blob: 712b870408a4238867c9f677ddb8514f52f9359a [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library universe;
import '../elements/elements.dart';
import '../dart2jslib.dart';
import '../dart_types.dart';
import '../types/types.dart';
import '../tree/tree.dart';
import '../util/util.dart';
part 'function_set.dart';
part 'side_effects.dart';
class Universe {
/// The set of all directly instantiated classes, that is, classes with a
/// generative constructor that has been called directly and not only through
/// a super-call.
///
/// Invariant: Elements are declaration elements.
// TODO(johnniwinther): [_directlyInstantiatedClasses] and
// [_instantiatedTypes] sets should be merged.
final Set<ClassElement> _directlyInstantiatedClasses =
new Set<ClassElement>();
/// The set of all directly instantiated types, that is, the types of the
/// directly instantiated classes.
///
/// See [_directlyInstantiatedClasses].
final Set<DartType> _instantiatedTypes = new Set<DartType>();
/// The set of all instantiated classes, either directly, as superclasses or
/// as supertypes.
///
/// Invariant: Elements are declaration elements.
final Set<ClassElement> _allInstantiatedClasses = new Set<ClassElement>();
/**
* Documentation wanted -- johnniwinther
*
* Invariant: Elements are declaration elements.
*/
final Set<FunctionElement> staticFunctionsNeedingGetter =
new Set<FunctionElement>();
final Set<FunctionElement> methodsNeedingSuperGetter =
new Set<FunctionElement>();
final Map<String, Set<Selector>> invokedNames =
new Map<String, Set<Selector>>();
final Map<String, Set<Selector>> invokedGetters =
new Map<String, Set<Selector>>();
final Map<String, Set<Selector>> invokedSetters =
new Map<String, Set<Selector>>();
/**
* Fields accessed. Currently only the codegen knows this
* information. The resolver is too conservative when seeing a
* getter and only registers an invoked getter.
*/
final Set<Element> fieldGetters = new Set<Element>();
/**
* Fields set. See comment in [fieldGetters].
*/
final Set<Element> fieldSetters = new Set<Element>();
final Set<DartType> isChecks = new Set<DartType>();
/**
* Set of (live) [:call:] methods whose signatures reference type variables.
*
* A live [:call:] method is one whose enclosing class has been instantiated.
*/
final Set<Element> callMethodsWithFreeTypeVariables = new Set<Element>();
/**
* Set of (live) local functions (closures) whose signatures reference type
* variables.
*
* A live function is one whose enclosing member function has been enqueued.
*/
final Set<Element> closuresWithFreeTypeVariables = new Set<Element>();
/**
* Set of all closures in the program. Used by the mirror tracking system
* to find all live closure instances.
*/
final Set<LocalFunctionElement> allClosures = new Set<LocalFunctionElement>();
/**
* Set of methods in instantiated classes that are potentially
* closurized.
*/
final Set<Element> closurizedMembers = new Set<Element>();
/// All directly instantiated classes, that is, classes with a generative
/// constructor that has been called directly and not only through a
/// super-call.
// TODO(johnniwinther): Improve semantic precision.
Iterable<ClassElement> get directlyInstantiatedClasses {
return _directlyInstantiatedClasses;
}
/// All instantiated classes, either directly, as superclasses or as
/// supertypes.
// TODO(johnniwinther): Improve semantic precision.
Iterable<ClassElement> get allInstantiatedClasses {
return _allInstantiatedClasses;
}
/// All directly instantiated types, that is, the types of the directly
/// instantiated classes.
///
/// See [directlyInstantiatedClasses].
// TODO(johnniwinther): Improve semantic precision.
Iterable<DartType> get instantiatedTypes => _instantiatedTypes;
/// Returns `true` if [cls] is considered to be instantiated, either directly,
/// through subclasses or through subtypes. The latter case only contains
/// spurious information from instatiations through factory constructors and
/// mixins.
// TODO(johnniwinther): Improve semantic precision.
bool isInstantiated(ClassElement cls) {
return _allInstantiatedClasses.contains(cls);
}
/// Register [type] as (directly) instantiated.
///
/// If [byMirrors] is `true`, the instantiation is through mirrors.
// TODO(johnniwinther): Fully enforce the separation between exact, through
// subclass and through subtype instantiated types/classes.
// TODO(johnniwinther): Support unknown type arguments for generic types.
void registerTypeInstantiation(InterfaceType type,
{bool byMirrors: false}) {
_instantiatedTypes.add(type);
ClassElement cls = type.element;
if (!cls.isAbstract
// We can't use the closed-world assumption with native abstract
// classes; a native abstract class may have non-abstract subclasses
// not declared to the program. Instances of these classes are
// indistinguishable from the abstract class.
|| cls.isNative
// Likewise, if this registration comes from the mirror system,
// all bets are off.
// TODO(herhut): Track classes required by mirrors seperately.
|| byMirrors) {
_directlyInstantiatedClasses.add(cls);
}
// TODO(johnniwinther): Replace this by separate more specific mappings.
if (!_allInstantiatedClasses.add(cls)) return;
cls.allSupertypes.forEach((InterfaceType supertype) {
_allInstantiatedClasses.add(supertype.element);
});
}
bool hasMatchingSelector(Set<Selector> selectors,
Element member,
World world) {
if (selectors == null) return false;
for (Selector selector in selectors) {
if (selector.appliesUnnamed(member, world)) return true;
}
return false;
}
bool hasInvocation(Element member, World world) {
return hasMatchingSelector(invokedNames[member.name], member, world);
}
bool hasInvokedGetter(Element member, World world) {
return hasMatchingSelector(invokedGetters[member.name], member, world);
}
bool hasInvokedSetter(Element member, World world) {
return hasMatchingSelector(invokedSetters[member.name], member, world);
}
DartType registerIsCheck(DartType type, Compiler compiler) {
type = type.unalias(compiler);
// Even in checked mode, type annotations for return type and argument
// types do not imply type checks, so there should never be a check
// against the type variable of a typedef.
isChecks.add(type);
return type;
}
void forgetElement(Element element, Compiler compiler) {
allClosures.remove(element);
slowDirectlyNestedClosures(element).forEach(compiler.forgetElement);
closurizedMembers.remove(element);
fieldSetters.remove(element);
fieldGetters.remove(element);
_directlyInstantiatedClasses.remove(element);
_allInstantiatedClasses.remove(element);
if (element is ClassElement) {
assert(invariant(
element, element.thisType.isRaw,
message: 'Generic classes not supported (${element.thisType}).'));
_instantiatedTypes
..remove(element.rawType)
..remove(element.thisType);
}
}
// TODO(ahe): Replace this method with something that is O(1), for example,
// by using a map.
List<LocalFunctionElement> slowDirectlyNestedClosures(Element element) {
// Return new list to guard against concurrent modifications.
return new List<LocalFunctionElement>.from(
allClosures.where((LocalFunctionElement closure) {
return closure.executableContext == element;
}));
}
}
class SelectorKind {
final String name;
final int hashCode;
const SelectorKind(this.name, this.hashCode);
static const SelectorKind GETTER = const SelectorKind('getter', 0);
static const SelectorKind SETTER = const SelectorKind('setter', 1);
static const SelectorKind CALL = const SelectorKind('call', 2);
static const SelectorKind OPERATOR = const SelectorKind('operator', 3);
static const SelectorKind INDEX = const SelectorKind('index', 4);
String toString() => name;
}
/// The structure of the arguments at a call-site.
// TODO(johnniwinther): Should these be cached?
// TODO(johnniwinther): Should isGetter/isSetter be part of the call structure
// instead of the selector?
class CallStructure {
static const CallStructure NO_ARGS = const CallStructure.unnamed(0);
static const CallStructure ONE_ARG = const CallStructure.unnamed(1);
static const CallStructure TWO_ARGS = const CallStructure.unnamed(2);
/// The numbers of arguments of the call. Includes named arguments.
final int argumentCount;
/// The number of named arguments of the call.
int get namedArgumentCount => 0;
/// The number of positional argument of the call.
int get positionalArgumentCount => argumentCount;
const CallStructure.unnamed(this.argumentCount);
factory CallStructure(int argumentCount, [List<String> namedArguments]) {
if (namedArguments == null || namedArguments.isEmpty) {
return new CallStructure.unnamed(argumentCount);
}
return new NamedCallStructure(argumentCount, namedArguments);
}
/// `true` if this call has named arguments.
bool get isNamed => false;
/// `true` if this call has no named arguments.
bool get isUnnamed => true;
/// The names of the named arguments in call-site order.
List<String> get namedArguments => const <String>[];
/// The names of the named arguments in canonicalized order.
List<String> getOrderedNamedArguments() => const <String>[];
/// A description of the argument structure.
String structureToString() => 'arity=$argumentCount';
String toString() => 'CallStructure(${structureToString()})';
Selector get callSelector {
return new Selector(SelectorKind.CALL, Selector.CALL_NAME, this);
}
bool match(CallStructure other) {
if (identical(this, other)) return true;
return this.argumentCount == other.argumentCount
&& this.namedArgumentCount == other.namedArgumentCount
&& sameNames(this.namedArguments, other.namedArguments);
}
// TODO(johnniwinther): Cache hash code?
int get hashCode {
return Hashing.listHash(namedArguments,
Hashing.objectHash(argumentCount, namedArguments.length));
}
bool operator ==(other) {
if (other is! CallStructure) return false;
return match(other);
}
bool signatureApplies(FunctionElement function) {
if (Elements.isUnresolved(function)) return false;
FunctionSignature parameters = function.functionSignature;
if (argumentCount > parameters.parameterCount) return false;
int requiredParameterCount = parameters.requiredParameterCount;
int optionalParameterCount = parameters.optionalParameterCount;
if (positionalArgumentCount < requiredParameterCount) return false;
if (!parameters.optionalParametersAreNamed) {
// We have already checked that the number of arguments are
// not greater than the number of parameters. Therefore the
// number of positional arguments are not greater than the
// number of parameters.
assert(positionalArgumentCount <= parameters.parameterCount);
return namedArguments.isEmpty;
} else {
if (positionalArgumentCount > requiredParameterCount) return false;
assert(positionalArgumentCount == requiredParameterCount);
if (namedArgumentCount > optionalParameterCount) return false;
Set<String> nameSet = new Set<String>();
parameters.optionalParameters.forEach((Element element) {
nameSet.add(element.name);
});
for (String name in namedArguments) {
if (!nameSet.contains(name)) return false;
// TODO(5213): By removing from the set we are checking
// that we are not passing the name twice. We should have this
// check in the resolver also.
nameSet.remove(name);
}
return true;
}
}
/**
* Returns a `List` with the evaluated arguments in the normalized order.
*
* [compileDefaultValue] is a function that returns a compiled constant
* of an optional argument that is not in [compiledArguments].
*
* Precondition: `this.applies(element, world)`.
*
* Invariant: [element] must be the implementation element.
*/
/*<T>*/ List/*<T>*/ makeArgumentsList(
Link<Node> arguments,
FunctionElement element,
/*T*/ compileArgument(Node argument),
/*T*/ compileDefaultValue(ParameterElement element)) {
assert(invariant(element, element.isImplementation));
List/*<T>*/ result = new List();
FunctionSignature parameters = element.functionSignature;
parameters.forEachRequiredParameter((ParameterElement element) {
result.add(compileArgument(arguments.head));
arguments = arguments.tail;
});
if (!parameters.optionalParametersAreNamed) {
parameters.forEachOptionalParameter((ParameterElement element) {
if (!arguments.isEmpty) {
result.add(compileArgument(arguments.head));
arguments = arguments.tail;
} else {
result.add(compileDefaultValue(element));
}
});
} else {
// Visit named arguments and add them into a temporary list.
List compiledNamedArguments = [];
for (; !arguments.isEmpty; arguments = arguments.tail) {
NamedArgument namedArgument = arguments.head;
compiledNamedArguments.add(compileArgument(namedArgument.expression));
}
// Iterate over the optional parameters of the signature, and try to
// find them in [compiledNamedArguments]. If found, we use the
// value in the temporary list, otherwise the default value.
parameters.orderedOptionalParameters.forEach((ParameterElement element) {
int foundIndex = namedArguments.indexOf(element.name);
if (foundIndex != -1) {
result.add(compiledNamedArguments[foundIndex]);
} else {
result.add(compileDefaultValue(element));
}
});
}
return result;
}
/**
* Fills [list] with the arguments in the order expected by
* [callee], and where [caller] is a synthesized element
*
* [compileArgument] is a function that returns a compiled version
* of a parameter of [callee].
*
* [compileConstant] is a function that returns a compiled constant
* of an optional argument that is not in the parameters of [callee].
*
* Returns [:true:] if the signature of the [caller] matches the
* signature of the [callee], [:false:] otherwise.
*/
static /*<T>*/ bool addForwardingElementArgumentsToList(
ConstructorElement caller,
List/*<T>*/ list,
ConstructorElement callee,
/*T*/ compileArgument(ParameterElement element),
/*T*/ compileConstant(ParameterElement element)) {
FunctionSignature signature = caller.functionSignature;
Map<Node, ParameterElement> mapping = <Node, ParameterElement>{};
// TODO(ngeoffray): This is a hack that fakes up AST nodes, so
// that we can call [addArgumentsToList].
Link<Node> computeCallNodesFromParameters() {
LinkBuilder<Node> builder = new LinkBuilder<Node>();
signature.forEachRequiredParameter((ParameterElement element) {
Node node = element.node;
mapping[node] = element;
builder.addLast(node);
});
if (signature.optionalParametersAreNamed) {
signature.forEachOptionalParameter((ParameterElement element) {
mapping[element.initializer] = element;
builder.addLast(new NamedArgument(null, null, element.initializer));
});
} else {
signature.forEachOptionalParameter((ParameterElement element) {
Node node = element.node;
mapping[node] = element;
builder.addLast(node);
});
}
return builder.toLink();
}
/*T*/ internalCompileArgument(Node node) {
return compileArgument(mapping[node]);
}
Link<Node> nodes = computeCallNodesFromParameters();
// Synthesize a structure for the call.
// TODO(ngeoffray): Should the resolver do it instead?
List<String> namedParameters;
if (signature.optionalParametersAreNamed) {
namedParameters = signature.optionalParameters.mapToList((e) => e.name);
}
CallStructure callStructure =
new CallStructure(signature.parameterCount, namedParameters);
if (!callStructure.signatureApplies(callee)) {
return false;
}
list.addAll(callStructure.makeArgumentsList(
nodes,
callee,
internalCompileArgument,
compileConstant));
return true;
}
static bool sameNames(List<String> first, List<String> second) {
for (int i = 0; i < first.length; i++) {
if (first[i] != second[i]) return false;
}
return true;
}
}
///
class NamedCallStructure extends CallStructure {
final List<String> namedArguments;
final List<String> _orderedNamedArguments = <String>[];
NamedCallStructure(int argumentCount, this.namedArguments)
: super.unnamed(argumentCount) {
assert(namedArguments.isNotEmpty);
}
@override
bool get isNamed => true;
@override
bool get isUnnamed => false;
@override
int get namedArgumentCount => namedArguments.length;
@override
int get positionalArgumentCount => argumentCount - namedArgumentCount;
@override
List<String> getOrderedNamedArguments() {
if (!_orderedNamedArguments.isEmpty) return _orderedNamedArguments;
_orderedNamedArguments.addAll(namedArguments);
_orderedNamedArguments.sort((String first, String second) {
return first.compareTo(second);
});
return _orderedNamedArguments;
}
@override
String structureToString() {
return 'arity=$argumentCount, named=[${namedArguments.join(', ')}]';
}
}
class Selector {
final SelectorKind kind;
final Name memberName;
final CallStructure callStructure;
final int hashCode;
int get argumentCount => callStructure.argumentCount;
int get namedArgumentCount => callStructure.namedArgumentCount;
int get positionalArgumentCount => callStructure.positionalArgumentCount;
List<String> get namedArguments => callStructure.namedArguments;
String get name => memberName.text;
LibraryElement get library => memberName.library;
static const Name INDEX_NAME = const PublicName("[]");
static const Name INDEX_SET_NAME = const PublicName("[]=");
static const Name CALL_NAME = const PublicName(Compiler.CALL_OPERATOR_NAME);
Selector.internal(this.kind,
this.memberName,
this.callStructure,
this.hashCode) {
assert(kind == SelectorKind.INDEX ||
(memberName != INDEX_NAME && memberName != INDEX_SET_NAME));
assert(kind == SelectorKind.OPERATOR ||
kind == SelectorKind.INDEX ||
!Elements.isOperatorName(memberName.text));
assert(kind == SelectorKind.CALL ||
kind == SelectorKind.GETTER ||
kind == SelectorKind.SETTER ||
Elements.isOperatorName(memberName.text));
}
// TODO(johnniwinther): Extract caching.
static Map<int, List<Selector>> canonicalizedValues =
new Map<int, List<Selector>>();
factory Selector(SelectorKind kind,
Name name,
CallStructure callStructure) {
// TODO(johnniwinther): Maybe use equality instead of implicit hashing.
int hashCode = computeHashCode(kind, name, callStructure);
List<Selector> list = canonicalizedValues.putIfAbsent(hashCode,
() => <Selector>[]);
for (int i = 0; i < list.length; i++) {
Selector existing = list[i];
if (existing.match(kind, name, callStructure)) {
assert(existing.hashCode == hashCode);
assert(existing.mask == null);
return existing;
}
}
Selector result = new Selector.internal(
kind, name, callStructure, hashCode);
list.add(result);
return result;
}
factory Selector.fromElement(Element element) {
String name = element.name;
if (element.isFunction) {
if (name == '[]') {
return new Selector.index();
} else if (name == '[]=') {
return new Selector.indexSet();
}
FunctionSignature signature =
element.asFunctionElement().functionSignature;
int arity = signature.parameterCount;
List<String> namedArguments = null;
if (signature.optionalParametersAreNamed) {
namedArguments =
signature.orderedOptionalParameters.map((e) => e.name).toList();
}
if (element.isOperator) {
// Operators cannot have named arguments, however, that doesn't prevent
// a user from declaring such an operator.
return new Selector(
SelectorKind.OPERATOR,
new PublicName(name),
new CallStructure(arity, namedArguments));
} else {
return new Selector.call(
name, element.library, arity, namedArguments);
}
} else if (element.isSetter) {
return new Selector.setter(name, element.library);
} else if (element.isGetter) {
return new Selector.getter(name, element.library);
} else if (element.isField) {
return new Selector.getter(name, element.library);
} else if (element.isConstructor) {
return new Selector.callConstructor(name, element.library);
} else {
throw new SpannableAssertionFailure(
element, "Can't get selector from $element");
}
}
factory Selector.getter(String name, LibraryElement library)
=> new Selector(SelectorKind.GETTER,
new Name(name, library),
CallStructure.NO_ARGS);
factory Selector.getterFrom(Selector selector)
=> new Selector(SelectorKind.GETTER,
selector.memberName,
CallStructure.NO_ARGS);
factory Selector.setter(String name, LibraryElement library)
=> new Selector(SelectorKind.SETTER,
new Name(name, library, isSetter: true),
CallStructure.ONE_ARG);
factory Selector.unaryOperator(String name) => new Selector(
SelectorKind.OPERATOR,
new PublicName(Elements.constructOperatorName(name, true)),
CallStructure.NO_ARGS);
factory Selector.binaryOperator(String name) => new Selector(
SelectorKind.OPERATOR,
new PublicName(Elements.constructOperatorName(name, false)),
CallStructure.ONE_ARG);
factory Selector.index()
=> new Selector(SelectorKind.INDEX, INDEX_NAME,
CallStructure.ONE_ARG);
factory Selector.indexSet()
=> new Selector(SelectorKind.INDEX, INDEX_SET_NAME,
CallStructure.TWO_ARGS);
factory Selector.call(String name,
LibraryElement library,
int arity,
[List<String> namedArguments])
=> new Selector(SelectorKind.CALL,
new Name(name, library),
new CallStructure(arity, namedArguments));
factory Selector.callClosure(int arity, [List<String> namedArguments])
=> new Selector(SelectorKind.CALL, CALL_NAME,
new CallStructure(arity, namedArguments));
factory Selector.callClosureFrom(Selector selector)
=> new Selector(SelectorKind.CALL, CALL_NAME, selector.callStructure);
factory Selector.callConstructor(String name, LibraryElement library,
[int arity = 0,
List<String> namedArguments])
=> new Selector(SelectorKind.CALL, new Name(name, library),
new CallStructure(arity, namedArguments));
factory Selector.callDefaultConstructor()
=> new Selector(
SelectorKind.CALL,
const PublicName(''),
CallStructure.NO_ARGS);
bool get isGetter => kind == SelectorKind.GETTER;
bool get isSetter => kind == SelectorKind.SETTER;
bool get isCall => kind == SelectorKind.CALL;
bool get isClosureCall => isCall && memberName == CALL_NAME;
bool get isIndex => kind == SelectorKind.INDEX && argumentCount == 1;
bool get isIndexSet => kind == SelectorKind.INDEX && argumentCount == 2;
bool get isOperator => kind == SelectorKind.OPERATOR;
bool get isUnaryOperator => isOperator && argumentCount == 0;
/** Check whether this is a call to 'assert'. */
bool get isAssert => isCall && identical(name, "assert");
bool get hasExactMask => false;
TypeMask get mask => null;
Selector get asUntyped => this;
/**
* The member name for invocation mirrors created from this selector.
*/
String get invocationMirrorMemberName =>
isSetter ? '$name=' : name;
int get invocationMirrorKind {
const int METHOD = 0;
const int GETTER = 1;
const int SETTER = 2;
int kind = METHOD;
if (isGetter) {
kind = GETTER;
} else if (isSetter) {
kind = SETTER;
}
return kind;
}
bool appliesUnnamed(Element element, World world) {
assert(sameNameHack(element, world));
return appliesUntyped(element, world);
}
bool appliesUntyped(Element element, World world) {
assert(sameNameHack(element, world));
if (Elements.isUnresolved(element)) return false;
if (memberName.isPrivate && memberName.library != element.library) {
// TODO(johnniwinther): Maybe this should be
// `memberName != element.memberName`.
return false;
}
if (world.isForeign(element)) return true;
if (element.isSetter) return isSetter;
if (element.isGetter) return isGetter || isCall;
if (element.isField) {
return isSetter
? !element.isFinal && !element.isConst
: isGetter || isCall;
}
if (isGetter) return true;
if (isSetter) return false;
return signatureApplies(element);
}
bool signatureApplies(FunctionElement function) {
return callStructure.signatureApplies(function);
}
bool sameNameHack(Element element, World world) {
// TODO(ngeoffray): Remove workaround checks.
return element.isConstructor ||
name == element.name ||
name == 'assert' && world.isAssertMethod(element);
}
bool applies(Element element, World world) {
if (!sameNameHack(element, world)) return false;
return appliesUnnamed(element, world);
}
bool match(SelectorKind kind,
Name memberName,
CallStructure callStructure) {
return this.kind == kind
&& this.memberName == memberName
&& this.callStructure.match(callStructure);
}
static int computeHashCode(SelectorKind kind,
Name name,
CallStructure callStructure) {
// Add bits from name and kind.
int hash = Hashing.mixHashCodeBits(name.hashCode, kind.hashCode);
// Add bits from the call structure.
return Hashing.mixHashCodeBits(hash, callStructure.hashCode);
}
String toString() {
String type = '';
if (mask != null) type = ', mask=$mask';
return 'Selector($kind, $name, ${callStructure.structureToString()}$type)';
}
Selector extendIfReachesAll(Compiler compiler) {
return new TypedSelector(
compiler.typesTask.dynamicType, this, compiler.world);
}
Selector toCallSelector() => new Selector.callClosureFrom(this);
}
class TypedSelector extends Selector {
final Selector asUntyped;
final TypeMask mask;
TypedSelector.internal(this.mask, Selector selector, int hashCode)
: asUntyped = selector,
super.internal(selector.kind,
selector.memberName,
selector.callStructure,
hashCode) {
assert(mask != null);
assert(asUntyped.mask == null);
}
factory TypedSelector(TypeMask mask, Selector selector, World world) {
if (!world.hasClosedWorldAssumption) {
// TODO(johnniwinther): Improve use of TypedSelector in an open world.
bool isNullable = mask.isNullable;
mask = world.compiler.typesTask.dynamicType;
if (isNullable) {
mask = mask.nullable();
}
}
// TODO(johnniwinther): Allow more TypeSelector kinds during resoluton.
assert(world.isClosed || mask.isExact);
if (selector.mask == mask) return selector;
Selector untyped = selector.asUntyped;
Map<TypeMask, TypedSelector> map = world.canonicalizedValues
.putIfAbsent(untyped, () => new Map<TypeMask, TypedSelector>());
TypedSelector result = map[mask];
if (result == null) {
int hashCode = Hashing.mixHashCodeBits(untyped.hashCode, mask.hashCode);
result = map[mask] = new TypedSelector.internal(mask, untyped, hashCode);
}
return result;
}
factory TypedSelector.exact(
ClassElement base, Selector selector, World world)
=> new TypedSelector(new TypeMask.exact(base, world), selector,
world);
factory TypedSelector.subclass(
ClassElement base, Selector selector, World world)
=> new TypedSelector(new TypeMask.subclass(base, world),
selector, world);
factory TypedSelector.subtype(
ClassElement base, Selector selector, World world)
=> new TypedSelector(new TypeMask.subtype(base, world),
selector, world);
bool appliesUnnamed(Element element, World world) {
assert(sameNameHack(element, world));
// [TypedSelector] are only used after resolution.
if (!element.isClassMember) return false;
// A closure can be called through any typed selector:
// class A {
// get foo => () => 42;
// bar() => foo(); // The call to 'foo' is a typed selector.
// }
if (element.enclosingClass.isClosure) {
return appliesUntyped(element, world);
}
if (!mask.canHit(element, this, world)) return false;
return appliesUntyped(element, world);
}
Selector extendIfReachesAll(Compiler compiler) {
bool canReachAll = compiler.enabledInvokeOn
&& mask.needsNoSuchMethodHandling(this, compiler.world);
return canReachAll
? new TypedSelector(
compiler.typesTask.dynamicType, this, compiler.world)
: this;
}
}