blob: fbaba7d5cb6310b4890af725d49483b686ddc26c [file] [log] [blame]
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Author: dsites@google.com (Dick Sites)
//
#include "tote.h"
#include "lang_script.h" // For LanguageCode in Dump
#include <stdio.h>
#include <string.h> // For memset
namespace CLD2 {
// Take a set of <key, value> pairs and tote them up.
// After explicitly sorting, retrieve top key, value pairs
// Normal use is key=per-script language and value = probability score
Tote::Tote() {
in_use_mask_ = 0;
byte_count_ = 0;
score_count_ = 0;
// No need to initialize values
}
Tote::~Tote() {
}
void Tote::Reinit() {
in_use_mask_ = 0;
byte_count_ = 0;
score_count_ = 0;
// No need to initialize values
}
// Increment count of quadgrams/trigrams/unigrams scored
void Tote::AddScoreCount() {
++score_count_;
}
void Tote::Add(uint8 ikey, int idelta) {
int key_group = ikey >> 2;
uint64 groupmask = (1ULL << key_group);
if ((in_use_mask_ & groupmask) == 0) {
// Initialize this group
gscore_[key_group] = 0;
in_use_mask_ |= groupmask;
}
score_[ikey] += idelta;
}
// Return current top three keys
void Tote::CurrentTopThreeKeys(int* key3) const {
key3[0] = -1;
key3[1] = -1;
key3[2] = -1;
int score3[3] = {-1, -1, -1};
uint64 tempmask = in_use_mask_;
int base = 0;
while (tempmask != 0) {
if (tempmask & 1) {
// Look at four in-use keys
for (int i = 0; i < 4; ++i) {
int insert_me = score_[base + i];
// Favor lower numbers on ties
if (insert_me > score3[2]) {
// Insert
int insert_at = 2;
if (insert_me > score3[1]) {
score3[2] = score3[1];
key3[2] = key3[1];
insert_at = 1;
if (insert_me > score3[0]) {
score3[1] = score3[0];
key3[1] = key3[0];
insert_at = 0;
}
}
score3[insert_at] = insert_me;
key3[insert_at] = base + i;
}
}
}
tempmask >>= 1;
base += 4;
}
}
// Take a set of <key, value> pairs and tote them up.
// After explicitly sorting, retrieve top key, value pairs
// 0xFFFF in key signifies unused
DocTote::DocTote() {
// No need to initialize score_ or value_
incr_count_ = 0;
sorted_ = 0;
memset(closepair_, 0, sizeof(closepair_));
memset(key_, 0xFF, sizeof(key_));
}
DocTote::~DocTote() {
}
void DocTote::Reinit() {
// No need to initialize score_ or value_
incr_count_ = 0;
sorted_ = 0;
memset(closepair_, 0, sizeof(closepair_));
memset(key_, 0xFF, sizeof(key_));
runningscore_.Reinit();
}
// Weight reliability by ibytes
// Also see three-way associative comments above for Tote
void DocTote::Add(uint16 ikey, int ibytes,
int score, int ireliability) {
++incr_count_;
// Look for existing entry in top 2 positions of 3, times 8 columns
int sub0 = ikey & 15;
if (key_[sub0] == ikey) {
value_[sub0] += ibytes;
score_[sub0] += score;
reliability_[sub0] += ireliability * ibytes;
return;
}
// Look for existing entry in other of top 2 positions of 3, times 8 columns
int sub1 = sub0 ^ 8;
if (key_[sub1] == ikey) {
value_[sub1] += ibytes;
score_[sub1] += score;
reliability_[sub1] += ireliability * ibytes;
return;
}
// Look for existing entry in third position of 3, times 8 columns
int sub2 = (ikey & 7) + 16;
if (key_[sub2] == ikey) {
value_[sub2] += ibytes;
score_[sub2] += score;
reliability_[sub2] += ireliability * ibytes;
return;
}
// Allocate new entry
int alloc = -1;
if (key_[sub0] == kUnusedKey) {
alloc = sub0;
} else if (key_[sub1] == kUnusedKey) {
alloc = sub1;
} else if (key_[sub2] == kUnusedKey) {
alloc = sub2;
} else {
// All choices allocated, need to replace smallest one
alloc = sub0;
if (value_[sub1] < value_[alloc]) {alloc = sub1;}
if (value_[sub2] < value_[alloc]) {alloc = sub2;}
}
key_[alloc] = ikey;
value_[alloc] = ibytes;
score_[alloc] = score;
reliability_[alloc] = ireliability * ibytes;
return;
}
// Find subscript of a given packed language, or -1
int DocTote::Find(uint16 ikey) {
if (sorted_) {
// Linear search if sorted
for (int sub = 0; sub < kMaxSize_; ++sub) {
if (key_[sub] == ikey) {return sub;}
}
return -1;
}
// Look for existing entry
int sub0 = ikey & 15;
if (key_[sub0] == ikey) {
return sub0;
}
int sub1 = sub0 ^ 8;
if (key_[sub1] == ikey) {
return sub1;
}
int sub2 = (ikey & 7) + 16;
if (key_[sub2] == ikey) {
return sub2;
}
return -1;
}
// Return current top key
int DocTote::CurrentTopKey() {
int top_key = 0;
int top_value = -1;
for (int sub = 0; sub < kMaxSize_; ++sub) {
if (key_[sub] == kUnusedKey) {continue;}
if (top_value < value_[sub]) {
top_value = value_[sub];
top_key = key_[sub];
}
}
return top_key;
}
// Sort first n entries by decreasing order of value
// If key==0 other fields are not valid, treat value as -1
void DocTote::Sort(int n) {
// This is n**2, but n is small
for (int sub = 0; sub < n; ++sub) {
if (key_[sub] == kUnusedKey) {value_[sub] = -1;}
// Bubble sort key[sub] and entry[sub]
for (int sub2 = sub + 1; sub2 < kMaxSize_; ++sub2) {
if (key_[sub2] == kUnusedKey) {value_[sub2] = -1;}
if (value_[sub] < value_[sub2]) {
// swap
uint16 tmpk = key_[sub];
key_[sub] = key_[sub2];
key_[sub2] = tmpk;
int tmpv = value_[sub];
value_[sub] = value_[sub2];
value_[sub2] = tmpv;
double tmps = score_[sub];
score_[sub] = score_[sub2];
score_[sub2] = tmps;
int tmpr = reliability_[sub];
reliability_[sub] = reliability_[sub2];
reliability_[sub2] = tmpr;
}
}
}
sorted_ = 1;
}
void DocTote::Dump(FILE* f) {
fprintf(f, "DocTote::Dump\n");
for (int sub = 0; sub < kMaxSize_; ++sub) {
if (key_[sub] != kUnusedKey) {
Language lang = static_cast<Language>(key_[sub]);
fprintf(f, "[%2d] %3s %6dB %5dp %4dR,\n", sub, LanguageCode(lang),
value_[sub], score_[sub], reliability_[sub]);
}
}
fprintf(f, " %d chunks scored<br>\n", incr_count_);
}
} // End namespace CLD2