| #include "precompiled.h" |
| // |
| // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| |
| // Program.cpp: Implements the gl::Program class. Implements GL program objects |
| // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. |
| |
| #include "libGLESv2/BinaryStream.h" |
| #include "libGLESv2/ProgramBinary.h" |
| #include "libGLESv2/renderer/ShaderExecutable.h" |
| |
| #include "common/debug.h" |
| #include "common/version.h" |
| #include "utilities.h" |
| |
| #include "libGLESv2/main.h" |
| #include "libGLESv2/Shader.h" |
| #include "libGLESv2/Program.h" |
| #include "libGLESv2/renderer/Renderer.h" |
| #include "libGLESv2/renderer/VertexDataManager.h" |
| |
| #undef near |
| #undef far |
| |
| namespace gl |
| { |
| std::string str(int i) |
| { |
| char buffer[20]; |
| snprintf(buffer, sizeof(buffer), "%d", i); |
| return buffer; |
| } |
| |
| UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) |
| : name(name), element(element), index(index) |
| { |
| } |
| |
| unsigned int ProgramBinary::mCurrentSerial = 1; |
| |
| ProgramBinary::ProgramBinary(rx::Renderer *renderer) : mRenderer(renderer), RefCountObject(0), mSerial(issueSerial()) |
| { |
| mPixelExecutable = NULL; |
| mVertexExecutable = NULL; |
| mGeometryExecutable = NULL; |
| |
| mValidated = false; |
| |
| for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) |
| { |
| mSemanticIndex[index] = -1; |
| } |
| |
| for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) |
| { |
| mSamplersPS[index].active = false; |
| } |
| |
| for (int index = 0; index < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++) |
| { |
| mSamplersVS[index].active = false; |
| } |
| |
| mUsedVertexSamplerRange = 0; |
| mUsedPixelSamplerRange = 0; |
| mUsesPointSize = false; |
| } |
| |
| ProgramBinary::~ProgramBinary() |
| { |
| delete mPixelExecutable; |
| mPixelExecutable = NULL; |
| |
| delete mVertexExecutable; |
| mVertexExecutable = NULL; |
| |
| delete mGeometryExecutable; |
| mGeometryExecutable = NULL; |
| |
| while (!mUniforms.empty()) |
| { |
| delete mUniforms.back(); |
| mUniforms.pop_back(); |
| } |
| } |
| |
| unsigned int ProgramBinary::getSerial() const |
| { |
| return mSerial; |
| } |
| |
| unsigned int ProgramBinary::issueSerial() |
| { |
| return mCurrentSerial++; |
| } |
| |
| rx::ShaderExecutable *ProgramBinary::getPixelExecutable() |
| { |
| return mPixelExecutable; |
| } |
| |
| rx::ShaderExecutable *ProgramBinary::getVertexExecutable() |
| { |
| return mVertexExecutable; |
| } |
| |
| rx::ShaderExecutable *ProgramBinary::getGeometryExecutable() |
| { |
| return mGeometryExecutable; |
| } |
| |
| GLuint ProgramBinary::getAttributeLocation(const char *name) |
| { |
| if (name) |
| { |
| for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) |
| { |
| if (mLinkedAttribute[index].name == std::string(name)) |
| { |
| return index; |
| } |
| } |
| } |
| |
| return -1; |
| } |
| |
| int ProgramBinary::getSemanticIndex(int attributeIndex) |
| { |
| ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); |
| |
| return mSemanticIndex[attributeIndex]; |
| } |
| |
| // Returns one more than the highest sampler index used. |
| GLint ProgramBinary::getUsedSamplerRange(SamplerType type) |
| { |
| switch (type) |
| { |
| case SAMPLER_PIXEL: |
| return mUsedPixelSamplerRange; |
| case SAMPLER_VERTEX: |
| return mUsedVertexSamplerRange; |
| default: |
| UNREACHABLE(); |
| return 0; |
| } |
| } |
| |
| bool ProgramBinary::usesPointSize() const |
| { |
| return mUsesPointSize; |
| } |
| |
| bool ProgramBinary::usesPointSpriteEmulation() const |
| { |
| return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4; |
| } |
| |
| bool ProgramBinary::usesGeometryShader() const |
| { |
| return usesPointSpriteEmulation(); |
| } |
| |
| // Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler |
| // index (0-15 for the pixel shader and 0-3 for the vertex shader). |
| GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex) |
| { |
| GLint logicalTextureUnit = -1; |
| |
| switch (type) |
| { |
| case SAMPLER_PIXEL: |
| ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); |
| |
| if (mSamplersPS[samplerIndex].active) |
| { |
| logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit; |
| } |
| break; |
| case SAMPLER_VERTEX: |
| ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); |
| |
| if (mSamplersVS[samplerIndex].active) |
| { |
| logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit; |
| } |
| break; |
| default: UNREACHABLE(); |
| } |
| |
| if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)mRenderer->getMaxCombinedTextureImageUnits()) |
| { |
| return logicalTextureUnit; |
| } |
| |
| return -1; |
| } |
| |
| // Returns the texture type for a given Direct3D 9 sampler type and |
| // index (0-15 for the pixel shader and 0-3 for the vertex shader). |
| TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) |
| { |
| switch (type) |
| { |
| case SAMPLER_PIXEL: |
| ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); |
| ASSERT(mSamplersPS[samplerIndex].active); |
| return mSamplersPS[samplerIndex].textureType; |
| case SAMPLER_VERTEX: |
| ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); |
| ASSERT(mSamplersVS[samplerIndex].active); |
| return mSamplersVS[samplerIndex].textureType; |
| default: UNREACHABLE(); |
| } |
| |
| return TEXTURE_2D; |
| } |
| |
| GLint ProgramBinary::getUniformLocation(std::string name) |
| { |
| unsigned int subscript = 0; |
| |
| // Strip any trailing array operator and retrieve the subscript |
| size_t open = name.find_last_of('['); |
| size_t close = name.find_last_of(']'); |
| if (open != std::string::npos && close == name.length() - 1) |
| { |
| subscript = atoi(name.substr(open + 1).c_str()); |
| name.erase(open); |
| } |
| |
| unsigned int numUniforms = mUniformIndex.size(); |
| for (unsigned int location = 0; location < numUniforms; location++) |
| { |
| if (mUniformIndex[location].name == name && |
| mUniformIndex[location].element == subscript) |
| { |
| return location; |
| } |
| } |
| |
| return -1; |
| } |
| |
| bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| |
| if (targetUniform->type == GL_FLOAT) |
| { |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = 0; |
| target[2] = 0; |
| target[3] = 0; |
| target += 4; |
| v += 1; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL) |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[1] = GL_FALSE; |
| boolParams[2] = GL_FALSE; |
| boolParams[3] = GL_FALSE; |
| boolParams += 4; |
| v += 1; |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| |
| if (targetUniform->type == GL_FLOAT_VEC2) |
| { |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = v[1]; |
| target[2] = 0; |
| target[3] = 0; |
| target += 4; |
| v += 2; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL_VEC2) |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[2] = GL_FALSE; |
| boolParams[3] = GL_FALSE; |
| boolParams += 4; |
| v += 2; |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| |
| if (targetUniform->type == GL_FLOAT_VEC3) |
| { |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = v[1]; |
| target[2] = v[2]; |
| target[3] = 0; |
| target += 4; |
| v += 3; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL_VEC3) |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[3] = GL_FALSE; |
| boolParams += 4; |
| v += 3; |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| |
| if (targetUniform->type == GL_FLOAT_VEC4) |
| { |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = v[1]; |
| target[2] = v[2]; |
| target[3] = v[3]; |
| target += 4; |
| v += 4; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL_VEC4) |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams[3] = (v[3] == 0.0f) ? GL_FALSE : GL_TRUE; |
| boolParams += 4; |
| v += 4; |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight> |
| void transposeMatrix(T *target, const GLfloat *value) |
| { |
| int copyWidth = std::min(targetWidth, srcWidth); |
| int copyHeight = std::min(targetHeight, srcHeight); |
| |
| for (int x = 0; x < copyWidth; x++) |
| { |
| for (int y = 0; y < copyHeight; y++) |
| { |
| target[x * targetWidth + y] = (T)value[y * srcWidth + x]; |
| } |
| } |
| // clear unfilled right side |
| for (int y = 0; y < copyHeight; y++) |
| { |
| for (int x = srcWidth; x < targetWidth; x++) |
| { |
| target[y * targetWidth + x] = (T)0; |
| } |
| } |
| // clear unfilled bottom. |
| for (int y = srcHeight; y < targetHeight; y++) |
| { |
| for (int x = 0; x < targetWidth; x++) |
| { |
| target[y * targetWidth + x] = (T)0; |
| } |
| } |
| } |
| |
| bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type != GL_FLOAT_MAT2) |
| { |
| return false; |
| } |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8; |
| |
| for (int i = 0; i < count; i++) |
| { |
| transposeMatrix<GLfloat,4,2,2,2>(target, value); |
| target += 8; |
| value += 4; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type != GL_FLOAT_MAT3) |
| { |
| return false; |
| } |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12; |
| |
| for (int i = 0; i < count; i++) |
| { |
| transposeMatrix<GLfloat,4,3,3,3>(target, value); |
| target += 12; |
| value += 9; |
| } |
| |
| return true; |
| } |
| |
| |
| bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| if (targetUniform->type != GL_FLOAT_MAT4) |
| { |
| return false; |
| } |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16); |
| |
| for (int i = 0; i < count; i++) |
| { |
| transposeMatrix<GLfloat,4,4,4,4>(target, value); |
| target += 16; |
| value += 16; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| |
| if (targetUniform->type == GL_INT || |
| targetUniform->type == GL_SAMPLER_2D || |
| targetUniform->type == GL_SAMPLER_CUBE) |
| { |
| GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = 0; |
| target[2] = 0; |
| target[3] = 0; |
| target += 4; |
| v += 1; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL) |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[1] = GL_FALSE; |
| boolParams[2] = GL_FALSE; |
| boolParams[3] = GL_FALSE; |
| boolParams += 4; |
| v += 1; |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| |
| if (targetUniform->type == GL_INT_VEC2) |
| { |
| GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = v[1]; |
| target[2] = 0; |
| target[3] = 0; |
| target += 4; |
| v += 2; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL_VEC2) |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[2] = GL_FALSE; |
| boolParams[3] = GL_FALSE; |
| boolParams += 4; |
| v += 2; |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| |
| if (targetUniform->type == GL_INT_VEC3) |
| { |
| GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = v[1]; |
| target[2] = v[2]; |
| target[3] = 0; |
| target += 4; |
| v += 3; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL_VEC3) |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[3] = GL_FALSE; |
| boolParams += 4; |
| v += 3; |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| targetUniform->dirty = true; |
| |
| int elementCount = targetUniform->elementCount(); |
| |
| if (elementCount == 1 && count > 1) |
| return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION |
| |
| count = std::min(elementCount - (int)mUniformIndex[location].element, count); |
| |
| if (targetUniform->type == GL_INT_VEC4) |
| { |
| GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| target[0] = v[0]; |
| target[1] = v[1]; |
| target[2] = v[2]; |
| target[3] = v[3]; |
| target += 4; |
| v += 4; |
| } |
| } |
| else if (targetUniform->type == GL_BOOL_VEC4) |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (int i = 0; i < count; i++) |
| { |
| boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams[3] = (v[3] == 0) ? GL_FALSE : GL_TRUE; |
| boolParams += 4; |
| v += 4; |
| } |
| } |
| else |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| |
| // sized queries -- ensure the provided buffer is large enough |
| if (bufSize) |
| { |
| int requiredBytes = UniformExternalSize(targetUniform->type); |
| if (*bufSize < requiredBytes) |
| { |
| return false; |
| } |
| } |
| |
| switch (targetUniform->type) |
| { |
| case GL_FLOAT_MAT2: |
| transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); |
| break; |
| case GL_FLOAT_MAT3: |
| transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); |
| break; |
| case GL_FLOAT_MAT4: |
| transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); |
| break; |
| default: |
| { |
| unsigned int size = UniformComponentCount(targetUniform->type); |
| |
| switch (UniformComponentType(targetUniform->type)) |
| { |
| case GL_BOOL: |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (unsigned int i = 0; i < size; i++) |
| { |
| params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; |
| } |
| } |
| break; |
| case GL_FLOAT: |
| memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLfloat), |
| size * sizeof(GLfloat)); |
| break; |
| case GL_INT: |
| { |
| GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (unsigned int i = 0; i < size; i++) |
| { |
| params[i] = (float)intParams[i]; |
| } |
| } |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) |
| { |
| if (location < 0 || location >= (int)mUniformIndex.size()) |
| { |
| return false; |
| } |
| |
| Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; |
| |
| // sized queries -- ensure the provided buffer is large enough |
| if (bufSize) |
| { |
| int requiredBytes = UniformExternalSize(targetUniform->type); |
| if (*bufSize < requiredBytes) |
| { |
| return false; |
| } |
| } |
| |
| switch (targetUniform->type) |
| { |
| case GL_FLOAT_MAT2: |
| transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); |
| break; |
| case GL_FLOAT_MAT3: |
| transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); |
| break; |
| case GL_FLOAT_MAT4: |
| transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); |
| break; |
| default: |
| { |
| unsigned int size = VariableColumnCount(targetUniform->type); |
| |
| switch (UniformComponentType(targetUniform->type)) |
| { |
| case GL_BOOL: |
| { |
| GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (unsigned int i = 0; i < size; i++) |
| { |
| params[i] = boolParams[i]; |
| } |
| } |
| break; |
| case GL_FLOAT: |
| { |
| GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; |
| |
| for (unsigned int i = 0; i < size; i++) |
| { |
| params[i] = (GLint)floatParams[i]; |
| } |
| } |
| break; |
| case GL_INT: |
| memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLint), |
| size * sizeof(GLint)); |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| void ProgramBinary::dirtyAllUniforms() |
| { |
| unsigned int numUniforms = mUniforms.size(); |
| for (unsigned int index = 0; index < numUniforms; index++) |
| { |
| mUniforms[index]->dirty = true; |
| } |
| } |
| |
| // Applies all the uniforms set for this program object to the renderer |
| void ProgramBinary::applyUniforms() |
| { |
| // Retrieve sampler uniform values |
| for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) |
| { |
| Uniform *targetUniform = *ub; |
| |
| if (targetUniform->dirty) |
| { |
| if (targetUniform->type == GL_SAMPLER_2D || |
| targetUniform->type == GL_SAMPLER_CUBE) |
| { |
| int count = targetUniform->elementCount(); |
| GLint (*v)[4] = (GLint(*)[4])targetUniform->data; |
| |
| if (targetUniform->psRegisterIndex >= 0) |
| { |
| unsigned int firstIndex = targetUniform->psRegisterIndex; |
| |
| for (int i = 0; i < count; i++) |
| { |
| unsigned int samplerIndex = firstIndex + i; |
| |
| if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) |
| { |
| ASSERT(mSamplersPS[samplerIndex].active); |
| mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0]; |
| } |
| } |
| } |
| |
| if (targetUniform->vsRegisterIndex >= 0) |
| { |
| unsigned int firstIndex = targetUniform->vsRegisterIndex; |
| |
| for (int i = 0; i < count; i++) |
| { |
| unsigned int samplerIndex = firstIndex + i; |
| |
| if (samplerIndex < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS) |
| { |
| ASSERT(mSamplersVS[samplerIndex].active); |
| mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0]; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| mRenderer->applyUniforms(this, &mUniforms); |
| } |
| |
| // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 |
| // Returns the number of used varying registers, or -1 if unsuccesful |
| int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader) |
| { |
| const int maxVaryingVectors = mRenderer->getMaxVaryingVectors(); |
| |
| fragmentShader->resetVaryingsRegisterAssignment(); |
| |
| for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) |
| { |
| int n = VariableRowCount(varying->type) * varying->size; |
| int m = VariableColumnCount(varying->type); |
| bool success = false; |
| |
| if (m == 2 || m == 3 || m == 4) |
| { |
| for (int r = 0; r <= maxVaryingVectors - n && !success; r++) |
| { |
| bool available = true; |
| |
| for (int y = 0; y < n && available; y++) |
| { |
| for (int x = 0; x < m && available; x++) |
| { |
| if (packing[r + y][x]) |
| { |
| available = false; |
| } |
| } |
| } |
| |
| if (available) |
| { |
| varying->reg = r; |
| varying->col = 0; |
| |
| for (int y = 0; y < n; y++) |
| { |
| for (int x = 0; x < m; x++) |
| { |
| packing[r + y][x] = &*varying; |
| } |
| } |
| |
| success = true; |
| } |
| } |
| |
| if (!success && m == 2) |
| { |
| for (int r = maxVaryingVectors - n; r >= 0 && !success; r--) |
| { |
| bool available = true; |
| |
| for (int y = 0; y < n && available; y++) |
| { |
| for (int x = 2; x < 4 && available; x++) |
| { |
| if (packing[r + y][x]) |
| { |
| available = false; |
| } |
| } |
| } |
| |
| if (available) |
| { |
| varying->reg = r; |
| varying->col = 2; |
| |
| for (int y = 0; y < n; y++) |
| { |
| for (int x = 2; x < 4; x++) |
| { |
| packing[r + y][x] = &*varying; |
| } |
| } |
| |
| success = true; |
| } |
| } |
| } |
| } |
| else if (m == 1) |
| { |
| int space[4] = {0}; |
| |
| for (int y = 0; y < maxVaryingVectors; y++) |
| { |
| for (int x = 0; x < 4; x++) |
| { |
| space[x] += packing[y][x] ? 0 : 1; |
| } |
| } |
| |
| int column = 0; |
| |
| for (int x = 0; x < 4; x++) |
| { |
| if (space[x] >= n && space[x] < space[column]) |
| { |
| column = x; |
| } |
| } |
| |
| if (space[column] >= n) |
| { |
| for (int r = 0; r < maxVaryingVectors; r++) |
| { |
| if (!packing[r][column]) |
| { |
| varying->reg = r; |
| |
| for (int y = r; y < r + n; y++) |
| { |
| packing[y][column] = &*varying; |
| } |
| |
| break; |
| } |
| } |
| |
| varying->col = column; |
| |
| success = true; |
| } |
| } |
| else UNREACHABLE(); |
| |
| if (!success) |
| { |
| infoLog.append("Could not pack varying %s", varying->name.c_str()); |
| |
| return -1; |
| } |
| } |
| |
| // Return the number of used registers |
| int registers = 0; |
| |
| for (int r = 0; r < maxVaryingVectors; r++) |
| { |
| if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) |
| { |
| registers++; |
| } |
| } |
| |
| return registers; |
| } |
| |
| bool ProgramBinary::linkVaryings(InfoLog &infoLog, int registers, const Varying *packing[][4], |
| std::string& pixelHLSL, std::string& vertexHLSL, |
| FragmentShader *fragmentShader, VertexShader *vertexShader) |
| { |
| if (pixelHLSL.empty() || vertexHLSL.empty()) |
| { |
| return false; |
| } |
| |
| bool usesMRT = fragmentShader->mUsesMultipleRenderTargets; |
| bool usesFragColor = fragmentShader->mUsesFragColor; |
| bool usesFragData = fragmentShader->mUsesFragData; |
| if (usesFragColor && usesFragData) |
| { |
| infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader."); |
| return false; |
| } |
| |
| // Write the HLSL input/output declarations |
| const int shaderModel = mRenderer->getMajorShaderModel(); |
| const int maxVaryingVectors = mRenderer->getMaxVaryingVectors(); |
| |
| const int registersNeeded = registers + (fragmentShader->mUsesFragCoord ? 1 : 0) + (fragmentShader->mUsesPointCoord ? 1 : 0); |
| |
| // The output color is broadcast to all enabled draw buffers when writing to gl_FragColor |
| const bool broadcast = fragmentShader->mUsesFragColor; |
| const unsigned int numRenderTargets = (broadcast || usesMRT ? mRenderer->getMaxRenderTargets() : 1); |
| |
| if (registersNeeded > maxVaryingVectors) |
| { |
| infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord"); |
| |
| return false; |
| } |
| |
| vertexShader->resetVaryingsRegisterAssignment(); |
| |
| for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++) |
| { |
| bool matched = false; |
| |
| for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++) |
| { |
| if (output->name == input->name) |
| { |
| if (output->type != input->type || output->size != input->size) |
| { |
| infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); |
| |
| return false; |
| } |
| |
| output->reg = input->reg; |
| output->col = input->col; |
| |
| matched = true; |
| break; |
| } |
| } |
| |
| if (!matched) |
| { |
| infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str()); |
| |
| return false; |
| } |
| } |
| |
| mUsesPointSize = vertexShader->mUsesPointSize; |
| std::string varyingSemantic = (mUsesPointSize && shaderModel == 3) ? "COLOR" : "TEXCOORD"; |
| std::string targetSemantic = (shaderModel >= 4) ? "SV_Target" : "COLOR"; |
| std::string positionSemantic = (shaderModel >= 4) ? "SV_Position" : "POSITION"; |
| |
| // special varyings that use reserved registers |
| int reservedRegisterIndex = registers; |
| std::string fragCoordSemantic; |
| std::string pointCoordSemantic; |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); |
| } |
| |
| if (fragmentShader->mUsesPointCoord) |
| { |
| // Shader model 3 uses a special TEXCOORD semantic for point sprite texcoords. |
| // In DX11 we compute this in the GS. |
| if (shaderModel == 3) |
| { |
| pointCoordSemantic = "TEXCOORD0"; |
| } |
| else if (shaderModel >= 4) |
| { |
| pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); |
| } |
| } |
| |
| vertexHLSL += "struct VS_INPUT\n" |
| "{\n"; |
| |
| int semanticIndex = 0; |
| for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) |
| { |
| switch (attribute->type) |
| { |
| case GL_FLOAT: vertexHLSL += " float "; break; |
| case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break; |
| case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break; |
| case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break; |
| case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break; |
| case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break; |
| case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break; |
| default: UNREACHABLE(); |
| } |
| |
| vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n"; |
| |
| semanticIndex += VariableRowCount(attribute->type); |
| } |
| |
| vertexHLSL += "};\n" |
| "\n" |
| "struct VS_OUTPUT\n" |
| "{\n"; |
| |
| if (shaderModel < 4) |
| { |
| vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n"; |
| } |
| |
| for (int r = 0; r < registers; r++) |
| { |
| int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); |
| |
| vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; |
| } |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| vertexHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; |
| } |
| |
| if (vertexShader->mUsesPointSize && shaderModel >= 3) |
| { |
| vertexHLSL += " float gl_PointSize : PSIZE;\n"; |
| } |
| |
| if (shaderModel >= 4) |
| { |
| vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n"; |
| } |
| |
| vertexHLSL += "};\n" |
| "\n" |
| "VS_OUTPUT main(VS_INPUT input)\n" |
| "{\n"; |
| |
| for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) |
| { |
| vertexHLSL += " " + decorateAttribute(attribute->name) + " = "; |
| |
| if (VariableRowCount(attribute->type) > 1) // Matrix |
| { |
| vertexHLSL += "transpose"; |
| } |
| |
| vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n"; |
| } |
| |
| if (shaderModel >= 4) |
| { |
| vertexHLSL += "\n" |
| " gl_main();\n" |
| "\n" |
| " VS_OUTPUT output;\n" |
| " output.gl_Position.x = gl_Position.x;\n" |
| " output.gl_Position.y = -gl_Position.y;\n" |
| " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" |
| " output.gl_Position.w = gl_Position.w;\n"; |
| } |
| else |
| { |
| vertexHLSL += "\n" |
| " gl_main();\n" |
| "\n" |
| " VS_OUTPUT output;\n" |
| " output.gl_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n" |
| " output.gl_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n" |
| " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" |
| " output.gl_Position.w = gl_Position.w;\n"; |
| } |
| |
| if (vertexShader->mUsesPointSize && shaderModel >= 3) |
| { |
| vertexHLSL += " output.gl_PointSize = gl_PointSize;\n"; |
| } |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| vertexHLSL += " output.gl_FragCoord = gl_Position;\n"; |
| } |
| |
| for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++) |
| { |
| if (varying->reg >= 0) |
| { |
| for (int i = 0; i < varying->size; i++) |
| { |
| int rows = VariableRowCount(varying->type); |
| |
| for (int j = 0; j < rows; j++) |
| { |
| int r = varying->reg + i * rows + j; |
| vertexHLSL += " output.v" + str(r); |
| |
| bool sharedRegister = false; // Register used by multiple varyings |
| |
| for (int x = 0; x < 4; x++) |
| { |
| if (packing[r][x] && packing[r][x] != packing[r][0]) |
| { |
| sharedRegister = true; |
| break; |
| } |
| } |
| |
| if(sharedRegister) |
| { |
| vertexHLSL += "."; |
| |
| for (int x = 0; x < 4; x++) |
| { |
| if (packing[r][x] == &*varying) |
| { |
| switch(x) |
| { |
| case 0: vertexHLSL += "x"; break; |
| case 1: vertexHLSL += "y"; break; |
| case 2: vertexHLSL += "z"; break; |
| case 3: vertexHLSL += "w"; break; |
| } |
| } |
| } |
| } |
| |
| vertexHLSL += " = " + varying->name; |
| |
| if (varying->array) |
| { |
| vertexHLSL += "[" + str(i) + "]"; |
| } |
| |
| if (rows > 1) |
| { |
| vertexHLSL += "[" + str(j) + "]"; |
| } |
| |
| vertexHLSL += ";\n"; |
| } |
| } |
| } |
| } |
| |
| vertexHLSL += "\n" |
| " return output;\n" |
| "}\n"; |
| |
| pixelHLSL += "struct PS_INPUT\n" |
| "{\n"; |
| |
| for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) |
| { |
| if (varying->reg >= 0) |
| { |
| for (int i = 0; i < varying->size; i++) |
| { |
| int rows = VariableRowCount(varying->type); |
| for (int j = 0; j < rows; j++) |
| { |
| std::string n = str(varying->reg + i * rows + j); |
| pixelHLSL += " float" + str(VariableColumnCount(varying->type)) + " v" + n + " : " + varyingSemantic + n + ";\n"; |
| } |
| } |
| } |
| else UNREACHABLE(); |
| } |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| pixelHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; |
| } |
| |
| if (fragmentShader->mUsesPointCoord && shaderModel >= 3) |
| { |
| pixelHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n"; |
| } |
| |
| // Must consume the PSIZE element if the geometry shader is not active |
| // We won't know if we use a GS until we draw |
| if (vertexShader->mUsesPointSize && shaderModel >= 4) |
| { |
| pixelHLSL += " float gl_PointSize : PSIZE;\n"; |
| } |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| if (shaderModel >= 4) |
| { |
| pixelHLSL += " float4 dx_VPos : SV_Position;\n"; |
| } |
| else if (shaderModel >= 3) |
| { |
| pixelHLSL += " float2 dx_VPos : VPOS;\n"; |
| } |
| } |
| |
| pixelHLSL += "};\n" |
| "\n" |
| "struct PS_OUTPUT\n" |
| "{\n"; |
| |
| for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) |
| { |
| pixelHLSL += " float4 gl_Color" + str(renderTargetIndex) + " : " + targetSemantic + str(renderTargetIndex) + ";\n"; |
| } |
| |
| pixelHLSL += "};\n" |
| "\n"; |
| |
| if (fragmentShader->mUsesFrontFacing) |
| { |
| if (shaderModel >= 4) |
| { |
| pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n" |
| "{\n"; |
| } |
| else |
| { |
| pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n" |
| "{\n"; |
| } |
| } |
| else |
| { |
| pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n" |
| "{\n"; |
| } |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; |
| |
| if (shaderModel >= 4) |
| { |
| pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n" |
| " gl_FragCoord.y = input.dx_VPos.y;\n"; |
| } |
| else if (shaderModel >= 3) |
| { |
| pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n" |
| " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n"; |
| } |
| else |
| { |
| // dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport() |
| pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n" |
| " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n"; |
| } |
| |
| pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n" |
| " gl_FragCoord.w = rhw;\n"; |
| } |
| |
| if (fragmentShader->mUsesPointCoord && shaderModel >= 3) |
| { |
| pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n"; |
| pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n"; |
| } |
| |
| if (fragmentShader->mUsesFrontFacing) |
| { |
| if (shaderModel <= 3) |
| { |
| pixelHLSL += " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n"; |
| } |
| else |
| { |
| pixelHLSL += " gl_FrontFacing = isFrontFace;\n"; |
| } |
| } |
| |
| for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++) |
| { |
| if (varying->reg >= 0) |
| { |
| for (int i = 0; i < varying->size; i++) |
| { |
| int rows = VariableRowCount(varying->type); |
| for (int j = 0; j < rows; j++) |
| { |
| std::string n = str(varying->reg + i * rows + j); |
| pixelHLSL += " " + varying->name; |
| |
| if (varying->array) |
| { |
| pixelHLSL += "[" + str(i) + "]"; |
| } |
| |
| if (rows > 1) |
| { |
| pixelHLSL += "[" + str(j) + "]"; |
| } |
| |
| switch (VariableColumnCount(varying->type)) |
| { |
| case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break; |
| case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break; |
| case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break; |
| case 4: pixelHLSL += " = input.v" + n + ";\n"; break; |
| default: UNREACHABLE(); |
| } |
| } |
| } |
| } |
| else UNREACHABLE(); |
| } |
| |
| pixelHLSL += "\n" |
| " gl_main();\n" |
| "\n" |
| " PS_OUTPUT output;\n"; |
| |
| for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) |
| { |
| unsigned int sourceColorIndex = broadcast ? 0 : renderTargetIndex; |
| |
| pixelHLSL += " output.gl_Color" + str(renderTargetIndex) + " = gl_Color[" + str(sourceColorIndex) + "];\n"; |
| } |
| |
| pixelHLSL += "\n" |
| " return output;\n" |
| "}\n"; |
| |
| return true; |
| } |
| |
| bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length) |
| { |
| BinaryInputStream stream(binary, length); |
| |
| int format = 0; |
| stream.read(&format); |
| if (format != GL_PROGRAM_BINARY_ANGLE) |
| { |
| infoLog.append("Invalid program binary format."); |
| return false; |
| } |
| |
| int version = 0; |
| stream.read(&version); |
| if (version != VERSION_DWORD) |
| { |
| infoLog.append("Invalid program binary version."); |
| return false; |
| } |
| |
| int compileFlags = 0; |
| stream.read(&compileFlags); |
| if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL) |
| { |
| infoLog.append("Mismatched compilation flags."); |
| return false; |
| } |
| |
| for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) |
| { |
| stream.read(&mLinkedAttribute[i].type); |
| std::string name; |
| stream.read(&name); |
| mLinkedAttribute[i].name = name; |
| stream.read(&mSemanticIndex[i]); |
| } |
| |
| for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) |
| { |
| stream.read(&mSamplersPS[i].active); |
| stream.read(&mSamplersPS[i].logicalTextureUnit); |
| |
| int textureType; |
| stream.read(&textureType); |
| mSamplersPS[i].textureType = (TextureType) textureType; |
| } |
| |
| for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i) |
| { |
| stream.read(&mSamplersVS[i].active); |
| stream.read(&mSamplersVS[i].logicalTextureUnit); |
| |
| int textureType; |
| stream.read(&textureType); |
| mSamplersVS[i].textureType = (TextureType) textureType; |
| } |
| |
| stream.read(&mUsedVertexSamplerRange); |
| stream.read(&mUsedPixelSamplerRange); |
| stream.read(&mUsesPointSize); |
| |
| size_t size; |
| stream.read(&size); |
| if (stream.error()) |
| { |
| infoLog.append("Invalid program binary."); |
| return false; |
| } |
| |
| mUniforms.resize(size); |
| for (unsigned int i = 0; i < size; ++i) |
| { |
| GLenum type; |
| GLenum precision; |
| std::string name; |
| unsigned int arraySize; |
| |
| stream.read(&type); |
| stream.read(&precision); |
| stream.read(&name); |
| stream.read(&arraySize); |
| |
| mUniforms[i] = new Uniform(type, precision, name, arraySize); |
| |
| stream.read(&mUniforms[i]->psRegisterIndex); |
| stream.read(&mUniforms[i]->vsRegisterIndex); |
| stream.read(&mUniforms[i]->registerCount); |
| } |
| |
| stream.read(&size); |
| if (stream.error()) |
| { |
| infoLog.append("Invalid program binary."); |
| return false; |
| } |
| |
| mUniformIndex.resize(size); |
| for (unsigned int i = 0; i < size; ++i) |
| { |
| stream.read(&mUniformIndex[i].name); |
| stream.read(&mUniformIndex[i].element); |
| stream.read(&mUniformIndex[i].index); |
| } |
| |
| unsigned int pixelShaderSize; |
| stream.read(&pixelShaderSize); |
| |
| unsigned int vertexShaderSize; |
| stream.read(&vertexShaderSize); |
| |
| unsigned int geometryShaderSize; |
| stream.read(&geometryShaderSize); |
| |
| const char *ptr = (const char*) binary + stream.offset(); |
| |
| const GUID *binaryIdentifier = (const GUID *) ptr; |
| ptr += sizeof(GUID); |
| |
| GUID identifier = mRenderer->getAdapterIdentifier(); |
| if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0) |
| { |
| infoLog.append("Invalid program binary."); |
| return false; |
| } |
| |
| const char *pixelShaderFunction = ptr; |
| ptr += pixelShaderSize; |
| |
| const char *vertexShaderFunction = ptr; |
| ptr += vertexShaderSize; |
| |
| const char *geometryShaderFunction = geometryShaderSize > 0 ? ptr : NULL; |
| ptr += geometryShaderSize; |
| |
| mPixelExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(pixelShaderFunction), |
| pixelShaderSize, rx::SHADER_PIXEL); |
| if (!mPixelExecutable) |
| { |
| infoLog.append("Could not create pixel shader."); |
| return false; |
| } |
| |
| mVertexExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(vertexShaderFunction), |
| vertexShaderSize, rx::SHADER_VERTEX); |
| if (!mVertexExecutable) |
| { |
| infoLog.append("Could not create vertex shader."); |
| delete mPixelExecutable; |
| mPixelExecutable = NULL; |
| return false; |
| } |
| |
| if (geometryShaderFunction != NULL && geometryShaderSize > 0) |
| { |
| mGeometryExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(geometryShaderFunction), |
| geometryShaderSize, rx::SHADER_GEOMETRY); |
| if (!mGeometryExecutable) |
| { |
| infoLog.append("Could not create geometry shader."); |
| delete mPixelExecutable; |
| mPixelExecutable = NULL; |
| delete mVertexExecutable; |
| mVertexExecutable = NULL; |
| return false; |
| } |
| } |
| else |
| { |
| mGeometryExecutable = NULL; |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length) |
| { |
| BinaryOutputStream stream; |
| |
| stream.write(GL_PROGRAM_BINARY_ANGLE); |
| stream.write(VERSION_DWORD); |
| stream.write(ANGLE_COMPILE_OPTIMIZATION_LEVEL); |
| |
| for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i) |
| { |
| stream.write(mLinkedAttribute[i].type); |
| stream.write(mLinkedAttribute[i].name); |
| stream.write(mSemanticIndex[i]); |
| } |
| |
| for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) |
| { |
| stream.write(mSamplersPS[i].active); |
| stream.write(mSamplersPS[i].logicalTextureUnit); |
| stream.write((int) mSamplersPS[i].textureType); |
| } |
| |
| for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i) |
| { |
| stream.write(mSamplersVS[i].active); |
| stream.write(mSamplersVS[i].logicalTextureUnit); |
| stream.write((int) mSamplersVS[i].textureType); |
| } |
| |
| stream.write(mUsedVertexSamplerRange); |
| stream.write(mUsedPixelSamplerRange); |
| stream.write(mUsesPointSize); |
| |
| stream.write(mUniforms.size()); |
| for (unsigned int i = 0; i < mUniforms.size(); ++i) |
| { |
| stream.write(mUniforms[i]->type); |
| stream.write(mUniforms[i]->precision); |
| stream.write(mUniforms[i]->name); |
| stream.write(mUniforms[i]->arraySize); |
| |
| stream.write(mUniforms[i]->psRegisterIndex); |
| stream.write(mUniforms[i]->vsRegisterIndex); |
| stream.write(mUniforms[i]->registerCount); |
| } |
| |
| stream.write(mUniformIndex.size()); |
| for (unsigned int i = 0; i < mUniformIndex.size(); ++i) |
| { |
| stream.write(mUniformIndex[i].name); |
| stream.write(mUniformIndex[i].element); |
| stream.write(mUniformIndex[i].index); |
| } |
| |
| UINT pixelShaderSize = mPixelExecutable->getLength(); |
| stream.write(pixelShaderSize); |
| |
| UINT vertexShaderSize = mVertexExecutable->getLength(); |
| stream.write(vertexShaderSize); |
| |
| UINT geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0; |
| stream.write(geometryShaderSize); |
| |
| GUID identifier = mRenderer->getAdapterIdentifier(); |
| |
| GLsizei streamLength = stream.length(); |
| const void *streamData = stream.data(); |
| |
| GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize + geometryShaderSize; |
| if (totalLength > bufSize) |
| { |
| if (length) |
| { |
| *length = 0; |
| } |
| |
| return false; |
| } |
| |
| if (binary) |
| { |
| char *ptr = (char*) binary; |
| |
| memcpy(ptr, streamData, streamLength); |
| ptr += streamLength; |
| |
| memcpy(ptr, &identifier, sizeof(GUID)); |
| ptr += sizeof(GUID); |
| |
| memcpy(ptr, mPixelExecutable->getFunction(), pixelShaderSize); |
| ptr += pixelShaderSize; |
| |
| memcpy(ptr, mVertexExecutable->getFunction(), vertexShaderSize); |
| ptr += vertexShaderSize; |
| |
| if (mGeometryExecutable != NULL && geometryShaderSize > 0) |
| { |
| memcpy(ptr, mGeometryExecutable->getFunction(), geometryShaderSize); |
| ptr += geometryShaderSize; |
| } |
| |
| ASSERT(ptr - totalLength == binary); |
| } |
| |
| if (length) |
| { |
| *length = totalLength; |
| } |
| |
| return true; |
| } |
| |
| GLint ProgramBinary::getLength() |
| { |
| GLint length; |
| if (save(NULL, INT_MAX, &length)) |
| { |
| return length; |
| } |
| else |
| { |
| return 0; |
| } |
| } |
| |
| bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) |
| { |
| if (!fragmentShader || !fragmentShader->isCompiled()) |
| { |
| return false; |
| } |
| |
| if (!vertexShader || !vertexShader->isCompiled()) |
| { |
| return false; |
| } |
| |
| std::string pixelHLSL = fragmentShader->getHLSL(); |
| std::string vertexHLSL = vertexShader->getHLSL(); |
| |
| // Map the varyings to the register file |
| const Varying *packing[IMPLEMENTATION_MAX_VARYING_VECTORS][4] = {NULL}; |
| int registers = packVaryings(infoLog, packing, fragmentShader); |
| |
| if (registers < 0) |
| { |
| return false; |
| } |
| |
| if (!linkVaryings(infoLog, registers, packing, pixelHLSL, vertexHLSL, fragmentShader, vertexShader)) |
| { |
| return false; |
| } |
| |
| bool success = true; |
| mVertexExecutable = mRenderer->compileToExecutable(infoLog, vertexHLSL.c_str(), rx::SHADER_VERTEX); |
| mPixelExecutable = mRenderer->compileToExecutable(infoLog, pixelHLSL.c_str(), rx::SHADER_PIXEL); |
| |
| if (usesGeometryShader()) |
| { |
| std::string geometryHLSL = generateGeometryShaderHLSL(registers, packing, fragmentShader, vertexShader); |
| mGeometryExecutable = mRenderer->compileToExecutable(infoLog, geometryHLSL.c_str(), rx::SHADER_GEOMETRY); |
| } |
| |
| if (!mVertexExecutable || !mPixelExecutable || (usesGeometryShader() && !mGeometryExecutable)) |
| { |
| infoLog.append("Failed to create D3D shaders."); |
| success = false; |
| |
| delete mVertexExecutable; |
| mVertexExecutable = NULL; |
| delete mPixelExecutable; |
| mPixelExecutable = NULL; |
| delete mGeometryExecutable; |
| mGeometryExecutable = NULL; |
| } |
| |
| if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader)) |
| { |
| success = false; |
| } |
| |
| if (!linkUniforms(infoLog, vertexShader->getUniforms(), fragmentShader->getUniforms())) |
| { |
| success = false; |
| } |
| |
| // special case for gl_DepthRange, the only built-in uniform (also a struct) |
| if (vertexShader->mUsesDepthRange || fragmentShader->mUsesDepthRange) |
| { |
| mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0)); |
| mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0)); |
| mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0)); |
| } |
| |
| return success; |
| } |
| |
| // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices |
| bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader) |
| { |
| unsigned int usedLocations = 0; |
| |
| // Link attributes that have a binding location |
| for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) |
| { |
| int location = attributeBindings.getAttributeBinding(attribute->name); |
| |
| if (location != -1) // Set by glBindAttribLocation |
| { |
| if (!mLinkedAttribute[location].name.empty()) |
| { |
| // Multiple active attributes bound to the same location; not an error |
| } |
| |
| mLinkedAttribute[location] = *attribute; |
| |
| int rows = VariableRowCount(attribute->type); |
| |
| if (rows + location > MAX_VERTEX_ATTRIBS) |
| { |
| infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); |
| |
| return false; |
| } |
| |
| for (int i = 0; i < rows; i++) |
| { |
| usedLocations |= 1 << (location + i); |
| } |
| } |
| } |
| |
| // Link attributes that don't have a binding location |
| for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++) |
| { |
| int location = attributeBindings.getAttributeBinding(attribute->name); |
| |
| if (location == -1) // Not set by glBindAttribLocation |
| { |
| int rows = VariableRowCount(attribute->type); |
| int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); |
| |
| if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) |
| { |
| infoLog.append("Too many active attributes (%s)", attribute->name.c_str()); |
| |
| return false; // Fail to link |
| } |
| |
| mLinkedAttribute[availableIndex] = *attribute; |
| } |
| } |
| |
| for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) |
| { |
| int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); |
| int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1); |
| |
| for (int r = 0; r < rows; r++) |
| { |
| mSemanticIndex[attributeIndex++] = index++; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::linkUniforms(InfoLog &infoLog, const sh::ActiveUniforms &vertexUniforms, const sh::ActiveUniforms &fragmentUniforms) |
| { |
| for (sh::ActiveUniforms::const_iterator uniform = vertexUniforms.begin(); uniform != vertexUniforms.end(); uniform++) |
| { |
| if (!defineUniform(GL_VERTEX_SHADER, *uniform, infoLog)) |
| { |
| return false; |
| } |
| } |
| |
| for (sh::ActiveUniforms::const_iterator uniform = fragmentUniforms.begin(); uniform != fragmentUniforms.end(); uniform++) |
| { |
| if (!defineUniform(GL_FRAGMENT_SHADER, *uniform, infoLog)) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ProgramBinary::defineUniform(GLenum shader, const sh::Uniform &constant, InfoLog &infoLog) |
| { |
| if (constant.type == GL_SAMPLER_2D || |
| constant.type == GL_SAMPLER_CUBE) |
| { |
| unsigned int samplerIndex = constant.registerIndex; |
| |
| do |
| { |
| if (shader == GL_VERTEX_SHADER) |
| { |
| if (samplerIndex < mRenderer->getMaxVertexTextureImageUnits()) |
| { |
| mSamplersVS[samplerIndex].active = true; |
| mSamplersVS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D; |
| mSamplersVS[samplerIndex].logicalTextureUnit = 0; |
| mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange); |
| } |
| else |
| { |
| infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).", mRenderer->getMaxVertexTextureImageUnits()); |
| return false; |
| } |
| } |
| else if (shader == GL_FRAGMENT_SHADER) |
| { |
| if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) |
| { |
| mSamplersPS[samplerIndex].active = true; |
| mSamplersPS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D; |
| mSamplersPS[samplerIndex].logicalTextureUnit = 0; |
| mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange); |
| } |
| else |
| { |
| infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS); |
| return false; |
| } |
| } |
| else UNREACHABLE(); |
| |
| samplerIndex++; |
| } |
| while (samplerIndex < constant.registerIndex + constant.arraySize); |
| } |
| |
| Uniform *uniform = NULL; |
| GLint location = getUniformLocation(constant.name); |
| |
| if (location >= 0) // Previously defined, type and precision must match |
| { |
| uniform = mUniforms[mUniformIndex[location].index]; |
| |
| if (uniform->type != constant.type) |
| { |
| infoLog.append("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str()); |
| return false; |
| } |
| |
| if (uniform->precision != constant.precision) |
| { |
| infoLog.append("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str()); |
| return false; |
| } |
| } |
| else |
| { |
| uniform = new Uniform(constant.type, constant.precision, constant.name, constant.arraySize); |
| } |
| |
| if (!uniform) |
| { |
| return false; |
| } |
| |
| if (shader == GL_FRAGMENT_SHADER) |
| { |
| uniform->psRegisterIndex = constant.registerIndex; |
| } |
| else if (shader == GL_VERTEX_SHADER) |
| { |
| uniform->vsRegisterIndex = constant.registerIndex; |
| } |
| else UNREACHABLE(); |
| |
| if (location >= 0) |
| { |
| return uniform->type == constant.type; |
| } |
| |
| mUniforms.push_back(uniform); |
| unsigned int uniformIndex = mUniforms.size() - 1; |
| |
| for (unsigned int i = 0; i < uniform->elementCount(); i++) |
| { |
| mUniformIndex.push_back(UniformLocation(constant.name, i, uniformIndex)); |
| } |
| |
| if (shader == GL_VERTEX_SHADER) |
| { |
| if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedVertexUniformVectors() + mRenderer->getMaxVertexUniformVectors()) |
| { |
| infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)", mRenderer->getMaxVertexUniformVectors()); |
| return false; |
| } |
| } |
| else if (shader == GL_FRAGMENT_SHADER) |
| { |
| if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedFragmentUniformVectors() + mRenderer->getMaxFragmentUniformVectors()) |
| { |
| infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)", mRenderer->getMaxFragmentUniformVectors()); |
| return false; |
| } |
| } |
| else UNREACHABLE(); |
| |
| return true; |
| } |
| |
| std::string ProgramBinary::generateGeometryShaderHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const |
| { |
| // for now we only handle point sprite emulation |
| ASSERT(usesPointSpriteEmulation()); |
| return generatePointSpriteHLSL(registers, packing, fragmentShader, vertexShader); |
| } |
| |
| std::string ProgramBinary::generatePointSpriteHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const |
| { |
| ASSERT(registers >= 0); |
| ASSERT(vertexShader->mUsesPointSize); |
| ASSERT(mRenderer->getMajorShaderModel() >= 4); |
| |
| std::string geomHLSL; |
| |
| std::string varyingSemantic = "TEXCOORD"; |
| |
| std::string fragCoordSemantic; |
| std::string pointCoordSemantic; |
| |
| int reservedRegisterIndex = registers; |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); |
| } |
| |
| if (fragmentShader->mUsesPointCoord) |
| { |
| pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); |
| } |
| |
| geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n" |
| "\n" |
| "struct GS_INPUT\n" |
| "{\n"; |
| |
| for (int r = 0; r < registers; r++) |
| { |
| int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); |
| |
| geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; |
| } |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; |
| } |
| |
| geomHLSL += " float gl_PointSize : PSIZE;\n" |
| " float4 gl_Position : SV_Position;\n" |
| "};\n" |
| "\n" |
| "struct GS_OUTPUT\n" |
| "{\n"; |
| |
| for (int r = 0; r < registers; r++) |
| { |
| int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); |
| |
| geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; |
| } |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; |
| } |
| |
| if (fragmentShader->mUsesPointCoord) |
| { |
| geomHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n"; |
| } |
| |
| geomHLSL += " float gl_PointSize : PSIZE;\n" |
| " float4 gl_Position : SV_Position;\n" |
| "};\n" |
| "\n" |
| "static float2 pointSpriteCorners[] = \n" |
| "{\n" |
| " float2( 0.5f, -0.5f),\n" |
| " float2( 0.5f, 0.5f),\n" |
| " float2(-0.5f, -0.5f),\n" |
| " float2(-0.5f, 0.5f)\n" |
| "};\n" |
| "\n" |
| "static float2 pointSpriteTexcoords[] = \n" |
| "{\n" |
| " float2(1.0f, 1.0f),\n" |
| " float2(1.0f, 0.0f),\n" |
| " float2(0.0f, 1.0f),\n" |
| " float2(0.0f, 0.0f)\n" |
| "};\n" |
| "\n" |
| "static float minPointSize = " + str(ALIASED_POINT_SIZE_RANGE_MIN) + ".0f;\n" |
| "static float maxPointSize = " + str(mRenderer->getMaxPointSize()) + ".0f;\n" |
| "\n" |
| "[maxvertexcount(4)]\n" |
| "void main(point GS_INPUT input[1], inout TriangleStream<GS_OUTPUT> outStream)\n" |
| "{\n" |
| " GS_OUTPUT output = (GS_OUTPUT)0;\n" |
| " output.gl_PointSize = input[0].gl_PointSize;\n"; |
| |
| for (int r = 0; r < registers; r++) |
| { |
| geomHLSL += " output.v" + str(r) + " = input[0].v" + str(r) + ";\n"; |
| } |
| |
| if (fragmentShader->mUsesFragCoord) |
| { |
| geomHLSL += " output.gl_FragCoord = input[0].gl_FragCoord;\n"; |
| } |
| |
| geomHLSL += " \n" |
| " float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n" |
| " float4 gl_Position = input[0].gl_Position;\n" |
| " float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * gl_Position.w;\n"; |
| |
| for (int corner = 0; corner < 4; corner++) |
| { |
| geomHLSL += " \n" |
| " output.gl_Position = gl_Position + float4(pointSpriteCorners[" + str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n"; |
| |
| if (fragmentShader->mUsesPointCoord) |
| { |
| geomHLSL += " output.gl_PointCoord = pointSpriteTexcoords[" + str(corner) + "];\n"; |
| } |
| |
| geomHLSL += " outStream.Append(output);\n"; |
| } |
| |
| geomHLSL += " \n" |
| " outStream.RestartStrip();\n" |
| "}\n"; |
| |
| return geomHLSL; |
| } |
| |
| // This method needs to match OutputHLSL::decorate |
| std::string ProgramBinary::decorateAttribute(const std::string &name) |
| { |
| if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0) |
| { |
| return "_" + name; |
| } |
| |
| return name; |
| } |
| |
| bool ProgramBinary::isValidated() const |
| { |
| return mValidated; |
| } |
| |
| void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const |
| { |
| // Skip over inactive attributes |
| unsigned int activeAttribute = 0; |
| unsigned int attribute; |
| for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) |
| { |
| if (mLinkedAttribute[attribute].name.empty()) |
| { |
| continue; |
| } |
| |
| if (activeAttribute == index) |
| { |
| break; |
| } |
| |
| activeAttribute++; |
| } |
| |
| if (bufsize > 0) |
| { |
| const char *string = mLinkedAttribute[attribute].name.c_str(); |
| |
| strncpy(name, string, bufsize); |
| name[bufsize - 1] = '\0'; |
| |
| if (length) |
| { |
| *length = strlen(name); |
| } |
| } |
| |
| *size = 1; // Always a single 'type' instance |
| |
| *type = mLinkedAttribute[attribute].type; |
| } |
| |
| GLint ProgramBinary::getActiveAttributeCount() const |
| { |
| int count = 0; |
| |
| for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) |
| { |
| if (!mLinkedAttribute[attributeIndex].name.empty()) |
| { |
| count++; |
| } |
| } |
| |
| return count; |
| } |
| |
| GLint ProgramBinary::getActiveAttributeMaxLength() const |
| { |
| int maxLength = 0; |
| |
| for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) |
| { |
| if (!mLinkedAttribute[attributeIndex].name.empty()) |
| { |
| maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); |
| } |
| } |
| |
| return maxLength; |
| } |
| |
| void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const |
| { |
| ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount() |
| |
| if (bufsize > 0) |
| { |
| std::string string = mUniforms[index]->name; |
| |
| if (mUniforms[index]->isArray()) |
| { |
| string += "[0]"; |
| } |
| |
| strncpy(name, string.c_str(), bufsize); |
| name[bufsize - 1] = '\0'; |
| |
| if (length) |
| { |
| *length = strlen(name); |
| } |
| } |
| |
| *size = mUniforms[index]->elementCount(); |
| |
| *type = mUniforms[index]->type; |
| } |
| |
| GLint ProgramBinary::getActiveUniformCount() const |
| { |
| return mUniforms.size(); |
| } |
| |
| GLint ProgramBinary::getActiveUniformMaxLength() const |
| { |
| int maxLength = 0; |
| |
| unsigned int numUniforms = mUniforms.size(); |
| for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) |
| { |
| if (!mUniforms[uniformIndex]->name.empty()) |
| { |
| int length = (int)(mUniforms[uniformIndex]->name.length() + 1); |
| if (mUniforms[uniformIndex]->isArray()) |
| { |
| length += 3; // Counting in "[0]". |
| } |
| maxLength = std::max(length, maxLength); |
| } |
| } |
| |
| return maxLength; |
| } |
| |
| void ProgramBinary::validate(InfoLog &infoLog) |
| { |
| applyUniforms(); |
| if (!validateSamplers(&infoLog)) |
| { |
| mValidated = false; |
| } |
| else |
| { |
| mValidated = true; |
| } |
| } |
| |
| bool ProgramBinary::validateSamplers(InfoLog *infoLog) |
| { |
| // if any two active samplers in a program are of different types, but refer to the same |
| // texture image unit, and this is the current program, then ValidateProgram will fail, and |
| // DrawArrays and DrawElements will issue the INVALID_OPERATION error. |
| |
| const unsigned int maxCombinedTextureImageUnits = mRenderer->getMaxCombinedTextureImageUnits(); |
| TextureType textureUnitType[IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS]; |
| |
| for (unsigned int i = 0; i < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i) |
| { |
| textureUnitType[i] = TEXTURE_UNKNOWN; |
| } |
| |
| for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i) |
| { |
| if (mSamplersPS[i].active) |
| { |
| unsigned int unit = mSamplersPS[i].logicalTextureUnit; |
| |
| if (unit >= maxCombinedTextureImageUnits) |
| { |
| if (infoLog) |
| { |
| infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); |
| } |
| |
| return false; |
| } |
| |
| if (textureUnitType[unit] != TEXTURE_UNKNOWN) |
| { |
| if (mSamplersPS[i].textureType != textureUnitType[unit]) |
| { |
| if (infoLog) |
| { |
| infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); |
| } |
| |
| return false; |
| } |
| } |
| else |
| { |
| textureUnitType[unit] = mSamplersPS[i].textureType; |
| } |
| } |
| } |
| |
| for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i) |
| { |
| if (mSamplersVS[i].active) |
| { |
| unsigned int unit = mSamplersVS[i].logicalTextureUnit; |
| |
| if (unit >= maxCombinedTextureImageUnits) |
| { |
| if (infoLog) |
| { |
| infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); |
| } |
| |
| return false; |
| } |
| |
| if (textureUnitType[unit] != TEXTURE_UNKNOWN) |
| { |
| if (mSamplersVS[i].textureType != textureUnitType[unit]) |
| { |
| if (infoLog) |
| { |
| infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit); |
| } |
| |
| return false; |
| } |
| } |
| else |
| { |
| textureUnitType[unit] = mSamplersVS[i].textureType; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D) |
| { |
| } |
| |
| struct AttributeSorter |
| { |
| AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS]) |
| : originalIndices(semanticIndices) |
| { |
| for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) |
| { |
| indices[i] = i; |
| } |
| |
| std::sort(&indices[0], &indices[MAX_VERTEX_ATTRIBS], *this); |
| } |
| |
| bool operator()(int a, int b) |
| { |
| return originalIndices[a] == -1 ? false : originalIndices[a] < originalIndices[b]; |
| } |
| |
| int indices[MAX_VERTEX_ATTRIBS]; |
| const int (&originalIndices)[MAX_VERTEX_ATTRIBS]; |
| }; |
| |
| void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const |
| { |
| AttributeSorter sorter(mSemanticIndex); |
| |
| int oldIndices[MAX_VERTEX_ATTRIBS]; |
| rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS]; |
| |
| for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) |
| { |
| oldIndices[i] = mSemanticIndex[i]; |
| oldTranslatedAttributes[i] = attributes[i]; |
| } |
| |
| for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) |
| { |
| int oldIndex = sorter.indices[i]; |
| sortedSemanticIndices[i] = oldIndices[oldIndex]; |
| attributes[i] = oldTranslatedAttributes[oldIndex]; |
| } |
| } |
| |
| } |