blob: 339ff1971cfba055b30e4accf1a9856bfa5fcdf6 [file] [log] [blame]
/*
* Copyright © 2008 Kristian Høgsberg
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <assert.h>
#include <stddef.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/epoll.h>
#include <sys/signalfd.h>
#include <sys/timerfd.h>
#include <unistd.h>
#include "wayland-util.h"
#include "wayland-private.h"
#include "wayland-server-core.h"
#include "wayland-os.h"
/** \cond INTERNAL */
#define TIMER_REMOVED -2
struct wl_event_loop;
struct wl_event_source_interface;
struct wl_event_source_timer;
struct wl_event_source {
struct wl_event_source_interface *interface;
struct wl_event_loop *loop;
struct wl_list link;
void *data;
int fd;
};
struct wl_timer_heap {
struct wl_event_source base;
/* pointers to the user-visible event sources */
struct wl_event_source_timer **data;
int space, active, count;
};
struct wl_event_loop {
int epoll_fd;
struct wl_list check_list;
struct wl_list idle_list;
struct wl_list destroy_list;
struct wl_signal destroy_signal;
struct wl_timer_heap timers;
};
struct wl_event_source_interface {
int (*dispatch)(struct wl_event_source *source,
struct epoll_event *ep);
};
struct wl_event_source_fd {
struct wl_event_source base;
wl_event_loop_fd_func_t func;
int fd;
};
/** \endcond */
static int
wl_event_source_fd_dispatch(struct wl_event_source *source,
struct epoll_event *ep)
{
struct wl_event_source_fd *fd_source = (struct wl_event_source_fd *) source;
uint32_t mask;
mask = 0;
if (ep->events & EPOLLIN)
mask |= WL_EVENT_READABLE;
if (ep->events & EPOLLOUT)
mask |= WL_EVENT_WRITABLE;
if (ep->events & EPOLLHUP)
mask |= WL_EVENT_HANGUP;
if (ep->events & EPOLLERR)
mask |= WL_EVENT_ERROR;
return fd_source->func(fd_source->fd, mask, source->data);
}
struct wl_event_source_interface fd_source_interface = {
wl_event_source_fd_dispatch,
};
static struct wl_event_source *
add_source(struct wl_event_loop *loop,
struct wl_event_source *source, uint32_t mask, void *data)
{
struct epoll_event ep;
if (source->fd < 0) {
free(source);
return NULL;
}
source->loop = loop;
source->data = data;
wl_list_init(&source->link);
memset(&ep, 0, sizeof ep);
if (mask & WL_EVENT_READABLE)
ep.events |= EPOLLIN;
if (mask & WL_EVENT_WRITABLE)
ep.events |= EPOLLOUT;
ep.data.ptr = source;
if (epoll_ctl(loop->epoll_fd, EPOLL_CTL_ADD, source->fd, &ep) < 0) {
close(source->fd);
free(source);
return NULL;
}
return source;
}
/** Create a file descriptor event source
*
* \param loop The event loop that will process the new source.
* \param fd The file descriptor to watch.
* \param mask A bitwise-or of which events to watch for: \c WL_EVENT_READABLE,
* \c WL_EVENT_WRITABLE.
* \param func The file descriptor dispatch function.
* \param data User data.
* \return A new file descriptor event source.
*
* The given file descriptor is initially watched for the events given in
* \c mask. This can be changed as needed with wl_event_source_fd_update().
*
* If it is possible that program execution causes the file descriptor to be
* read while leaving the data in a buffer without actually processing it,
* it may be necessary to register the file descriptor source to be re-checked,
* see wl_event_source_check(). This will ensure that the dispatch function
* gets called even if the file descriptor is not readable or writable
* anymore. This is especially useful with IPC libraries that automatically
* buffer incoming data, possibly as a side-effect of other operations.
*
* \sa wl_event_loop_fd_func_t
* \memberof wl_event_source
*/
WL_EXPORT struct wl_event_source *
wl_event_loop_add_fd(struct wl_event_loop *loop,
int fd, uint32_t mask,
wl_event_loop_fd_func_t func,
void *data)
{
struct wl_event_source_fd *source;
source = malloc(sizeof *source);
if (source == NULL)
return NULL;
source->base.interface = &fd_source_interface;
source->base.fd = wl_os_dupfd_cloexec(fd, 0);
source->func = func;
source->fd = fd;
return add_source(loop, &source->base, mask, data);
}
/** Update a file descriptor source's event mask
*
* \param source The file descriptor event source to update.
* \param mask The new mask, a bitwise-or of: \c WL_EVENT_READABLE,
* \c WL_EVENT_WRITABLE.
* \return 0 on success, -1 on failure.
*
* This changes which events, readable and/or writable, cause the dispatch
* callback to be called on.
*
* File descriptors are usually writable to begin with, so they do not need to
* be polled for writable until a write actually fails. When a write fails,
* the event mask can be changed to poll for readable and writable, delivering
* a dispatch callback when it is possible to write more. Once all data has
* been written, the mask can be changed to poll only for readable to avoid
* busy-looping on dispatch.
*
* \sa wl_event_loop_add_fd()
* \memberof wl_event_source
*/
WL_EXPORT int
wl_event_source_fd_update(struct wl_event_source *source, uint32_t mask)
{
struct wl_event_loop *loop = source->loop;
struct epoll_event ep;
memset(&ep, 0, sizeof ep);
if (mask & WL_EVENT_READABLE)
ep.events |= EPOLLIN;
if (mask & WL_EVENT_WRITABLE)
ep.events |= EPOLLOUT;
ep.data.ptr = source;
return epoll_ctl(loop->epoll_fd, EPOLL_CTL_MOD, source->fd, &ep);
}
/** \cond INTERNAL */
struct wl_event_source_timer {
struct wl_event_source base;
wl_event_loop_timer_func_t func;
struct wl_event_source_timer *next_due;
struct timespec deadline;
int heap_idx;
};
static int
noop_dispatch(struct wl_event_source *source,
struct epoll_event *ep) {
return 0;
}
struct wl_event_source_interface timer_heap_source_interface = {
noop_dispatch,
};
static bool
time_lt(struct timespec ta, struct timespec tb)
{
if (ta.tv_sec != tb.tv_sec) {
return ta.tv_sec < tb.tv_sec;
}
return ta.tv_nsec < tb.tv_nsec;
}
static int
set_timer(int timerfd, struct timespec deadline) {
struct itimerspec its;
its.it_interval.tv_sec = 0;
its.it_interval.tv_nsec = 0;
its.it_value = deadline;
return timerfd_settime(timerfd, TFD_TIMER_ABSTIME, &its, NULL);
}
static int
clear_timer(int timerfd)
{
struct itimerspec its;
its.it_interval.tv_sec = 0;
its.it_interval.tv_nsec = 0;
its.it_value.tv_sec = 0;
its.it_value.tv_nsec = 0;
return timerfd_settime(timerfd, 0, &its, NULL);
}
static void
wl_timer_heap_init(struct wl_timer_heap *timers, struct wl_event_loop *loop)
{
timers->base.fd = -1;
timers->base.data = NULL;
wl_list_init(&timers->base.link);
timers->base.interface = &timer_heap_source_interface;
timers->base.loop = loop;
loop->timers.data = NULL;
loop->timers.active = 0;
loop->timers.space = 0;
loop->timers.count = 0;
}
static void
wl_timer_heap_release(struct wl_timer_heap *timers)
{
if (timers->base.fd != -1) {
close(timers->base.fd);
}
free(timers->data);
}
static int
wl_timer_heap_ensure_timerfd(struct wl_timer_heap *timers)
{
struct epoll_event ep;
int timer_fd;
if (timers->base.fd != -1)
return 0;
memset(&ep, 0, sizeof ep);
ep.events = EPOLLIN;
ep.data.ptr = timers;
timer_fd = timerfd_create(CLOCK_MONOTONIC,
TFD_CLOEXEC | TFD_NONBLOCK);
if (timer_fd < 0)
return -1;
if (epoll_ctl(timers->base.loop->epoll_fd,
EPOLL_CTL_ADD, timer_fd, &ep) < 0) {
close(timer_fd);
return -1;
}
timers->base.fd = timer_fd;
return 0;
}
static int
wl_timer_heap_reserve(struct wl_timer_heap *timers)
{
struct wl_event_source_timer **n;
int new_space;
if (timers->count + 1 > timers->space) {
new_space = timers->space >= 8 ? timers->space * 2 : 8;
n = realloc(timers->data, (size_t)new_space * sizeof(*n));
if (!n) {
wl_log("Allocation failure when expanding timer list");
return -1;
}
timers->data = n;
timers->space = new_space;
}
timers->count++;
return 0;
}
static void
wl_timer_heap_unreserve(struct wl_timer_heap *timers)
{
struct wl_event_source_timer **n;
timers->count--;
if (timers->space >= 16 && timers->space >= 4 * timers->count) {
n = realloc(timers->data, (size_t)timers->space / 2 * sizeof(*n));
if (!n) {
wl_log("Reallocation failure when shrinking timer list");
return;
}
timers->data = n;
timers->space = timers->space / 2;
}
}
static int
heap_set(struct wl_event_source_timer **data,
struct wl_event_source_timer *a,
int idx)
{
int tmp;
tmp = a->heap_idx;
a->heap_idx = idx;
data[a->heap_idx] = a;
return tmp;
}
static void
heap_sift_down(struct wl_event_source_timer **data,
int num_active,
struct wl_event_source_timer *source)
{
struct wl_event_source_timer *child, *other_child;
int cursor_idx;
struct timespec key;
cursor_idx = source->heap_idx;
key = source->deadline;
while (1) {
int lchild_idx = cursor_idx * 2 + 1;
if (lchild_idx >= num_active) {
break;
}
child = data[lchild_idx];
if (lchild_idx + 1 < num_active) {
other_child = data[lchild_idx + 1];
if (time_lt(other_child->deadline, child->deadline))
child = other_child;
}
if (time_lt(child->deadline, key))
cursor_idx = heap_set(data, child, cursor_idx);
else
break;
}
heap_set(data, source, cursor_idx);
}
static void
heap_sift_up(struct wl_event_source_timer **data,
struct wl_event_source_timer *source)
{
int cursor_idx;
struct timespec key;
cursor_idx = source->heap_idx;
key = source->deadline;
while (cursor_idx > 0) {
struct wl_event_source_timer *parent =
data[(cursor_idx - 1) / 2];
if (time_lt(key, parent->deadline))
cursor_idx = heap_set(data, parent, cursor_idx);
else
break;
}
heap_set(data, source, cursor_idx);
}
/* requires timer be armed */
static void
wl_timer_heap_disarm(struct wl_timer_heap *timers,
struct wl_event_source_timer *source)
{
struct wl_event_source_timer *last_end_evt;
int old_source_idx;
assert(source->heap_idx >= 0);
old_source_idx = source->heap_idx;
source->heap_idx = -1;
source->deadline.tv_sec = 0;
source->deadline.tv_nsec = 0;
last_end_evt = timers->data[timers->active - 1];
timers->data[timers->active - 1] = NULL;
timers->active--;
if (old_source_idx == timers->active)
return;
timers->data[old_source_idx] = last_end_evt;
last_end_evt->heap_idx = old_source_idx;
/* Move the displaced (active) element to its proper place.
* Only one of sift-down and sift-up will have any effect */
heap_sift_down(timers->data, timers->active, last_end_evt);
heap_sift_up(timers->data, last_end_evt);
}
/* requires timer be disarmed */
static void
wl_timer_heap_arm(struct wl_timer_heap *timers,
struct wl_event_source_timer *source,
struct timespec deadline)
{
assert(source->heap_idx == -1);
source->deadline = deadline;
timers->data[timers->active] = source;
source->heap_idx = timers->active;
timers->active++;
heap_sift_up(timers->data, source);
}
static int
wl_timer_heap_dispatch(struct wl_timer_heap *timers)
{
struct timespec now;
struct wl_event_source_timer *root;
struct wl_event_source_timer *list_cursor = NULL, *list_tail = NULL;
clock_gettime(CLOCK_MONOTONIC, &now);
while (timers->active > 0) {
root = timers->data[0];
if (time_lt(now, root->deadline))
break;
wl_timer_heap_disarm(timers, root);
if (list_cursor == NULL)
list_cursor = root;
else
list_tail->next_due = root;
list_tail = root;
}
if (list_tail)
list_tail->next_due = NULL;
if (timers->active > 0) {
if (set_timer(timers->base.fd, timers->data[0]->deadline) < 0)
return -1;
} else {
if (clear_timer(timers->base.fd) < 0)
return -1;
}
/* Execute precisely the functions for events before `now`, in order.
* Because wl_event_loop_dispatch ignores return codes, do the same
* here as well */
for (; list_cursor; list_cursor = list_cursor->next_due) {
if (list_cursor->base.fd != TIMER_REMOVED)
list_cursor->func(list_cursor->base.data);
}
return 0;
}
static int
wl_event_source_timer_dispatch(struct wl_event_source *source,
struct epoll_event *ep)
{
struct wl_event_source_timer *timer;
timer = wl_container_of(source, timer, base);
return timer->func(timer->base.data);
}
struct wl_event_source_interface timer_source_interface = {
wl_event_source_timer_dispatch,
};
/** \endcond */
/** Create a timer event source
*
* \param loop The event loop that will process the new source.
* \param func The timer dispatch function.
* \param data User data.
* \return A new timer event source.
*
* The timer is initially disarmed. It needs to be armed with a call to
* wl_event_source_timer_update() before it can trigger a dispatch call.
*
* \sa wl_event_loop_timer_func_t
* \memberof wl_event_source
*/
WL_EXPORT struct wl_event_source *
wl_event_loop_add_timer(struct wl_event_loop *loop,
wl_event_loop_timer_func_t func,
void *data)
{
struct wl_event_source_timer *source;
if (wl_timer_heap_ensure_timerfd(&loop->timers) < 0)
return NULL;
source = malloc(sizeof *source);
if (source == NULL)
return NULL;
source->base.interface = &timer_source_interface;
source->base.fd = -1;
source->func = func;
source->base.loop = loop;
source->base.data = data;
wl_list_init(&source->base.link);
source->next_due = NULL;
source->deadline.tv_sec = 0;
source->deadline.tv_nsec = 0;
source->heap_idx = -1;
if (wl_timer_heap_reserve(&loop->timers) < 0) {
free(source);
return NULL;
}
return &source->base;
}
/** Arm or disarm a timer
*
* \param source The timer event source to modify.
* \param ms_delay The timeout in milliseconds.
* \return 0 on success, -1 on failure.
*
* If the timeout is zero, the timer is disarmed.
*
* If the timeout is non-zero, the timer is set to expire after the given
* timeout in milliseconds. When the timer expires, the dispatch function
* set with wl_event_loop_add_timer() is called once from
* wl_event_loop_dispatch(). If another dispatch is desired after another
* expiry, wl_event_source_timer_update() needs to be called again.
*
* \memberof wl_event_source
*/
WL_EXPORT int
wl_event_source_timer_update(struct wl_event_source *source, int ms_delay)
{
struct wl_event_source_timer *tsource =
wl_container_of(source, tsource, base);
struct wl_timer_heap *timers = &tsource->base.loop->timers;
if (ms_delay > 0) {
struct timespec deadline;
clock_gettime(CLOCK_MONOTONIC, &deadline);
deadline.tv_nsec += (ms_delay % 1000) * 1000000L;
deadline.tv_sec += ms_delay / 1000;
if (deadline.tv_nsec >= 1000000000L) {
deadline.tv_nsec -= 1000000000L;
deadline.tv_sec += 1;
}
if (tsource->heap_idx == -1) {
wl_timer_heap_arm(timers, tsource, deadline);
} else if (time_lt(deadline, tsource->deadline)) {
tsource->deadline = deadline;
heap_sift_up(timers->data, tsource);
} else {
tsource->deadline = deadline;
heap_sift_down(timers->data, timers->active, tsource);
}
if (tsource->heap_idx == 0) {
/* Only update the timerfd if the new deadline is
* the earliest */
if (set_timer(timers->base.fd, deadline) < 0)
return -1;
}
} else {
if (tsource->heap_idx == -1)
return 0;
wl_timer_heap_disarm(timers, tsource);
if (timers->active == 0) {
/* Only update the timerfd if this was the last
* active timer */
if (clear_timer(timers->base.fd) < 0)
return -1;
}
}
return 0;
}
/** \cond INTERNAL */
struct wl_event_source_signal {
struct wl_event_source base;
int signal_number;
wl_event_loop_signal_func_t func;
};
/** \endcond */
static int
wl_event_source_signal_dispatch(struct wl_event_source *source,
struct epoll_event *ep)
{
struct wl_event_source_signal *signal_source =
(struct wl_event_source_signal *) source;
struct signalfd_siginfo signal_info;
int len;
len = read(source->fd, &signal_info, sizeof signal_info);
if (!(len == -1 && errno == EAGAIN) && len != sizeof signal_info)
/* Is there anything we can do here? Will this ever happen? */
wl_log("signalfd read error: %s\n", strerror(errno));
return signal_source->func(signal_source->signal_number,
signal_source->base.data);
}
struct wl_event_source_interface signal_source_interface = {
wl_event_source_signal_dispatch,
};
/** Create a POSIX signal event source
*
* \param loop The event loop that will process the new source.
* \param signal_number Number of the signal to watch for.
* \param func The signal dispatch function.
* \param data User data.
* \return A new signal event source.
*
* This function blocks the normal delivery of the given signal in the calling
* thread, and creates a "watch" for it. Signal delivery no longer happens
* asynchronously, but by wl_event_loop_dispatch() calling the dispatch
* callback function \c func.
*
* It is the caller's responsibility to ensure that all other threads have
* also blocked the signal.
*
* \sa wl_event_loop_signal_func_t
* \memberof wl_event_source
*/
WL_EXPORT struct wl_event_source *
wl_event_loop_add_signal(struct wl_event_loop *loop,
int signal_number,
wl_event_loop_signal_func_t func,
void *data)
{
struct wl_event_source_signal *source;
sigset_t mask;
source = malloc(sizeof *source);
if (source == NULL)
return NULL;
source->base.interface = &signal_source_interface;
source->signal_number = signal_number;
sigemptyset(&mask);
sigaddset(&mask, signal_number);
source->base.fd = signalfd(-1, &mask, SFD_CLOEXEC | SFD_NONBLOCK);
sigprocmask(SIG_BLOCK, &mask, NULL);
source->func = func;
return add_source(loop, &source->base, WL_EVENT_READABLE, data);
}
/** \cond INTERNAL */
struct wl_event_source_idle {
struct wl_event_source base;
wl_event_loop_idle_func_t func;
};
/** \endcond */
struct wl_event_source_interface idle_source_interface = {
NULL,
};
/** Create an idle task
*
* \param loop The event loop that will process the new task.
* \param func The idle task dispatch function.
* \param data User data.
* \return A new idle task (an event source).
*
* Idle tasks are dispatched before wl_event_loop_dispatch() goes to sleep.
* See wl_event_loop_dispatch() for more details.
*
* Idle tasks fire once, and are automatically destroyed right after the
* callback function has been called.
*
* An idle task can be cancelled before the callback has been called by
* wl_event_source_remove(). Calling wl_event_source_remove() after or from
* within the callback results in undefined behaviour.
*
* \sa wl_event_loop_idle_func_t
* \memberof wl_event_source
*/
WL_EXPORT struct wl_event_source *
wl_event_loop_add_idle(struct wl_event_loop *loop,
wl_event_loop_idle_func_t func,
void *data)
{
struct wl_event_source_idle *source;
source = malloc(sizeof *source);
if (source == NULL)
return NULL;
source->base.interface = &idle_source_interface;
source->base.loop = loop;
source->base.fd = -1;
source->func = func;
source->base.data = data;
wl_list_insert(loop->idle_list.prev, &source->base.link);
return &source->base;
}
/** Mark event source to be re-checked
*
* \param source The event source to be re-checked.
*
* This function permanently marks the event source to be re-checked after
* the normal dispatch of sources in wl_event_loop_dispatch(). Re-checking
* will keep iterating over all such event sources until the dispatch
* function for them all returns zero.
*
* Re-checking is used on sources that may become ready to dispatch as a
* side-effect of dispatching themselves or other event sources, including idle
* sources. Re-checking ensures all the incoming events have been fully drained
* before wl_event_loop_dispatch() returns.
*
* \memberof wl_event_source
*/
WL_EXPORT void
wl_event_source_check(struct wl_event_source *source)
{
wl_list_insert(source->loop->check_list.prev, &source->link);
}
/** Remove an event source from its event loop
*
* \param source The event source to be removed.
* \return Zero.
*
* The event source is removed from the event loop it was created for,
* and is effectively destroyed. This invalidates \c source .
* The dispatch function of the source will no longer be called through this
* source.
*
* \memberof wl_event_source
*/
WL_EXPORT int
wl_event_source_remove(struct wl_event_source *source)
{
struct wl_event_loop *loop = source->loop;
/* We need to explicitly remove the fd, since closing the fd
* isn't enough in case we've dup'ed the fd. */
if (source->fd >= 0) {
epoll_ctl(loop->epoll_fd, EPOLL_CTL_DEL, source->fd, NULL);
close(source->fd);
source->fd = -1;
}
if (source->interface == &timer_source_interface &&
source->fd != TIMER_REMOVED) {
/* Disarm the timer (and the loop's timerfd, if necessary),
* before removing its space in the loop timer heap */
wl_event_source_timer_update(source, 0);
wl_timer_heap_unreserve(&loop->timers);
/* Set the fd field to to indicate that the timer should NOT
* be dispatched in `wl_event_loop_dispatch` */
source->fd = TIMER_REMOVED;
}
wl_list_remove(&source->link);
wl_list_insert(&loop->destroy_list, &source->link);
return 0;
}
static void
wl_event_loop_process_destroy_list(struct wl_event_loop *loop)
{
struct wl_event_source *source, *next;
wl_list_for_each_safe(source, next, &loop->destroy_list, link)
free(source);
wl_list_init(&loop->destroy_list);
}
/** Create a new event loop context
*
* \return A new event loop context object.
*
* This creates a new event loop context. Initially this context is empty.
* Event sources need to be explicitly added to it.
*
* Normally the event loop is run by calling wl_event_loop_dispatch() in
* a loop until the program terminates. Alternatively, an event loop can be
* embedded in another event loop by its file descriptor, see
* wl_event_loop_get_fd().
*
* \memberof wl_event_loop
*/
WL_EXPORT struct wl_event_loop *
wl_event_loop_create(void)
{
struct wl_event_loop *loop;
loop = malloc(sizeof *loop);
if (loop == NULL)
return NULL;
loop->epoll_fd = wl_os_epoll_create_cloexec();
if (loop->epoll_fd < 0) {
free(loop);
return NULL;
}
wl_list_init(&loop->check_list);
wl_list_init(&loop->idle_list);
wl_list_init(&loop->destroy_list);
wl_signal_init(&loop->destroy_signal);
wl_timer_heap_init(&loop->timers, loop);
return loop;
}
/** Destroy an event loop context
*
* \param loop The event loop to be destroyed.
*
* This emits the event loop destroy signal, closes the event loop file
* descriptor, and frees \c loop.
*
* If the event loop has existing sources, those cannot be safely removed
* afterwards. Therefore one must call wl_event_source_remove() on all
* event sources before destroying the event loop context.
*
* \memberof wl_event_loop
*/
WL_EXPORT void
wl_event_loop_destroy(struct wl_event_loop *loop)
{
wl_signal_emit(&loop->destroy_signal, loop);
wl_event_loop_process_destroy_list(loop);
wl_timer_heap_release(&loop->timers);
close(loop->epoll_fd);
free(loop);
}
static bool
post_dispatch_check(struct wl_event_loop *loop)
{
struct epoll_event ep;
struct wl_event_source *source, *next;
bool needs_recheck = false;
ep.events = 0;
wl_list_for_each_safe(source, next, &loop->check_list, link) {
int dispatch_result;
dispatch_result = source->interface->dispatch(source, &ep);
if (dispatch_result < 0) {
wl_log("Source dispatch function returned negative value!");
wl_log("This would previously accidentally suppress a follow-up dispatch");
}
needs_recheck |= dispatch_result != 0;
}
return needs_recheck;
}
/** Dispatch the idle sources
*
* \param loop The event loop whose idle sources are dispatched.
*
* \sa wl_event_loop_add_idle()
* \memberof wl_event_loop
*/
WL_EXPORT void
wl_event_loop_dispatch_idle(struct wl_event_loop *loop)
{
struct wl_event_source_idle *source;
while (!wl_list_empty(&loop->idle_list)) {
source = wl_container_of(loop->idle_list.next,
source, base.link);
source->func(source->base.data);
wl_event_source_remove(&source->base);
}
}
/** Wait for events and dispatch them
*
* \param loop The event loop whose sources to wait for.
* \param timeout The polling timeout in milliseconds.
* \return 0 for success, -1 for polling (or timer update) error.
*
* All the associated event sources are polled. This function blocks until
* any event source delivers an event (idle sources excluded), or the timeout
* expires. A timeout of -1 disables the timeout, causing the function to block
* indefinitely. A timeout of zero causes the poll to always return immediately.
*
* All idle sources are dispatched before blocking. An idle source is destroyed
* when it is dispatched. After blocking, all other ready sources are
* dispatched. Then, idle sources are dispatched again, in case the dispatched
* events created idle sources. Finally, all sources marked with
* wl_event_source_check() are dispatched in a loop until their dispatch
* functions all return zero.
*
* \memberof wl_event_loop
*/
WL_EXPORT int
wl_event_loop_dispatch(struct wl_event_loop *loop, int timeout)
{
struct epoll_event ep[32];
struct wl_event_source *source;
int i, count;
bool has_timers = false;
wl_event_loop_dispatch_idle(loop);
count = epoll_wait(loop->epoll_fd, ep, ARRAY_LENGTH(ep), timeout);
if (count < 0)
return -1;
for (i = 0; i < count; i++) {
source = ep[i].data.ptr;
if (source == &loop->timers.base)
has_timers = true;
}
if (has_timers) {
/* Dispatch timer sources before non-timer sources, so that
* the non-timer sources can not cancel (by calling
* `wl_event_source_timer_update`) the dispatching of the timers
* (Note that timer sources also can't cancel pending non-timer
* sources, since epoll_wait has already been called) */
if (wl_timer_heap_dispatch(&loop->timers) < 0)
return -1;
}
for (i = 0; i < count; i++) {
source = ep[i].data.ptr;
if (source->fd != -1)
source->interface->dispatch(source, &ep[i]);
}
wl_event_loop_process_destroy_list(loop);
wl_event_loop_dispatch_idle(loop);
while (post_dispatch_check(loop));
return 0;
}
/** Get the event loop file descriptor
*
* \param loop The event loop context.
* \return The aggregate file descriptor.
*
* This function returns the aggregate file descriptor, that represents all
* the event sources (idle sources excluded) associated with the given event
* loop context. When any event source makes an event available, it will be
* reflected in the aggregate file descriptor.
*
* When the aggregate file descriptor delivers an event, one can call
* wl_event_loop_dispatch() on the event loop context to dispatch all the
* available events.
*
* \memberof wl_event_loop
*/
WL_EXPORT int
wl_event_loop_get_fd(struct wl_event_loop *loop)
{
return loop->epoll_fd;
}
/** Register a destroy listener for an event loop context
*
* \param loop The event loop context whose destruction to listen for.
* \param listener The listener with the callback to be called.
*
* \sa wl_listener
* \memberof wl_event_loop
*/
WL_EXPORT void
wl_event_loop_add_destroy_listener(struct wl_event_loop *loop,
struct wl_listener *listener)
{
wl_signal_add(&loop->destroy_signal, listener);
}
/** Get the listener struct for the specified callback
*
* \param loop The event loop context to inspect.
* \param notify The destroy callback to find.
* \return The wl_listener registered to the event loop context with
* the given callback pointer.
*
* \memberof wl_event_loop
*/
WL_EXPORT struct wl_listener *
wl_event_loop_get_destroy_listener(struct wl_event_loop *loop,
wl_notify_func_t notify)
{
return wl_signal_get(&loop->destroy_signal, notify);
}