
GLint ProgramBinary::getDxHalfPixelSizeLocation() const
{
return mDxHalfPixelSizeLocation;
}
GLint ProgramBinary::getDxFrontCCWLocation() const
{
return mDxFrontCCWLocation;
}
GLint ProgramBinary::getDxPointsOrLinesLocation() const
{
return mDxPointsOrLinesLocation;
}
ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D)
{
}
}