blob: 55c6c36c97e2194caf32ea015c489607c08a4e98 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_OS_LINUX)
#include "vm/os.h"
#include <errno.h> // NOLINT
#include <limits.h> // NOLINT
#include <malloc.h> // NOLINT
#include <time.h> // NOLINT
#include <sys/resource.h> // NOLINT
#include <sys/time.h> // NOLINT
#include <sys/types.h> // NOLINT
#include <sys/syscall.h> // NOLINT
#include <sys/stat.h> // NOLINT
#include <fcntl.h> // NOLINT
#include <unistd.h> // NOLINT
#include "platform/utils.h"
#include "vm/code_observers.h"
#include "vm/dart.h"
#include "vm/debuginfo.h"
#include "vm/isolate.h"
#include "vm/lockers.h"
#include "vm/os_thread.h"
#include "vm/vtune.h"
#include "vm/zone.h"
namespace dart {
// Linux CodeObservers.
DEFINE_FLAG(bool, generate_gdb_symbols, false,
"Generate symbols of generated dart functions for debugging with GDB");
DEFINE_FLAG(bool, generate_perf_events_symbols, false,
"Generate events symbols for profiling with perf");
DEFINE_FLAG(bool, generate_perf_jitdump, false,
"Writes jitdump data for profiling with perf annotate");
class PerfCodeObserver : public CodeObserver {
public:
PerfCodeObserver() : out_file_(NULL) {
Dart_FileOpenCallback file_open = Isolate::file_open_callback();
if (file_open == NULL) {
return;
}
const char* format = "/tmp/perf-%" Pd ".map";
intptr_t pid = getpid();
intptr_t len = OS::SNPrint(NULL, 0, format, pid);
char* filename = new char[len + 1];
OS::SNPrint(filename, len + 1, format, pid);
out_file_ = (*file_open)(filename, true);
delete[] filename;
}
~PerfCodeObserver() {
Dart_FileCloseCallback file_close = Isolate::file_close_callback();
if ((file_close == NULL) || (out_file_ == NULL)) {
return;
}
(*file_close)(out_file_);
}
virtual bool IsActive() const {
return FLAG_generate_perf_events_symbols && (out_file_ != NULL);
}
virtual void Notify(const char* name,
uword base,
uword prologue_offset,
uword size,
bool optimized) {
Dart_FileWriteCallback file_write = Isolate::file_write_callback();
if ((file_write == NULL) || (out_file_ == NULL)) {
return;
}
const char* format = "%" Px " %" Px " %s%s\n";
const char* marker = optimized ? "*" : "";
intptr_t len = OS::SNPrint(NULL, 0, format, base, size, marker, name);
char* buffer = Isolate::Current()->current_zone()->Alloc<char>(len + 1);
OS::SNPrint(buffer, len + 1, format, base, size, marker, name);
{
MutexLocker ml(CodeObservers::mutex());
(*file_write)(buffer, len, out_file_);
}
}
private:
void* out_file_;
DISALLOW_COPY_AND_ASSIGN(PerfCodeObserver);
};
class GdbCodeObserver : public CodeObserver {
public:
GdbCodeObserver() { }
virtual bool IsActive() const {
return FLAG_generate_gdb_symbols;
}
virtual void Notify(const char* name,
uword base,
uword prologue_offset,
uword size,
bool optimized) {
if (prologue_offset > 0) {
// In order to ensure that gdb sees the first instruction of a function
// as the prologue sequence we register two symbols for the cases when
// the prologue sequence is not the first instruction:
// <name>_entry is used for code preceding the prologue sequence.
// <name> for rest of the code (first instruction is prologue sequence).
const char* kFormat = "%s_%s";
intptr_t len = OS::SNPrint(NULL, 0, kFormat, name, "entry");
char* pname = Isolate::Current()->current_zone()->Alloc<char>(len + 1);
OS::SNPrint(pname, (len + 1), kFormat, name, "entry");
DebugInfo::RegisterSection(pname, base, size);
DebugInfo::RegisterSection(name,
(base + prologue_offset),
(size - prologue_offset));
} else {
DebugInfo::RegisterSection(name, base, size);
}
}
private:
DISALLOW_COPY_AND_ASSIGN(GdbCodeObserver);
};
#define CLOCKFD 3
#define FD_TO_CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD) // NOLINT
class JitdumpCodeObserver : public CodeObserver {
public:
JitdumpCodeObserver() {
ASSERT(FLAG_generate_perf_jitdump);
out_file_ = NULL;
clock_fd_ = -1;
clock_id_ = kInvalidClockId;
code_sequence_ = 0;
Dart_FileOpenCallback file_open = Isolate::file_open_callback();
Dart_FileWriteCallback file_write = Isolate::file_write_callback();
Dart_FileCloseCallback file_close = Isolate::file_close_callback();
if ((file_open == NULL) || (file_write == NULL) || (file_close == NULL)) {
return;
}
// The Jitdump code observer writes all jitted code into the file
// 'perf.jitdump' in the current working directory. We open the file once
// on initialization and close it when the VM is going down.
{
// Open the file.
const char* filename = "perf.jitdump";
out_file_ = (*file_open)(filename, true);
ASSERT(out_file_ != NULL);
// Write the jit dump header.
WriteHeader();
}
// perf uses an internal clock and because our output is merged with data
// collected by perf our timestamps must be consistent. Using
// the posix-clock-module (/dev/trace_clock) as our time source ensures
// we are consistent with the perf timestamps.
clock_id_ = kInvalidClockId;
clock_fd_ = open("/dev/trace_clock", O_RDONLY);
if (clock_fd_ >= 0) {
clock_id_ = FD_TO_CLOCKID(clock_fd_);
}
}
~JitdumpCodeObserver() {
Dart_FileCloseCallback file_close = Isolate::file_close_callback();
if (file_close == NULL) {
return;
}
ASSERT(out_file_ != NULL);
(*file_close)(out_file_);
if (clock_fd_ >= 0) {
close(clock_fd_);
}
}
virtual bool IsActive() const {
return FLAG_generate_perf_jitdump && (out_file_ != NULL);
}
virtual void Notify(const char* name,
uword base,
uword prologue_offset,
uword size,
bool optimized) {
WriteCodeLoad(name, base, prologue_offset, size, optimized);
}
private:
static const uint32_t kJitHeaderMagic = 0x4A695444;
static const uint32_t kJitHeaderMagicSw = 0x4454694A;
static const uint32_t kJitHeaderVersion = 0x1;
static const uint32_t kElfMachIA32 = 3;
static const uint32_t kElfMachX64 = 62;
static const uint32_t kElfMachARM = 40;
// TODO(zra): Find the right ARM64 constant.
static const uint32_t kElfMachARM64 = 40;
static const uint32_t kElfMachMIPS = 10;
static const int kInvalidClockId = -1;
struct jitheader {
uint32_t magic; /* characters "jItD" */
uint32_t version; /* header version */
uint32_t total_size; /* total size of header */
uint32_t elf_mach; /* elf mach target */
uint32_t pad1; /* reserved */
uint32_t pid; /* JIT process id */
uint64_t timestamp; /* timestamp */
};
/* record prefix (mandatory in each record) */
struct jr_prefix {
uint32_t id;
uint32_t total_size;
uint64_t timestamp;
};
enum jit_record_type {
JIT_CODE_LOAD = 0,
/* JIT_CODE_MOVE = 1, */
/* JIT_CODE_DEBUG_INFO = 2, */
/* JIT_CODE_CLOSE = 3, */
JIT_CODE_MAX = 4,
};
struct jr_code_load {
struct jr_prefix prefix;
uint32_t pid;
uint32_t tid;
uint64_t vma;
uint64_t code_addr;
uint64_t code_size;
uint64_t code_index;
};
const char* GenerateCodeName(const char* name, bool optimized) {
const char* format = "%s%s";
const char* marker = optimized ? "*" : "";
intptr_t len = OS::SNPrint(NULL, 0, format, marker, name);
char* buffer = Isolate::Current()->current_zone()->Alloc<char>(len + 1);
OS::SNPrint(buffer, len + 1, format, marker, name);
return buffer;
}
uint32_t GetElfMach() {
#if defined(TARGET_ARCH_IA32)
return kElfMachIA32;
#elif defined(TARGET_ARCH_X64)
return kElfMachX64;
#elif defined(TARGET_ARCH_ARM)
return kElfMachARM;
#elif defined(TARGET_ARCH_ARM64)
return kElfMachARM64;
#elif defined(TARGET_ARCH_MIPS)
return kElfMachMIPS;
#else
#error Unknown architecture.
#endif
}
pid_t gettid() {
// libc doesn't wrap the Linux-specific gettid system call.
// Note that this thread id is not the same as the posix thread id.
return syscall(SYS_gettid);
}
uint64_t GetKernelTimeNanos() {
if (clock_id_ != kInvalidClockId) {
struct timespec ts;
int r = clock_gettime(clock_id_, &ts);
ASSERT(r == 0);
uint64_t nanos = static_cast<uint64_t>(ts.tv_sec) *
static_cast<uint64_t>(kNanosecondsPerSecond);
nanos += static_cast<uint64_t>(ts.tv_nsec);
return nanos;
} else {
return OS::GetCurrentTimeMicros() * kNanosecondsPerMicrosecond;
}
}
void WriteHeader() {
Dart_FileWriteCallback file_write = Isolate::file_write_callback();
ASSERT(file_write != NULL);
ASSERT(out_file_ != NULL);
jitheader header;
header.magic = kJitHeaderMagic;
header.version = kJitHeaderVersion;
header.total_size = sizeof(jitheader);
header.pad1 = 0x0;
header.elf_mach = GetElfMach();
header.pid = getpid();
header.timestamp = GetKernelTimeNanos();
{
MutexLocker ml(CodeObservers::mutex());
(*file_write)(&header, sizeof(header), out_file_);
}
}
void WriteCodeLoad(const char* name, uword base, uword prologue_offset,
uword code_size, bool optimized) {
Dart_FileWriteCallback file_write = Isolate::file_write_callback();
ASSERT(file_write != NULL);
ASSERT(out_file_ != NULL);
const char* code_name = GenerateCodeName(name, optimized);
const intptr_t code_name_size = strlen(code_name) + 1;
uint8_t* code_pointer = reinterpret_cast<uint8_t*>(base);
jr_code_load code_load;
code_load.prefix.id = JIT_CODE_LOAD;
code_load.prefix.total_size =
sizeof(code_load) + code_name_size + code_size;
code_load.prefix.timestamp = GetKernelTimeNanos();
code_load.pid = getpid();
code_load.tid = gettid();
code_load.vma = 0x0; // Our addresses are absolute.
code_load.code_addr = base;
code_load.code_size = code_size;
{
MutexLocker ml(CodeObservers::mutex());
// Set this field under the index.
code_load.code_index = code_sequence_++;
// Write structures.
(*file_write)(&code_load, sizeof(code_load), out_file_);
(*file_write)(code_name, code_name_size, out_file_);
(*file_write)(code_pointer, code_size, out_file_);
}
}
void* out_file_;
int clock_fd_;
int clock_id_;
uint64_t code_sequence_;
DISALLOW_COPY_AND_ASSIGN(JitdumpCodeObserver);
};
const char* OS::Name() {
return "linux";
}
intptr_t OS::ProcessId() {
return static_cast<intptr_t>(getpid());
}
static bool LocalTime(int64_t seconds_since_epoch, tm* tm_result) {
time_t seconds = static_cast<time_t>(seconds_since_epoch);
if (seconds != seconds_since_epoch) return false;
struct tm* error_code = localtime_r(&seconds, tm_result);
return error_code != NULL;
}
const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// If unsuccessful, return an empty string like V8 does.
return (succeeded && (decomposed.tm_zone != NULL)) ? decomposed.tm_zone : "";
}
int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// If unsuccessful, return zero like V8 does.
return succeeded ? static_cast<int>(decomposed.tm_gmtoff) : 0;
}
int OS::GetLocalTimeZoneAdjustmentInSeconds() {
// TODO(floitsch): avoid excessive calls to tzset?
tzset();
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// Note that Unix and Dart disagree on the sign.
return static_cast<int>(-timezone);
}
int64_t OS::GetCurrentTimeMillis() {
return GetCurrentTimeMicros() / 1000;
}
int64_t OS::GetCurrentTimeMicros() {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) {
UNREACHABLE();
return 0;
}
return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
}
void* OS::AlignedAllocate(intptr_t size, intptr_t alignment) {
const int kMinimumAlignment = 16;
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
void* p = memalign(alignment, size);
if (p == NULL) {
UNREACHABLE();
}
return p;
}
void OS::AlignedFree(void* ptr) {
free(ptr);
}
// TODO(5411554): May need to hoist these architecture dependent code
// into a architecture specific file e.g: os_ia32_linux.cc
intptr_t OS::ActivationFrameAlignment() {
#if defined(TARGET_ARCH_IA32) || \
defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64)
const int kMinimumAlignment = 16;
#elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS)
const int kMinimumAlignment = 8;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default stack alignment for
// testing purposes.
// Flags::DebugIsInt("stackalign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
return alignment;
}
intptr_t OS::PreferredCodeAlignment() {
#if defined(TARGET_ARCH_IA32) || \
defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64)
const int kMinimumAlignment = 32;
#elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS)
const int kMinimumAlignment = 16;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default code alignment for
// testing purposes.
// Flags::DebugIsInt("codealign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
ASSERT(alignment <= OS::kMaxPreferredCodeAlignment);
return alignment;
}
bool OS::AllowStackFrameIteratorFromAnotherThread() {
return false;
}
int OS::NumberOfAvailableProcessors() {
return sysconf(_SC_NPROCESSORS_ONLN);
}
void OS::Sleep(int64_t millis) {
int64_t micros = millis * kMicrosecondsPerMillisecond;
SleepMicros(micros);
}
void OS::SleepMicros(int64_t micros) {
struct timespec req; // requested.
struct timespec rem; // remainder.
int64_t seconds = micros / kMicrosecondsPerSecond;
micros = micros - seconds * kMicrosecondsPerSecond;
int64_t nanos = micros * kNanosecondsPerMicrosecond;
req.tv_sec = seconds;
req.tv_nsec = nanos;
while (true) {
int r = nanosleep(&req, &rem);
if (r == 0) {
break;
}
// We should only ever see an interrupt error.
ASSERT(errno == EINTR);
// Copy remainder into requested and repeat.
req = rem;
}
}
// TODO(regis, iposva): When this function is no longer called from the
// CodeImmutability test in object_test.cc, it will be called only from the
// simulator, which means that only the Intel implementation is needed.
void OS::DebugBreak() {
#if defined(HOST_ARCH_X64) || defined(HOST_ARCH_IA32)
asm("int $3");
#elif defined(HOST_ARCH_ARM) && !defined(__THUMBEL__)
asm("svc #0x9f0001"); // __ARM_NR_breakpoint
#elif defined(HOST_ARCH_ARM) && defined(__THUMBEL__)
UNIMPLEMENTED();
#elif defined(HOST_ARCH_MIPS) || defined(HOST_ARCH_ARM64)
UNIMPLEMENTED();
#else
#error Unsupported architecture.
#endif
}
char* OS::StrNDup(const char* s, intptr_t n) {
return strndup(s, n);
}
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(stdout, format, args);
va_end(args);
}
void OS::VFPrint(FILE* stream, const char* format, va_list args) {
vfprintf(stream, format, args);
fflush(stream);
}
int OS::SNPrint(char* str, size_t size, const char* format, ...) {
va_list args;
va_start(args, format);
int retval = VSNPrint(str, size, format, args);
va_end(args);
return retval;
}
int OS::VSNPrint(char* str, size_t size, const char* format, va_list args) {
int retval = vsnprintf(str, size, format, args);
if (retval < 0) {
FATAL1("Fatal error in OS::VSNPrint with format '%s'", format);
}
return retval;
}
bool OS::StringToInt64(const char* str, int64_t* value) {
ASSERT(str != NULL && strlen(str) > 0 && value != NULL);
int32_t base = 10;
char* endptr;
int i = 0;
if (str[0] == '-') {
i = 1;
}
if ((str[i] == '0') &&
(str[i + 1] == 'x' || str[i + 1] == 'X') &&
(str[i + 2] != '\0')) {
base = 16;
}
errno = 0;
*value = strtoll(str, &endptr, base);
return ((errno == 0) && (endptr != str) && (*endptr == 0));
}
void OS::RegisterCodeObservers() {
if (FLAG_generate_perf_events_symbols) {
CodeObservers::Register(new PerfCodeObserver);
}
if (FLAG_generate_gdb_symbols) {
CodeObservers::Register(new GdbCodeObserver);
}
if (FLAG_generate_perf_jitdump) {
CodeObservers::Register(new JitdumpCodeObserver);
}
#if defined(DART_VTUNE_SUPPORT)
CodeObservers::Register(new VTuneCodeObserver);
#endif
}
void OS::PrintErr(const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(stderr, format, args);
va_end(args);
}
void OS::InitOnce() {
// TODO(5411554): For now we check that initonce is called only once,
// Once there is more formal mechanism to call InitOnce we can move
// this check there.
static bool init_once_called = false;
ASSERT(init_once_called == false);
init_once_called = true;
}
void OS::Shutdown() {
}
void OS::Abort() {
abort();
}
void OS::Exit(int code) {
exit(code);
}
} // namespace dart
#endif // defined(TARGET_OS_LINUX)