blob: 07799c158e9dc9b72086afe4a7f28d68f266d9d9 [file] [log] [blame]
/* elfutils::dwarf_output -- DWARF file generation in -*- C++ -*-
Copyright (C) 2009, 2010 Red Hat, Inc.
This file is part of elfutils.
This file is free software; you can redistribute it and/or modify
it under the terms of either
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at
your option) any later version
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at
your option) any later version
or both in parallel, as here.
elfutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>. */
#ifndef _ELFUTILS_DWARF_OUTPUT
#define _ELFUTILS_DWARF_OUTPUT 1
#include "dwarf"
#include "dwarf_edit"
#include "dwarf_comparator"
#include <algorithm>
#include <functional>
#include <iterator>
#include <vector>
#include <stack>
#include <queue>
#include <bitset>
#include <set>
#include <tr1/unordered_set>
/* Read the comments for elfutils::dwarf first.
The elfutils::dwarf_output class is template-compatible with the logical
containers described in elfutils::dwarf and elfutils::dwarf_edit.
The dwarf_output representation of the DWARF data is immutable once
created. The only way to create the object is by copy-construction
from another compatible object: dwarf, dwarf_edit, or dwarf_output.
Construction collects all the information necessary to generate the
formatted DWARF sections. */
namespace elfutils
{
class dwarf_output_collector;
class dwarf_output
{
private:
friend class dwarf_output_collector;
friend class dwarf_data;
typedef dwarf_output me;
public:
typedef dwarf_data::source_file source_file;
typedef dwarf_data::line_entry<source_file> line_entry;
typedef dwarf_data::line_table<line_entry> line_table;
typedef dwarf_data::line_info_table<line_table> line_info_table;
typedef dwarf_data::dwarf_enum dwarf_enum;
typedef dwarf_data::range_list range_list;
typedef dwarf_data::location_attr location_attr;
class compile_units_type;
class debug_info_entry;
class attr_value;
protected:
static inline void never_copy ()
{
throw std::logic_error
("must copy-construct top-level dwarf_output object instead");
}
template<typename input> class copier; // Below.
#if 0
/* An iterator adapter for use in iterator-based constructors.
collectify (iterator) yields an iterator on input where *i
constructs output::value_type (input::value_type v, collector). */
template<typename input, typename output>
static inline typename subr::argifier<input, output,
dwarf_output_collector &>::result_type
collectify (const typename input::const_iterator &in,
dwarf_output_collector &c)
{
return subr::argifier<input, output, dwarf_output_collector &> (c) (in);
}
#endif
/* Every kind of value is made by calling into the copier, which
returns a const pointer into a value_set living in the collector. */
struct value
: public dwarf_data::value<dwarf_output, false>
{
typedef const value_dispatch value_cell_type;
typedef dwarf_data::value<dwarf_output> data;
template<typename copier_type> struct maker;
template<typename arg_type>
static inline maker<arg_type> make (arg_type &arg)
{
return maker<arg_type> (arg);
}
struct value_reference; // Defined below.
};
struct die_info;
typedef std::pair<const debug_info_entry, die_info> die_info_pair;
public:
class debug_info_entry
{
friend class dwarf_output;
friend class dwarf_output_collector;
__attribute__((used)) die_info_pair *info () const
{
return reinterpret_cast<die_info_pair *>
(const_cast<debug_info_entry *> (this));
}
public:
class attributes_type
: public dwarf_data::attributes_type<dwarf_output, value>
{
friend class dwarf_output;
private:
typedef dwarf_data::attributes_type<dwarf_output, value> _base;
size_t _m_hash;
inline attributes_type ()
: _base (), _m_hash (0)
{}
struct same_attr : public std::equal_to<value_type>
{
bool operator () (const value_type &a,
const value_type &b) const
{
return a.first == b.first && a.second.is (b.second);
}
};
inline void do_hash ()
{
// Precompute our hash value based on our contents.
for (iterator i = begin (); i != end (); ++i)
subr::hash_combine (_m_hash, *i);
}
inline const _base &base () const
{
return *this;
}
public:
template<typename iter>
inline attributes_type (const iter &from, const iter &to)
: _base (from, to), _m_hash (0)
{
do_hash ();
}
friend class subr::hashed_hasher<attributes_type>;
typedef subr::hashed_hasher<attributes_type> hasher;
template<typename input, typename arg_type>
inline attributes_type (const input &other, arg_type &c)
: _base (other, c), _m_hash (0)
{
do_hash ();
}
inline bool is (const attributes_type &these) const
{
return (_m_hash == these._m_hash
&& size () == these.size ()
&& std::equal (begin (), end (), these.begin (),
same_attr ()));
}
};
class children_type
: public std::vector<die_info_pair *>
{
friend class dwarf_output;
friend class dwarf_output_collector;
protected:
typedef std::vector<die_info_pair *> _base;
size_t _m_hash;
inline void set_hash ()
{
_m_hash = 0;
for (_base::iterator i = _base::begin (); i != _base::end (); ++i)
subr::hash_combine (_m_hash, (uintptr_t) *i);
}
inline children_type () {}
inline const _base &info () const
{
return *this;
}
struct deref
: public std::unary_function<die_info_pair *,
const debug_info_entry &>
{
inline deref (...) {}
inline const debug_info_entry &operator () (die_info_pair *) const;
};
template<typename circular>
inline void reify_children (die_info_pair *, bool, unsigned int &)
const;
public:
template<typename iter>
inline children_type (const iter &first, const iter &last)
: _base (first, last)
{
set_hash ();
}
friend class subr::hashed_hasher<children_type>;
typedef subr::hashed_hasher<children_type> hasher;
typedef debug_info_entry value_type;
typedef debug_info_entry &reference;
typedef debug_info_entry &const_reference;
typedef debug_info_entry *pointer;
typedef debug_info_entry *const_pointer;
inline bool is (const children_type &these) const
{
return (_m_hash == these._m_hash
&& size () == these.size ()
&& std::equal (_base::begin (), _base::end (),
these._base::begin ()));
}
typedef subr::wrapped_input_iterator<
_base, deref, const debug_info_entry> const_iterator;
typedef const_iterator iterator;
inline const_iterator begin () const
{
return const_iterator (_base::begin (), subr::nothing ());
}
inline const_iterator end () const
{
return const_iterator (_base::end (), subr::nothing ());
}
};
typedef children_type::iterator pointer;
typedef children_type::const_iterator const_pointer;
protected:
const children_type *_m_children;
const attributes_type *_m_attributes;
size_t _m_hash;
int _m_tag;
// This is can only be used by the children_type constructor,
// which immediately calls set.
inline debug_info_entry ()
: _m_children (NULL),
_m_attributes (NULL),
_m_hash (0),
_m_tag (-1)
{}
inline debug_info_entry (int what,
const children_type *childs,
const attributes_type *attrs)
: _m_children (childs),
_m_attributes (attrs),
_m_tag (what)
{
set_hash ();
}
inline void set_hash ()
{
_m_hash = _m_tag;
subr::hash_combine (_m_hash, *_m_attributes);
subr::hash_combine (_m_hash, *_m_children);
}
public:
friend class subr::hashed_hasher<debug_info_entry>;
typedef subr::hashed_hasher<debug_info_entry> hasher;
inline bool is (const debug_info_entry &that) const
{
return (_m_hash == that._m_hash
&& _m_tag == that._m_tag
&& _m_attributes == that._m_attributes
&& _m_children == that._m_children);
}
inline std::string to_string () const;
inline int tag () const
{
return _m_tag;
}
inline bool has_children () const
{
return !_m_children->empty ();
}
inline const children_type &children () const
{
return *_m_children;
}
inline const attributes_type &attributes () const
{
return *_m_attributes;
}
template<typename die>
bool operator== (const die &other) const
{
return (other.tag () == tag ()
&& other.attributes () == attributes ()
&& other.children () == children ());
}
template<typename die>
bool operator!= (const die &other) const
{
return !(*this == other);
}
inline dwarf::debug_info_entry::identity_type identity () const
{
return (uintptr_t) this;
}
inline ::Dwarf_Off offset () const
{
return identity ();
}
inline ::Dwarf_Off cost () const
{
return 0;
}
};
struct value::value_reference
: public dwarf_data::value<dwarf_output, false>::value_reference
{
typedef dwarf_data::value<dwarf_output, false>::value_reference _base;
// Default constructor: reference to nowhere, invalid.
inline value_reference ()
: _base ()
{}
inline value_reference (const value_type &i, subr::nothing &dummy)
: _base (i, dummy)
{}
/* The hash of a value_reference is its referent's local hash,
which only takes non-reference values into account. This
method is virtual for the circular_reference case, below. */
inline size_t hash () const
{
struct die_info *info = get_die_info ();
return info->_m_reference_hash;
}
virtual die_info *get_die_info () const
{
return &ref->info ()->second;
}
};
class attr_value
: public dwarf_data::attr_value<dwarf_output, value>
{
friend class dwarf_output;
private:
typedef dwarf_data::attr_value<dwarf_output, value> _base;
public:
inline std::string to_string () const;
/* These constructors can only be used by the containers
used in the collector. The attributes_type map in an
actual debug_info_entry object is always const. */
inline attr_value ()
: _base ()
{}
inline attr_value (const attr_value &other)
: _base ()
{
_m_value = other._m_value;
}
/* Two identical values in fact share the same cell in the collector.
So we can use simple pointer comparison here. */
inline bool is (const attr_value &that) const
{
return _m_value == that._m_value;
}
// The is () test works only on a dwarf_output sharing the same collector.
inline bool operator== (const attr_value &other) const
{
return is (other) || _base::operator== (other);
}
inline bool operator!= (const attr_value &other) const
{
return !(*this == other);
}
/* We can use the _m_value pointer itself as a perfect hash,
because all identical values share the same cell in the
collector. The exception to this is for references. See
value_reference::hash. */
struct hasher : public std::unary_function<attr_value, size_t>
{
inline size_t operator () (const attr_value &v) const
{
const value::value_reference *ref
= dynamic_cast<const value::value_reference *> (v._m_value);
return ref == NULL ? (uintptr_t) v._m_value : ref->hash ();
}
};
};
typedef debug_info_entry::attributes_type::value_type attribute;
typedef dwarf_data::compile_unit<dwarf_output> compile_unit;
/* Main container anchoring all the output.
This is the only container that actually lives in the dwarf_output
object. All others live in the dwarf_output_collector's sets, and
we return const references to those copies.
This list is actually mutable as a std::list. But note that you
should never remove a compile_unit, though you can reorder the
list. Nothing is ever removed from the collector, so your final
output file can wind up with unreferenced data being encoded. If
you do remove any elements, then you should start a fresh collector
and construct a new dwarf_output object by copying using that
collector (or, equivalently, call o.compile_units ().recollect (C)
on the new collector C). */
class compile_units_type
: public dwarf_data::compile_units_type<dwarf_output>
{
friend class dwarf_output;
private:
inline compile_units_type (const compile_units_type &)
: dwarf_data::compile_units_type<dwarf_output> ()
{
never_copy ();
}
template<typename input, typename copier_type>
static inline void
cu_maker (const iterator &out,
const typename input::const_iterator &in,
bool, // last-sibling
copier_type &c)
{
c.make_unit (in, out);
}
// Constructor copying CUs from input container.
template<typename input, typename copier>
inline compile_units_type (const input &other, copier &c)
{
subr::create_container (this, other, c, cu_maker<input, copier>);
}
public:
// Default constructor: an empty container, no CUs.
inline compile_units_type () {}
};
private:
compile_units_type _m_units;
public:
class compile_units_type &compile_units ()
{
return _m_units;
}
const class compile_units_type &compile_units () const
{
return _m_units;
}
private:
// Bind default copy-constructor and prevent it.
inline dwarf_output (const dwarf_output &)
{
throw std::logic_error ("copying dwarf_output requires a collector");
}
public:
// Constructor for an empty file, can add to its compile_units ().
inline dwarf_output () {}
/* Constructor copying CUs from an input file (can be any of dwarf,
dwarf_edit, or dwarf_output). Supply your own copier to reuse a
copier across multiple input files. This is worthwhile only if
they share a string table and such in memory. */
template<typename input>
inline dwarf_output (const input &dw, copier<input> &maker)
: _m_units (dw.compile_units (), maker)
{}
// Normal construction instantiates a copier derived from the collector.
template<typename input>
inline dwarf_output (const input &dw, dwarf_output_collector &c)
{
copier<input> maker (c);
compile_units_type tmp_units (dw.compile_units (), maker);
_m_units.swap (tmp_units);
}
template<typename file>
inline bool operator== (const file &other) const
{
return compile_units () == other.compile_units ();
}
template<typename file>
inline bool operator!= (const file &other) const
{
return !(*this == other);
}
protected:
struct die_info
{
die_info_pair *_m_parent;
std::queue<value::value_reference *> _m_refs;
std::set< ::Dwarf_Off> _m_originals; // XXX fix for cross-file sharing input
size_t _m_original_cost;
std::bitset<2> _m_with_sibling;
unsigned int _m_uses;
/* The local hash of the die, set when die_info is created.
Uses only none-reference values. */
size_t _m_local_hash;
/* The reference hash of the die, based on just reference
attribute values. Needs all local hashes of referenced dies
to be set. */
size_t _m_reference_hash;
inline die_info (size_t local_hash)
: _m_parent (NULL), _m_refs (),
_m_originals (), _m_original_cost (0),
_m_with_sibling (), _m_uses (0),
_m_local_hash (local_hash),
_m_reference_hash (0)
{}
inline ~die_info ()
{
while (!_m_refs.empty ())
{
delete _m_refs.front ();
_m_refs.pop ();
}
}
inline void original (unsigned int &incoming_count,
::Dwarf_Off off, ::Dwarf_Off cost)
{
assert ((::Dwarf_Off) (size_t) cost == cost);
if (_m_originals.insert (off).second)
{
++incoming_count;
_m_original_cost += cost;
}
}
inline std::set< ::Dwarf_Off>::size_type count_originals () const
{
return _m_originals.size ();
}
inline ptrdiff_t original_cost () const
{
return _m_original_cost;
}
inline ::Dwarf_Off original_offset () const
{
return *_m_originals.begin ();
}
template<typename streamish>
inline streamish &dump_originals (streamish &out) const
{
out << std::hex;
for (typename std::set< ::Dwarf_Off>::const_iterator i
= _m_originals.begin ();
i !=_m_originals.end ();
++i)
out << " " << *i;
return out << std::dec;
}
inline ptrdiff_t output_cost () const
{
// XXX temporary proxy
return (double (_m_original_cost) / double (count_originals ())) + 0.5;
}
inline std::ostream &list_originals (std::ostream &o) const
{
for (std::set< ::Dwarf_Off>::const_iterator i = _m_originals.begin ();
i != _m_originals.end ();
++i)
o << " " << std::hex << *i;
return o;
}
inline unsigned int uses () const
{
return _m_uses;
}
inline void assert_unused () const
{
assert (uses () == 0);
assert (_m_with_sibling.none ());
assert (_m_refs.empty ());
}
inline void self (value::value_reference *ref)
{
_m_refs.push (ref);
}
inline void
self (const debug_info_entry::pointer &ref)
{
subr::nothing dummy;
self (new value::value_reference (ref, dummy));
}
inline void
self (const debug_info_entry::children_type::_base::const_iterator &ref)
{
self (debug_info_entry::pointer (ref, subr::nothing ()));
}
inline bool selfless () const
{
return _m_refs.empty ();
}
inline value::value_reference *self () const
{
assert (!selfless ());
return _m_refs.front ();
}
template<typename circular>
inline void
reify_refs (const debug_info_entry::pointer &ref)
{
for (size_t n = _m_refs.size (); n > 0; --n)
{
value::value_reference *self_ref = _m_refs.front ();
self_ref->ref = ref;
_m_refs.pop ();
_m_refs.push (self_ref);
circular *circle = dynamic_cast<circular *> (self_ref);
if (circle != NULL && !circle->final ())
circle->placed ();
}
}
template<typename circular>
inline void
placed (die_info_pair *parent, const debug_info_entry::pointer &ref,
bool have_sibling, unsigned int &total)
{
// Record first parent.
if (_m_parent == NULL)
{
assert (uses () == 0 || parent == NULL);
_m_parent = parent;
}
else
assert (uses () > 0);
if (selfless ())
{
assert (uses () == 0);
self (ref);
}
else
reify_refs<circular> (ref);
++total;
++_m_uses;
_m_with_sibling[have_sibling] = true;
}
};
};
// Explicit specializations.
template<>
std::string to_string<dwarf_output::debug_info_entry>
(const dwarf_output::debug_info_entry &);
inline std::string dwarf_output::debug_info_entry::to_string () const
{
return elfutils::to_string (*this); // Use that.
}
template<>
std::string
to_string<dwarf_output::attribute> (const dwarf_output::attribute &);
template<>
std::string
to_string<dwarf_output::attr_value> (const dwarf_output::attr_value &);
inline std::string dwarf_output::attr_value::to_string () const
{
return elfutils::to_string (*this); // Use that.
}
template<typename copier_type>
struct dwarf_output::value::maker
{
inline explicit maker (copier_type &) {}
template<typename input>
inline void make (const value_dispatch *&v, value_string *&,
int, const input &x, copier_type &c)
{
v = c ().add_string (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_identifier *&,
int, const input &x, copier_type &c)
{
v = c ().add_identifier (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_reference *&,
int, const input &x, copier_type &c)
{
c.add_reference (x, &v);
}
template<typename input>
inline void make (const value_dispatch *&v, value_flag *&,
int, const input &x, copier_type &c)
{
v = c ().add_flag (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_address *&,
int, const input &x, copier_type &c)
{
v = c ().add_address (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_rangelistptr *&,
int, const input &x, copier_type &c)
{
v = c ().add_ranges (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_lineptr *&,
int, const input &x, copier_type &c)
{
v = c ().add_line_info (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_constant *&,
int, const input &x, copier_type &c)
{
v = c ().add_constant (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_constant_block *&,
int, const input &x, copier_type &c)
{
v = c ().add_constant_block (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_dwarf_constant *&,
int, const input &x, copier_type &c)
{
v = c ().add_dwarf_constant (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_source_file *&,
int attr, const input &x, copier_type &c)
{
v = c ().add_source_file (attr, x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_source_line *&,
int, const input &x, copier_type &c)
{
v = c ().add_source_line (x);
}
template<typename input>
inline void make (const value_dispatch *&v, value_source_column *&,
int, const input &x, copier_type &c)
{
v = c ().add_source_column (x);
}
// XXX macptr
template<typename input>
inline void make (const value_dispatch *&v, value_location *&,
int, const input &x, copier_type &c)
{
v = c ().add_location (x);
}
};
template<>
struct dwarf_output::value::maker<subr::nothing>
{
inline explicit maker (subr::nothing &) {}
template<typename... args>
inline void make (args&&...)
{
throw std::logic_error ("dwarf_output cannot be default-constructed");
}
};
template<>
inline subr::nostream &
dwarf_output::die_info::dump_originals (subr::nostream &out) const
{
return out;
}
/* This is the wrapper in the guts of a children_type iterator.
It turns the real pointer we store into a debug_info_entry
reference for the generic tree-walk API. */
inline const dwarf_output::debug_info_entry &
dwarf_output::debug_info_entry::children_type::deref::operator ()
(dwarf_output::die_info_pair *p) const
{
return p->first;
}
/* This is called when a children_type is installed freshly in the collector.
Fill in its back pointers. */
template<typename circular>
inline void
dwarf_output::debug_info_entry::children_type::
reify_children (die_info_pair *parent, bool placed, unsigned int &total) const
{
_base::const_iterator i = _base::begin ();
bool have_sibling = i != _base::end ();
while (have_sibling)
{
const const_iterator here (i, subr::nothing ());
have_sibling = ++i != _base::end ();
die_info &child = (*here.base ())->second;
if (placed)
child.placed<circular> (parent, here, have_sibling, total);
else
child.reify_refs<circular> (here);
}
}
class dwarf_output_collector
{
friend class dwarf_output;
private:
unsigned int _m_total;
unsigned int _m_incoming;
typedef dwarf_output::die_info die_info;
typedef dwarf_output::die_info_pair die_info_pair;
typedef dwarf_output::debug_info_entry die_type;
typedef die_type::attributes_type attrs_type;
typedef die_type::children_type children_type;
typedef children_type::const_iterator die_ptr;
// Simple value sets for leaf types.
subr::value_set<dwarf_output::value::value_string> _m_strings;
subr::value_set<dwarf_output::value::value_identifier> _m_identifiers;
subr::value_set<dwarf_output::value::value_address> _m_address;
subr::value_set<dwarf_output::value::value_rangelistptr> _m_ranges;
subr::value_set<dwarf_output::value::value_lineptr> _m_line_info;
subr::value_set<dwarf_output::value::value_constant> _m_constants;
subr::value_set<dwarf_output::value::value_constant_block> _m_const_block;
subr::value_set<dwarf_output::value::value_dwarf_constant> _m_dwarf_const;
subr::value_set<dwarf_output::value::value_source_file> _m_source_file;
subr::value_set<dwarf_output::value::value_source_line> _m_source_line;
subr::value_set<dwarf_output::value::value_source_column> _m_source_column;
subr::value_set<dwarf_output::value::value_location> _m_locations;
// The set of Boolean flags is a doubleton.
static const dwarf_output::value::value_flag flag_true;
static const dwarf_output::value::value_flag flag_false;
static inline const dwarf_output::value::value_flag *flag (bool flag)
{
return flag ? &flag_true : &flag_false;
}
// Set of attribute maps.
typedef std::pair<attrs_type, int> attrs_pair;
subr::dynamic_equality_set<attrs_pair> _m_attr_sets;
template<typename match_type>
inline const attrs_pair *
add_attributes (int tag, const attrs_type &candidate, match_type &matcher)
{
return _m_attr_sets.add (std::make_pair (candidate, tag), matcher);
}
// Set of children lists.
subr::identity_set<children_type> _m_broods;
inline const children_type *
add_children (const children_type &candidate, bool &fresh)
{
std::pair<subr::identity_set<children_type>::iterator, bool> p
= _m_broods.insert (candidate);
const children_type &result = *p.first;
fresh = p.second;
return &result;
}
// Set of unique DIEs.
typedef subr::identity_map<die_type, die_info> die_map;
die_map _m_unique;
inline die_info_pair *add_entry (int tag,
const children_type *children,
const attrs_type *attrs,
die_info *info)
{
std::pair <die_map::iterator, bool>
ins = _m_unique.insert (std::make_pair (die_type (tag, children, attrs),
*info));
die_info_pair &x = *ins.first;
if (ins.second)
x.second.assert_unused ();
return &x;
}
struct stats_cmp
: public std::binary_function<const die_map::value_type *,
const die_map::value_type *,
void>
{
inline bool operator () (const die_map::value_type *a,
const die_map::value_type *b) const
{
// Sort by number of input entries collected into this one entry.
if (a->second.count_originals () != b->second.count_originals ())
return a->second.count_originals () > b->second.count_originals ();
// Secondarily sort by aggregate input cost.
if (a->second.original_cost () != b->second.original_cost ())
return a->second.original_cost () > b->second.original_cost ();
// Finally, sort by input file order.
return a->second.original_offset () > b->second.original_offset ();
}
};
typedef std::multiset<const die_map::value_type *, stats_cmp
> die_stats_order;
struct die_stats_sorter
: public std::unary_function<die_map::value_type, void>
{
die_stats_order &_m_order;
inline explicit die_stats_sorter (die_stats_order &o) : _m_order (o) {}
inline void operator () (const die_map::value_type &elt)
{
_m_order.insert (&elt);
}
};
static void die_stats (std::ostream &out, const die_map::value_type *elt)
{
const die_info *info = &elt->second;
out << std::dec << info->uses ()
<< "\thash=" << std::hex << subr::hash_this (elt->first)
<< "\t(" << info->_m_with_sibling.to_string () << ") "
<< std::dec << info->original_cost ()
<< " (" << (info->original_cost () - info->output_cost ())
<< ")\t" << to_string (elt->first) << "\t";
info->list_originals (out)
<< "\n";
}
struct attr_collision
{
std::ostream &_m_out;
inline explicit attr_collision (std::ostream &out) : _m_out (out) {}
inline void
operator () (size_t hash,
const subr::dynamic_equality_set<attrs_pair>::bucket_type &b)
const
{
_m_out << "attrs bucket " << std::hex << hash
<< std::dec << ": " << b.size () << " collisions\n";
subr::for_each (b, *this);
}
inline void operator () (const attrs_pair &attrs) const
{
_m_out << "\t" << dwarf::tags::name (attrs.second)
<< " " << attrs.first.size ();
subr::for_each (attrs.first, *this);
_m_out << "\n";
}
inline void operator () (const attrs_type::value_type &attr) const
{
_m_out << " " << dwarf::attributes::name (attr.first);
}
};
const bool _m_ignore_context;
inline dwarf_output_collector (const dwarf_output_collector &)
: _m_ignore_context (false)
{
throw std::logic_error ("cannot copy-construct");
}
public:
inline dwarf_output_collector (bool ignore = true) // XXX
: _m_total (0), _m_incoming (0), _m_ignore_context (ignore)
{}
inline bool ignore_context () const
{
return _m_ignore_context;
}
void stats (std::ostream &out = std::cout) const
{
out << "collected " << std::dec << _m_unique.size ()
<< " unique of " << _m_total << " total from "
<< _m_incoming << " DIEs\n";
subr::container_hash_stats (out, "strings", _m_strings);
subr::container_hash_stats (out, "identifiers", _m_identifiers);
subr::container_hash_stats (out, "address", _m_address);
subr::container_hash_stats (out, "ranges", _m_ranges);
subr::container_hash_stats (out, "line_info", _m_line_info);
subr::container_hash_stats (out, "constants", _m_constants);
subr::container_hash_stats (out, "const_block", _m_const_block);
subr::container_hash_stats (out, "dwarf_const", _m_dwarf_const);
subr::container_hash_stats (out, "source_file", _m_source_file);
subr::container_hash_stats (out, "source_line", _m_source_line);
subr::container_hash_stats (out, "source_column", _m_source_column);
subr::container_hash_stats (out, "locations", _m_locations);
subr::container_hash_stats (out, "broods", _m_broods);
_m_attr_sets.hash_stats (out, "attr_sets", attr_collision (out));
die_stats_order ordered;
subr::for_each (_m_unique, die_stats_sorter (ordered));
subr::for_each (ordered, std::bind1st (std::ptr_fun (die_stats), out));
}
};
template<typename dw>
class dwarf_output::copier
{
friend class dwarf_output;
private:
typedef typename dw::debug_info_entry input_die;
typedef typename input_die::children_type::const_iterator input_die_ptr;
dwarf_output_collector *_m_collector;
/* A copier::entry represents one dw::debug_info_entry from the input,
indexed by identity. With real input files (dw=dwarf), that means
one input entry for each unique DIE offset in each file. (We also
record its offset in the input file, just for use in debugging and
statistics output.) An entry is in one of four states:
undefined: we have seen references in attributes, but have not yet
seen the entry itself in the copying walk of the input DIE tree;
pending: the entry is in the midst of being copied, or it has
references to non-final entries;
final: the entry is finished and stored in the collector, but
is not yet pointed to by any real children_type vector;
placed: the entry is final and at least one logical parent's
children_type vector is also finished and stored in the collector,
permitting final bookkeeping and reference iterator updates.
Whenever there are no undefined entries outstanding, it should by
definition be possible to turn every pending entry into a final
entry. To avoid complex bookkeeping, we simply keep track of the
total count of undefined entries. When we first encounter an entry
or a reference to it before we've copied, we increment that count.
Upon completing the copying of an entry, we decrement it. If that
makes the count reach zero, we immediately "finalize" the entry,
which is recursive on all its references and children not yet final.
*/
struct entry; // Below.
struct entry_copier; // Below.
struct entry_finalizer; // Below.
/* An attr_value cell points to one of these when it's a reference to
an entry not already in the collector at finalization time, i.e. a
circular reference. To compare circular references during attribute
finalization, we follow the pending () pointer; see dwarf_pending,
below. Thereafter, the base type's ref element is initialized and
we can use that directly. */
class circular_reference
: public value::value_reference
{
private:
const std::vector<entry *> *_m_entry;
bool _m_final;
inline circular_reference (const circular_reference &)
: value::value_reference ()
{
throw std::logic_error ("cannot copy-construct");
}
public:
inline circular_reference (const entry *die, copier *)
: value::value_reference (),
_m_entry (new std::vector<entry *> (1, const_cast<entry *> (die))),
_m_final (false)
{
die->dump () << " new circular_reference " << this << "\n";
}
inline bool final () const
{
// XXX was return _m_entry == NULL;
return _m_final;
}
inline typename std::vector<entry *>::const_iterator pending () const
{
return _m_entry->begin ();
}
inline entry *pending_entry () const
{
return *pending ();
}
// We've been stored in the collector, so we are no longer pending.
inline void placed ()
{
pending_entry ()->dump () << " placed circular_reference "
<< this << "\n";
// XXX Keeping around for local hash...
_m_final = true;
// delete _m_entry;
// _m_entry = NULL;
}
inline ~circular_reference ()
{
if (unlikely (_m_entry != NULL))
{
pending_entry ()->dump () << " destroy circular_reference "
<< this << "\n";
delete _m_entry;
}
}
/* We have a special case for a reference attribute that is part
of a circular chain. It gets calculated from the
pending_entry. */
virtual die_info *get_die_info () const
{
return pending_entry ()->get_die_info ();
}
};
struct pending_entry
{
/* Pointers to each entry that appears in _m_attributes.
When a referent is already final, the entry * does not
appear in the attr_value and does not count here. */
std::stack<const value::value_dispatch **> _m_pending_refs;
// Set if we are attempting to finalize this entry right now.
entry_finalizer *_m_finalizing;
// Reference to ourself, pre-built in a circularity.
circular_reference *_m_self;
/* Cache of the final entry we already know we will become.
We'll set this when the walk of a reference comparison hits
this entry while finalizing another entry and records that it
is identical to an existing final entry. When the main walk
doing finalization hits us, we can short-circuit matching our
redundant entry in the collector sets. */
die_info_pair *_m_matched;
std::set<uintptr_t> _m_mismatched;
typedef dwarf_data::attributes_type<dwarf_output, value> attr_map;
attr_map _m_attributes;
std::vector<entry *> _m_children;
const int _m_tag;
// Set if _m_children contains any entries not already final.
bool _m_unfinished_children;
// The die_info that will be used when putting the die into
// the collector. Stores local hash as soon as all children
// are defined in defined_self ().
die_info *_m_info;
inline pending_entry (int tag)
: _m_finalizing (NULL), _m_self (NULL), _m_matched (NULL),
_m_tag (tag), _m_unfinished_children (false), _m_info (NULL)
{}
inline ~pending_entry ()
{
if (unlikely (_m_self != NULL))
{
if (_m_self->final ())
entry::debug () << "XXX ~pending_entry _m_self is final\n";
else
_m_self->pending_entry ()->dump () << " ~pending_entry _m_self\n";
delete _m_self;
}
}
inline typename std::vector<entry *>::const_iterator
child (typename std::vector<entry *>::size_type i) const
{
return _m_children.begin () + i;
}
/* Finalize each pending entry that we refer to.
This is called only when we have a non-empty _m_pending_refs. */
inline void finalize_refs (copier *c)
{
do
{
const value::value_dispatch **const attr = _m_pending_refs.top ();
const entry *ref = dynamic_cast<const entry *> (*attr);
if (ref != NULL)
*attr = const_cast<entry *> (ref)->finalize_ref (c);
_m_pending_refs.pop ();
}
while (!_m_pending_refs.empty ());
}
// Finalize each unfinished child.
inline void finalize_children (copier *c)
{
_m_unfinished_children = false;
subr::for_each
(_m_children,
std::bind2nd (std::mem_fun (&entry::get_finalized),
std::make_pair (c, &_m_unfinished_children)));
}
/* This is called from finalize_ref (below) when we are
resolving a circular reference attribute. We cache the
uninitialized reference in _m_self, and return it. */
inline value::value_reference *
make_circular_reference (const entry *self, copier *c)
{
if (_m_self == NULL)
_m_self = new circular_reference (self, c);
return _m_self;
}
typedef std::pair <debug_info_entry::attributes_type, int> attrs_pair;
struct attrs_matcher
{
copier *_m_copier;
inline explicit attrs_matcher (copier *c) : _m_copier (c) {}
inline bool operator () (const attrs_pair &a, const attrs_pair &b)
{
return (a.second == b.second
&& _m_copier->attrs_match (a.first, b.first));
}
};
/* We can only get here when all our children have been finalized.
So all we have to do is fetch that pointer. */
static inline die_info_pair *get_final_child (entry *child)
{
assert (child->_m_final != NULL);
return child->_m_final;
}
typedef typename subr::wrapped_input_iterator<
std::vector<entry *>,
std::pointer_to_unary_function<entry *, die_info_pair *>
> final_children_getter;
typedef typename final_children_getter::
template copy<debug_info_entry::children_type> get_final_children;
inline size_t get_reference_hash (std::vector<const entry *> &stack) const
{
assert (_m_info != NULL);
// Could already have been set by forward reference.
if (_m_info->_m_reference_hash != 0)
return _m_info->_m_reference_hash;
size_t rhash = _m_info->_m_local_hash;
size_t attr_rhashes = 0;
for (attr_map::const_iterator it = _m_attributes.begin ();
it != _m_attributes.end ();
++it)
{
// XXX XOR is for order irrelevance, but shouldn't be necessary.
// See also calculate_local_hash, which does the same.
const entry *ref
= dynamic_cast<const entry *> (it->second._m_value);
if (ref != NULL)
{
// Workaround weird cases of self-referential DIE.
// This really is a bug in the producer and dwarflint
// should warn about it. But it is easy to work around
// so just do it for now, by ignoring such values.
if (ref->_m_pending == this)
continue;
else
attr_rhashes ^= ref->get_reference_hash (stack);
}
}
subr::hash_combine (rhash, attr_rhashes);
return rhash;
}
inline size_t calculate_local_hash ()
{
// Calculate the local hash for this new die.
// XOR the attribute values together (so order doesn't matter)
// but exclude reference attributes values (just include
// their tag). XXX - shouldn't be necessary, double check.
size_t lhash = _m_tag;
size_t attr_hash = 0;
for (attr_map::const_iterator it = _m_attributes.begin ();
it != _m_attributes.end ();
++it)
{
if (it->second.what_space () != dwarf::VS_reference)
attr_hash ^= subr::hash_this (*it);
else
attr_hash ^= (it->first << 3);
}
subr::hash_combine (lhash, attr_hash);
size_t children_hash = 0;
for (typename std::vector<entry *>::const_iterator it
= _m_children.begin ();
it != _m_children.end ();
++it)
{
// child lhash is always in the die_info, which might
// be in the pending_entry when not yet finalized, or
// part of the finalized child die_info.
size_t child_lhash;
struct pending_entry *pending = (*it)->_m_pending;
if (pending)
child_lhash = pending->_m_info->_m_local_hash;
else
{
die_info_pair *final_child = get_final_child (*it);
child_lhash = final_child->second._m_local_hash;
}
subr::hash_combine (children_hash, child_lhash);
}
subr::hash_combine (lhash, children_hash);
return lhash;
}
inline die_info_pair *final (copier *c,
::Dwarf_Off offset, ::Dwarf_Off cost)
{
dwarf_output_collector *const co = c->_m_collector;
assert (_m_pending_refs.empty ());
bool fresh = false;
if (_m_matched == NULL)
{
attrs_matcher equalator (c);
const debug_info_entry::attributes_type *attrs
= &co->add_attributes (_m_tag, _m_attributes, equalator)->first;
const debug_info_entry::children_type *children
= co->add_children (get_final_children ()
(_m_children, std::ptr_fun (get_final_child)),
fresh);
_m_matched = co->add_entry (_m_tag, children, attrs, _m_info);
}
// Final bookkeeping in the collector for this copied entry.
_m_matched->second.original (co->_m_incoming, offset, cost);
/* Now our entry is finalized in the collector (either newly
created there, or discovered to be a duplicate already
there). If this was part of a circularity, it created the
_m_self object and stored pointers to it in the collector
attributes maps. Now move that object into the final
entry's _m_refs list. From there it will get initialized. */
if (_m_self != NULL)
{
assert (!_m_self->final ());
_m_self->pending_entry ()->dump ()
<< " register circular_reference " << _m_self << " "
<< _m_matched->first.to_string () << " from";
_m_matched->second.dump_originals (entry::debug ()) << "\n";
_m_matched->second.self (_m_self);
_m_self = NULL;
}
/* Now we have a children_type in the collector. Fix up all
the backpointers to point into that _m_broods copy. Also
make sure each child gets its _m_parent pointer. Even if
this candidate children_type didn't actually get inserted
into the set (was not unique), we may need to reify new refs
to these children. */
_m_matched->first._m_children->reify_children<circular_reference>
(_m_matched, fresh, co->_m_total);
return _m_matched;
}
inline void notice_mismatch (const die_info_pair *not_me)
{
_m_mismatched.insert ((uintptr_t) not_me);
}
inline bool cached_mismatch (const die_info_pair *not_me)
{
return _m_mismatched.find ((uintptr_t) not_me) != _m_mismatched.end ();
}
static inline void dump_pending_ref (const value::value_dispatch **attr)
{
const entry *ref = dynamic_cast<const entry *> (*attr);
if (ref != NULL)
ref->debug () << " " << std::hex << ref->_m_offset << std::dec;
else
{
const circular_reference *circular
= dynamic_cast<const circular_reference *> (*attr);
if (circular != NULL && !circular->final ())
{
ref = circular->pending_entry ();
ref->debug () << " *" << std::hex << ref->_m_offset << std::dec;
}
}
}
inline void dump_tree (const entry *self) const
{
self->dump (true) << " " << dwarf::tags::name (_m_tag) << " "
<< _m_children.size () << " children, "
<< _m_pending_refs.size () << " refs";
//subr::for_each (_m_pending_refs, dump_pending_ref); XXX
self->debug () << "\n";
subr::for_each (_m_children, std::mem_fun (&entry::dump_entry));
self->dump (false, true) << " ends\n";
}
};
// This keeps state in the pending_entry's _m_finalizing pointer while live.
struct entry_finalizer
{
entry *const _m_entry;
inline entry_finalizer (entry *die)
: _m_entry (die)
{
_m_entry->debug () << std::flush;
assert (_m_entry->_m_pending->_m_finalizing == NULL);
_m_entry->_m_pending->_m_finalizing = this;
_m_entry->dump (true) << " finalizing\n";
}
inline ~entry_finalizer ()
{
if (unlikely (_m_entry->_m_pending != NULL))
{
assert (_m_entry->_m_pending->_m_finalizing == this);
_m_entry->_m_pending->_m_finalizing = NULL;
_m_entry->dump (false, true) << " failed to finalize!\n";
}
else
{
_m_entry->dump (false, true) << " finalized\n";
assert (_m_entry->_m_final != NULL);
_m_entry->dump_entry ();
}
}
};
/* This is what we record about each input DIE we have considered.
An attr_value that is a dangling reference to a DIE not yet
built in the output has one of these in place of a value_reference.
These all live in the _m_entries map, one per input-side DIE. */
struct entry
: public value::value_reference
{
::Dwarf_Off _m_offset; // For debugging and statistics only.
::Dwarf_Off _m_cost; // For statistics only.
// Completed DIE in the collector, or NULL.
die_info_pair *_m_final;
// Pending entry made with new, or NULL.
pending_entry *_m_pending;
// Set if we are building this in the copying walk right now.
entry_copier *_m_building;
// Set if we are in attrs_match on this entry right now.
die_info_pair *_m_comparing;
/* When we're final but not placed, we allocate a singleton vector
here and set a value_reference to an iterator in that vector.
That will be replaced with the iterator into a proper children
vector when we're placed. */
debug_info_entry::children_type::_base *_m_final_ref;
// First parent, for tracker purposes.
entry *_m_parent;
typename std::vector<entry *>::size_type _m_self_idx;
inline entry ()
: _m_offset (0), _m_final (NULL), _m_pending (NULL),
_m_building (NULL), _m_comparing (NULL),
_m_final_ref (NULL), _m_parent (NULL), _m_self_idx (0)
{}
inline void setup (copier *c, const input_die &in)
{
if (_m_offset == 0)
{
_m_offset = in.offset ();
++c->_m_undefined_entries;
dump () << " seen => " << c->_m_undefined_entries << "\n";
}
}
inline ~entry ()
{
assert (_m_building == NULL);
if (_m_final_ref != NULL)
delete _m_final_ref;
// This should only hit in an exception case abandoning the copier.
if (unlikely (_m_pending != NULL))
delete _m_pending;
}
/* If we need a reference before we're placed, fake one up with
a singleton vector pointing to us, stored in _m_final_ref. */
inline value::value_reference *self ()
{
if (_m_final->second.selfless ())
{
assert (_m_final_ref == NULL);
_m_final_ref
= new debug_info_entry::children_type::_base (1, _m_final);
_m_final->second.self (_m_final_ref->begin ());
}
return _m_final->second.self ();
};
/* Called by entry_copier::add_reference, below.
We're adding a reference attribute pointing to this input entry. */
inline void refer (entry *referrer, const value::value_dispatch **backptr)
{
referrer->dump () << " refers to "
<< std::hex << _m_offset << std::dec
<< " (" << (_m_final ? "final"
: _m_pending ? "pending" : "undefined")
<< (_m_building ? ", building" : "") << ")\n";
if (_m_final != NULL)
// It's finished, resolve the final reference.
*backptr = self ();
else
{
*backptr = this;
referrer->_m_pending->_m_pending_refs.push (backptr);
}
}
/* We are no longer an undefined entry, so decrement the count.
But don't finalize yet. Since all children are known now we
can create a candidate die_info that includes the local hash
for this entry. */
inline void defined_self (copier *c)
{
assert (_m_final == NULL);
assert (_m_pending != NULL);
assert (c->_m_undefined_entries > 0);
--c->_m_undefined_entries;
dump () << " defined_self => " << c->_m_undefined_entries << "\n";
size_t lhash = _m_pending->calculate_local_hash ();
_m_pending->_m_info = new die_info (lhash);
}
/* A reference-following matching operation noticed along
the way that we have a doppleganger in the collector. */
inline void record_prematch (die_info_pair *doppleganger,
bool lhs)
{
doppleganger->second.dump_originals
(dump ()
<< " record_prematch to " << doppleganger->first.to_string ()
<< " from")
<< (lhs ? " on lhs\n" : " on rhs\n");
/* XXX disabled! tentative circularity matches taint this record!
must record taint to avoid caching, or punt caching.
*/
//_m_pending->_m_matched = doppleganger;
}
/* This is called by finalize_children. In case of imported_unit
use in the input, we could already have finalized this earlier
in the copying walk of the logical CU, so there is nothing to
do. Or, inside a circularity in finalize_refs, we might be
finalizing this child already in an outer recursion. In that
case, we can't finish it here. */
inline void get_finalized (const std::pair<copier *, bool *> p)
{
if (_m_final == NULL && _m_pending->_m_finalizing == NULL)
finalize (p.first);
if (_m_final == NULL)
*p.second = true;
}
/* Recursively sets up reference hashes for the die_info of this
pending_entry. Depends on all local hashes having been setup
already. At this point all entries are still pending. */
inline void setup_reference_hash () const
{
std::vector<const entry *> stack;
_m_pending->_m_info->_m_reference_hash = get_reference_hash (stack);
assert (stack.empty ());
for (typename std::vector<entry *>::const_iterator it
= _m_pending->_m_children.begin ();
it != _m_pending->_m_children.end ();
++it)
(*it)->setup_reference_hash ();
}
inline size_t get_reference_hash (std::vector<const entry *> &stack) const
{
if (std::find (stack.begin (), stack.end (), this) != stack.end ())
{
std::cout << "Reference chain cycle detected\n"
<< "offset=[0x" << std::hex << _m_offset << std::dec
<< "] already on the reference chain stack\n";
typename std::vector<const entry *>::iterator it;
for (it = stack.begin ();
it != stack.end ();
it++)
{
std::cout << "offset=[0x" << std::hex << (*it)->_m_offset
<< std::dec << "] "
<< dwarf::tags::name ((*it)->_m_pending->_m_tag)
<< "\n";
}
abort ();
}
stack.push_back (this);
size_t res = _m_pending->get_reference_hash (stack);
stack.pop_back ();
return res;
}
// Attempt to turn the pending entry into a final entry.
void finalize (copier *c)
{
entry_finalizer finalizing (this);
if (c->_m_undefined_entries == 0)
{
// Nothing is undefined, so we can resolve pending references.
if (!_m_pending->_m_pending_refs.empty ())
{
dump (true) << " finalize_refs\n";
_m_pending->finalize_refs (c);
dump (false, true) << " finalize_refs done\n";
}
// Now we can finish off all our children.
if (_m_pending->_m_unfinished_children)
{
dump (true) << " finalize_children\n";
_m_pending->finalize_children (c);
dump (false, true) << " finalize_children done\n";
}
}
/* If there were no pending references or children to finish, or
if we just finished them all off, we can finally finalize! */
if (_m_pending->_m_pending_refs.empty ()
&& !_m_pending->_m_unfinished_children)
{
// Create it in the collector.
_m_final = _m_pending->final (c, _m_offset, _m_cost);
// No more pending_entry required!
delete _m_pending;
_m_pending = NULL;
}
}
// Called by a referrer trying to finalize us.
inline const value_dispatch *finalize_ref (copier *c)
{
assert (c->_m_undefined_entries == 0);
if (_m_final == NULL)
{
if (_m_pending->_m_finalizing == NULL)
finalize (c);
if (_m_final == NULL)
{
dump () << " finalize_ref caught circularity\n" << std::flush;
/* We are recursing inside a finalize call.
This means we have a circular reference. */
return _m_pending->make_circular_reference (this, c);
}
}
return self ();
}
// Toggle this to enable massive debugging spew during construction.
// #define _DWARF_OUTPUT_DEBUG_SPEW 1
#ifdef _DWARF_OUTPUT_DEBUG_SPEW
static inline std::ostream &debug ()
{
return std::cout;
}
static inline std::ostream &
debug_prefix (bool in = false, bool out = false, bool print = true)
{
static std::string prefix;
if (out)
prefix.erase (--prefix.end ());
if (print)
debug () << prefix;
if (in)
prefix.push_back (' ');
return debug ();
}
std::ostream &dump (bool in = false, bool out = false) const
{
debug_prefix (in, out) << "XXX " << std::hex << _m_offset << std::dec;
if (_m_pending != NULL && _m_pending->_m_finalizing != NULL)
debug () << " (finalizing "
<< (void *) _m_pending->_m_finalizing << ")";
return debug ();
}
void dump_entry () const
{
if (_m_final != NULL)
{
dump () << " final " << _m_final->first.to_string ()
<< " hash=" << std::hex << subr::hash_this (_m_final->first)
<< " from";
_m_final->second.dump_originals (debug ()) << "\n";
}
else if (_m_pending != NULL)
_m_pending->dump_tree (this);
else
dump () << " undefined\n";
}
#else
static inline subr::nostream &debug ()
{
static subr::nostream n;
return n;
}
static inline subr::nostream &
debug_prefix (bool = false, bool = false, bool = true)
{
return debug ();
}
inline subr::nostream &dump (bool = false, bool = false) const
{
return debug ();
}
inline void dump_entry () const
{}
#endif
// Find ourselves in a parent pending_entry's children vector.
inline typename std::vector<entry *>::const_iterator pending_self () const
{
debug () << std::flush;
assert (_m_pending != NULL);
return _m_parent->_m_pending->child (_m_self_idx);
}
/* The local hash of the debug_info_entry if we are already
final, otherwise get it from the pending_entry. */
inline die_info *get_die_info () const
{
if (_m_final)
return &_m_final->second;
return _m_pending->_m_info;
}
};
// This object lives while we are copying one particular input DIE.
struct entry_copier
{
copier *_m_copier;
entry *_m_in;
pending_entry *_m_out;
/* On creation we set _m_building in DIE's record.
It should never be set already. */
inline entry_copier (copier *c, entry *die, const input_die &in)
: _m_copier (c),
_m_in (die),
_m_out (new pending_entry (in.tag ()))
{
if (unlikely (_m_in->_m_building != NULL))
throw std::runtime_error ("detected cycle in logical DWARF tree");
_m_in->_m_building = this;
_m_in->_m_cost = in.cost ();
_m_in->dump (true) << " copying (cost=" << _m_in->_m_cost << ")\n";
}
// On destruction, we clear _m_building.
inline ~entry_copier ()
{
_m_in->dump (false, true) << " copied\n";
assert (_m_in->_m_building == this);
_m_in->_m_building = NULL;
if (unlikely (_m_out != NULL)) // Exception unwind case only.
delete _m_out;
}
/* Populate _m_out from the corresponding input DIE. This invokes
all the main work of copying. The interesting parts happen in
add_reference and add_child, below. */
inline void populate (const input_die &in)
{
assert (_m_in->_m_pending == NULL);
_m_in->_m_pending = _m_out;
try
{
// This calls add_reference for each pending reference.
_m_out->_m_attributes.set (in.attributes (), *this);
for (input_die_ptr i = in.children ().begin ();
i != in.children ().end ();
++i)
add_child (*i);
}
catch (...)
{
_m_in->_m_pending = NULL;
throw;
}
_m_out = NULL;
_m_in->defined_self (_m_copier);
}
// We're adding a reference attribute inside populate, above.
inline void add_reference (const input_die_ptr &to,
const value::value_dispatch **backptr)
{
_m_copier->enter (*to)->refer (_m_in, backptr);
}
// We're adding a child entry inside populate, above.
inline void add_child (const input_die &in)
{
entry *child = _m_copier->enter (in);
_m_out->_m_children.push_back (child);
/* If the input used DW_TAG_imported_unit, then the logical walk
can hit the same DIE twice. If so, we short-circuit right here. */
if (child->_m_final == NULL && child->_m_pending == NULL)
{
child->_m_parent = _m_in;
child->_m_self_idx = _m_out->_m_children.size () - 1;
entry_copier (_m_copier, child, in).populate (in);
}
if (child->_m_final == NULL)
// Record that it didn't finalize immediately, we'll do it later.
_m_out->_m_unfinished_children = true;
}
// Use "c ()" as a shorthand to get the copier out of the entry_copier.
inline copier &operator () () const
{
return *_m_copier;
}
/* Walk over the whole cu again to set reference hashes up.
Then try to finalize everything at once.
Complain if we still have dangling references.
If not, it should be impossible to have pending entries left. */
inline die_info_pair *final_unit () const
{
assert (_m_out == NULL);
// First walk over the whole CU tree again to setup the
// reference hash for each die_info.
_m_in->setup_reference_hash ();
// We should now be able to finalize everything at once.
if (_m_copier->_m_undefined_entries == 0)
_m_in->finalize (_m_copier);
if (unlikely (_m_in->_m_final == NULL))
{
_m_in->dump_entry ();
_m_in->debug () << std::flush;
assert (_m_copier->_m_undefined_entries > 0);
throw std::runtime_error
("compile_unit contains dangling reference attributes");
}
assert (_m_copier->_m_undefined_entries == 0);
return _m_in->_m_final;
}
};
struct unit_copier : public entry_copier
{
inline unit_copier (copier *c, const typename dw::compile_unit &in)
: entry_copier (c, c->enter (in), in)
{
populate (in);
}
};
struct dump_unplaced
: public std::unary_function<circular_reference *, void>
{
inline void operator () (circular_reference *ref)
{
std::cout << "XXX unplaced ref to "
<< std::hex << (ref->pending_entry ())->_m_offset
<< std::dec << "\n";
}
};
// Create a whole CU in the output.
inline void
make_unit (const typename dw::compile_units_type::const_iterator &in,
const compile_units_type::iterator &out)
{
die_info_pair *cu = unit_copier (this, *in).final_unit ();
// This really just increments _m_total for us, but also _m_uses.
cu->second.placed<circular_reference> (NULL,
cu->first.children ().end (),
false, _m_collector->_m_total);
*out = cu->first;
}
typedef std::tr1::unordered_map< ::Dwarf_Off, entry> entry_map;
entry_map _m_entries;
unsigned int _m_undefined_entries; // Count of _m_entries not copied yet.
inline entry *enter (const input_die &in)
{
entry *die = &_m_entries[in.identity ()];
die->setup (this, in);
return die;
}
/* This is an entire shadow of the dwarf:: interface, sufficient to
instantiate dwarf_comparator below. All its objects are
ephemeral and simply wrap a pending_entry and its constituents.
We always start with finalized attributes, but those can include
circular_reference objects pointing to pending entries that can't
be finalized until the finalization that this comparison is part
of has been done. Hence these objects have to bifurcate between
wrapping pending_entry and wrapping die_info_pair. */
class pending_dwarf
{
public:
class debug_info_entry;
class attr_value;
typedef std::pair<const int, attr_value> attribute;
typedef debug_info_entry compile_unit;
private:
// Both debug_info_entry and iterators just hold this pair of pointers.
struct entry_pointers
{
entry *pending;
die_info_pair *final;
inline entry_pointers (entry *a, die_info_pair *b)
: pending (a), final (b)
{}
};
struct pending_cu
: public std::unary_function<dwarf_output::compile_unit, compile_unit>
{
inline const compile_unit
operator () (const dwarf_output::compile_unit &) const
{
throw std::logic_error ("XXX implement me");
}
};
public:
// Not really used so far, just for completeness.
typedef subr::wrapped_input_container<class dwarf_output::compile_units_type,
pending_cu> compile_units_type;
class debug_info_entry
{
private:
entry_pointers _m_ptr;
static inline const debug_info_entry
child (const entry_pointers &ptr, size_t i)
{
if (ptr.final == NULL)
return debug_info_entry (ptr.pending->_m_pending->_m_children[i]);
return debug_info_entry (ptr.final->first.children ().info ()[i]);
}
// Turns an attribute into an attribute!
struct pending_attr
: public std::unary_function<dwarf_output::attribute, attribute>
{
inline pending_attr (const subr::nothing &) {}
inline const attribute
operator () (const dwarf_output::attribute &attr) const
{
return attribute (attr.first, attr.second);
}
};
public:
inline debug_info_entry ()
: _m_ptr (NULL, NULL)
{}
inline debug_info_entry (const debug_info_entry &entry)
: _m_ptr (entry._m_ptr)
{}
inline explicit debug_info_entry (die_info_pair *die)
: _m_ptr (NULL, die)
{}
inline explicit debug_info_entry (entry *die)
: _m_ptr (die, die->_m_final)
{}
inline bool final () const
{
return _m_ptr.final != NULL;
}
inline die_info_pair *get_final () const
{
assert (_m_ptr.final != NULL);
return _m_ptr.final;
}
inline entry *get_pending () const
{
assert (_m_ptr.pending != NULL);
return _m_ptr.pending;
}
inline bool is (const debug_info_entry &other) const
{
return (_m_ptr.final == other._m_ptr.final
&& (final () || _m_ptr.pending == other._m_ptr.pending));
}
// Used by the tracker.
inline std::pair<die_info_pair *, entry *> context () const
{
return std::make_pair (_m_ptr.final, _m_ptr.pending);
}
inline int tag () const
{
return (_m_ptr.final != NULL
? _m_ptr.final->first.tag ()
: _m_ptr.pending->_m_pending->_m_tag);
}
typedef subr::wrapped_input_container<typename pending_entry::attr_map,
pending_attr> attributes_type;
inline const attributes_type attributes () const
{
return attributes_type (_m_ptr.final == NULL
? _m_ptr.pending->_m_pending->_m_attributes
: _m_ptr.final->first._m_attributes->base (),
subr::nothing ());
}
class children_type
{
friend class debug_info_entry;
private:
entry_pointers _m_ptr;
inline explicit children_type (const entry_pointers &ptr)
: _m_ptr (ptr)
{}
public:
class const_iterator
: public std::iterator<std::input_iterator_tag, debug_info_entry>
{
friend class children_type;
friend class attr_value;
private:
dwarf_output::debug_info_entry::children_type::
_base::const_iterator _m_final_iter;
typename std::vector<entry *>::const_iterator _m_pending_iter;
bool _m_final;
inline const_iterator
(const dwarf_output::debug_info_entry::const_pointer &i)
: _m_final_iter (i.base ()), _m_final (true)
{}
inline const_iterator
(const typename std::vector<entry *>::const_iterator &i)
: _m_pending_iter (i), _m_final (false)
{}
/* We have what appears to be a final reference attribute.
If it's actually a circular_reference, it might really
not be final after all. */
inline void init_from_ref (const value::value_reference *ref)
{
const circular_reference *circle
= dynamic_cast<const circular_reference *> (ref);
_m_final = circle == NULL || circle->final ();
if (_m_final)
_m_final_iter = ref->ref;
else
_m_pending_iter = circle->pending ();
}
// This is called only by attr_value::reference, below.
inline const_iterator (const value::value_reference *ref)
{
init_from_ref (ref);
assert ((**this).identity () == (**this).identity ());
}
/* This is called only by attr_value::reference, below.
We have what appears to be a reference to a pending entry.
In fact, this entry might already have been finalized even
though this reference to it has not been. */
inline const_iterator (entry *ref)
: _m_final (ref->_m_final != NULL)
{
if (_m_final)
init_from_ref (ref->self ());
else
_m_pending_iter = ref->pending_self ();
assert ((**this).identity () == (**this).identity ());
}
public:
inline const_iterator ()
{}
inline const_iterator (const const_iterator &other)
{
*this = other;
}
inline const debug_info_entry operator* () const
{
return (_m_final
? debug_info_entry (*_m_final_iter)
: debug_info_entry (*_m_pending_iter));
}
inline bool operator== (const const_iterator &other) const
{
return (_m_final == other._m_final
&& (_m_final
? _m_final_iter == other._m_final_iter
: _m_pending_iter == other._m_pending_iter));
}
inline bool operator!= (const const_iterator &other) const
{
return !(*this == other);
}
inline const_iterator &operator= (const const_iterator &other)
{
_m_final = other._m_final;
if (_m_final)
_m_final_iter = other._m_final_iter;
else
_m_pending_iter = other._m_pending_iter;
return *this;
}
inline const_iterator &operator++ () // prefix
{
if (_m_final)
++_m_final_iter;
else
++_m_pending_iter;
return *this;
}
inline const_iterator operator++ (int) // postfix
{
const const_iterator old = *this;
++*this;
return old;
}
};
inline bool empty () const
{
return size () == 0;
}
inline size_t size () const
{
return (_m_ptr.final != NULL
? _m_ptr.final->first.children ().size ()
: _m_ptr.pending->_m_pending->_m_children.size ());
}
inline const_iterator begin () const
{
return (_m_ptr.final != NULL
? const_iterator (_m_ptr.final->first.children ()
.begin ())
: const_iterator (_m_ptr.pending->_m_pending->_m_children
.begin ()));
}
inline const_iterator end () const
{
return (_m_ptr.final != NULL
? const_iterator (_m_ptr.final->first.children ()
.end ())
: const_iterator (_m_ptr.pending->_m_pending->_m_children
.end ()));
}
};
typedef typename children_type::const_iterator const_pointer;
typedef const_pointer pointer;
inline const children_type children () const
{
return children_type (_m_ptr);
}
inline bool has_children () const
{
return !children ().empty ();
}
inline uintptr_t identity () const
{
return (uintptr_t) _m_ptr.final ?: (uintptr_t) _m_ptr.pending;
}
inline ::Dwarf_Off original_offset () const
{
if (_m_ptr.final == NULL)
return _m_ptr.pending->_m_offset;
return _m_ptr.final->second.original_offset ();
}
};
// This wrapper class exists only to enhance reference variant.
struct attr_value
: public dwarf_output::attr_value
{
inline attr_value (const dwarf_output::attr_value &other)
: dwarf_output::attr_value (other)
{}
// An entry * in a pending_entry's attr_map counts as a reference.
inline dwarf::value_space what_space () const
{
return (dynamic_cast<const entry *> (this->_m_value) != NULL
? dwarf::VS_reference
: dwarf_output::attr_value::what_space ());
}
inline typename debug_info_entry::const_pointer reference () const
{
const entry *ref = dynamic_cast<const entry *> (_m_value);
if (ref == NULL)
// Either really a final reference, or a circular reference.
return typename debug_info_entry::const_pointer
(dynamic_cast<const value::value_reference *> (_m_value));
/* This is an attribute comparison inside the attrs_match
comparator. The attribute sets passed to attrs_match
directly don't hit this--they've already been finalized.
But following those references we got to another
pending_entry and its attributes that are not yet
finalized. If attrs_match winds up returning true, these
will never be finalized because they are duplicates. */
return typename debug_info_entry::const_pointer
(const_cast<entry *> (ref));
}
};
// Convenience wrapper.
static inline const typename debug_info_entry::attributes_type
attributes (const dwarf_output::debug_info_entry::attributes_type &attrs)
{
return typename debug_info_entry::attributes_type (attrs.base (),
subr::nothing ());
}
};
/* This is a specialized tracker used solely in attrs_match, below.
We are comparing final entries already in the collector against
the almost-final pending_entry ready to be stored. Both sides
are pending_dwarf rather than dwarf_output begin the left-hand
side, because a reference attribute of a "final" entry can be a
circular_reference that still points back to a pending entry. */
class tracker
: public dwarf_tracker_base<pending_dwarf, pending_dwarf>
{
private:
typedef dwarf_tracker_base<pending_dwarf, pending_dwarf> _base;
const bool _m_ignore_context;
inline bool ignore_context () const
{
return _m_ignore_context;
}
public:
typedef typename _base::cu1 cu1;
typedef typename _base::cu2 cu2;
typedef typename _base::die1 die1;
typedef typename _base::die2 die2;
inline explicit tracker (copier *c)
: _m_ignore_context (c->_m_collector->ignore_context ())
{}
typedef die_info_pair *left_context_type;
typedef std::pair<die_info_pair *, entry *> right_context_type;
// Return the lhs context of an arbitrary DIE.
inline left_context_type left_context (const die1 &ref)
{
return (*ref).get_final ();
}
// Return the rhs context of an arbitrary DIE.
inline const right_context_type right_context (const die2 &ref)
{
return (*ref).context ();
}
/* Comparing two final DIEs for context. They match only if their
immediate parents are the same final entry in the collector, or
if they are both top-level children of a CU. */
inline bool final_context_match (die_info_pair *a, die_info_pair *b)
{
a = a->second._m_parent;
b = b->second._m_parent;
if (a == b)
return true;
if (a == NULL || b == NULL)
return false;
return a->second._m_parent == NULL && b->second._m_parent == NULL;
}
inline bool context_quick_mismatch (const left_context_type &lhs,
const right_context_type &rhs)
{
if (ignore_context ())
return false;
if (rhs.first != NULL)
// Comparing final to final.
return !final_context_match (lhs, rhs.first);
// Comparing final to pending. XXX track depth??
return ((rhs.second->_m_parent == NULL)
!= (lhs->second._m_parent == NULL));
}
inline bool context_match (const left_context_type &lhs,
const right_context_type &rhs)
{
if (ignore_context ())
return true;
if (rhs.first != NULL)
// Comparing final to final.
return final_context_match (lhs, rhs.first);
// Comparing final to pending.
die_info_pair *a = lhs->second._m_parent;
entry *b = rhs.second->_m_parent;
while (a != NULL)
{
if (b == NULL)
return false;
if (a->second._m_parent == NULL)
/* A is the top-level CU entry.
We don't compare the CU attributes.
It's a match if B is also up to its top level. */
return b->_m_parent == NULL;
if (!(dwarf_comparator<dwarf_output, pending_dwarf>::equal_enough
(a->first, typename pending_dwarf::debug_info_entry (b))))
return false;
a = a->second._m_parent;
b = b->_m_parent;
}
// We can only get here if these were actually CU references.
return b == NULL;
}
#ifdef _DWARF_OUTPUT_DEBUG_SPEW
static inline std::ostream &
dump (const typename pending_dwarf::debug_info_entry &a,
const typename pending_dwarf::debug_info_entry &b,
bool in = false, bool out = false)
{
return entry::debug_prefix (in, out)
<< "XXX " << (a.final () ? "final " : "pending ")
<< std::hex << a.original_offset ()
<< " vs " << (b.final () ? "final " : "pending ")
<< b.original_offset () << std::dec;
}
static inline std::ostream &
dump (const die1 &ref1, const die2 &ref2,
bool in = false, bool out = false)
{
return dump (*ref1, *ref2, in, out);
}
struct step : public _base::step
{
inline step (tracker *t, const die1 &a, const die2 &b)
: _base::step (t, a, b)
{
dump (*a, *b, true) << " cmp\n";
}
inline ~step ()
{
entry::debug_prefix (false, true, false);
}
};
#else
static inline subr::nostream &
dump (const typename pending_dwarf::debug_info_entry &,
const typename pending_dwarf::debug_info_entry &,
bool = false, bool = false)
{
return entry::debug ();
}
static inline subr::nostream &
dump (const die1 &, const die2 &,
bool = false, bool = false)
{
return entry::debug ();
}
#endif
class reference_match
{
entry *_m_pending;
public:
inline reference_match ()
: _m_pending (NULL)
{
entry::debug_prefix (true, false, false);
}
inline bool prematch (tracker *, const die1 &ref1, const die2 &ref2)
{
const typename pending_dwarf::debug_info_entry a = *ref1;
const typename pending_dwarf::debug_info_entry b = *ref2;
dump (a, b) << " reference_match\n";
if (!a.final ())
// XXX pending circular lhs can never match ???
return !b.final () && a.get_pending () == b.get_pending ();
die_info_pair *const lhs = a.get_final ();
if (b.final ())
return lhs == b.get_final ();
entry *const rhs = b.get_pending ();
if (rhs->_m_pending->_m_matched != NULL)
return lhs == rhs->_m_pending->_m_matched;
if (rhs->_m_comparing != NULL)
{
/* We have a circularity on the right-hand side. We can tell
because _m_comparing remains set from an outer recursion
still in progress.
The circular chain of references rooted at A matches B if B
is also the root of its own circularity and everything along
those parallel chains matches. If the chains hadn't matched
so far, we would not have kept following them to get here.
So, this matches if what we were comparing to was the same A.
If it didn't match, we have left _m_pending clear, which makes
negative_cache trigger (below). */
if (rhs->_m_comparing != lhs)
return false;
dump (a, b) << " tentative circular match\n";
return true;
}
if (rhs->_m_pending->cached_mismatch (lhs))
return false;
/* Record that we have a walk in progress crossing B. When this
reference_match object goes out of scope in our caller, its
destructor will reset _m_comparing to clear this record. */
rhs->_m_comparing = lhs;
_m_pending = rhs;
return false;
}
inline bool negative_cache () const
{
return _m_pending == NULL;
}
inline ~reference_match ()
{
if (_m_pending != NULL)
{
assert (_m_pending->_m_comparing != NULL);
_m_pending->_m_comparing = NULL;
}
entry::debug_prefix (false, true, false);
}
};
// This call is used purely in hopes of a cache hit.
inline bool prematch (reference_match &matched,
const die1 &a, const die2 &b)
{
bool same = matched.prematch (this, a, b);
dump (a, b) << " prematch => " << same << "\n";
return same;
}
// This call is used only as part of a real reference lookup.
inline bool reference_matched (reference_match &matched,
const die1 &a, const die2 &b)
{
bool same = matched.prematch (this, a, b);
dump (a, b) << " reference_matched => " << same << "\n";
return same;
}
// Check for a negative cache hit after prematch or reference_match.
inline bool cannot_match (reference_match &matched,
const die1 &, const die2 &)
{
return matched.negative_cache ();
}
// This can cache a result.
inline bool notice_match (reference_match &matched,
const die1 &ref1, const die2 &ref2,
bool result)
{
if (result && matched.negative_cache ())
{
/* This positive result is from a tentative match of congruent
circular references. That doesn't mean they really match,
only that they might if the rest of their trees do. Don't
cache it as a match now. */
dump (ref1, ref2) << " should ignore tentative match\n";
return result;
}
const typename pending_dwarf::debug_info_entry a = *ref1;
const typename pending_dwarf::debug_info_entry b = *ref2;
dump (a, b) << " notice_match (" << result << ")\n";
if (result)
{
/* We've found two matching entries. If we just matched a
final entry to a pending entry, cache that knowledge so
we don't bother with the whole hash lookup and comparison
when we come to finalizing that pending entry itself. */
if (a.final ())
{
if (!b.final ())
b.get_pending ()->record_prematch (a.get_final (), false);
}
else if (b.final ())
a.get_pending ()->record_prematch (b.get_final (), true);
}
else
b.get_pending ()->_m_pending->notice_mismatch (a.get_final ());
return result;
}
template<typename item1, typename item2>
inline bool identical (const item1 &, const item2 &)
{
return false;