blob: fc1c33395408689608e4a3cf0319c76ca524de25 [file] [log] [blame]
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Author: dsites@google.com (Dick Sites)
// Updated 2014.01 for dual table lookup
//
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
#include "cldutil.h"
#include "debug.h"
#include "integral_types.h"
#include "lang_script.h"
#include "utf8statetable.h"
#ifdef CLD2_DYNAMIC_MODE
#include "cld2_dynamic_data.h"
#include "cld2_dynamic_data_loader.h"
#endif
#include "cld2tablesummary.h"
#include "compact_lang_det_impl.h"
#include "compact_lang_det_hint_code.h"
#include "getonescriptspan.h"
#include "tote.h"
namespace CLD2 {
using namespace std;
// Linker supplies the right tables, From files
// cld_generated_cjk_uni_prop_80.cc cld2_generated_cjk_compatible.cc
// cld_generated_cjk_delta_bi_32.cc generated_distinct_bi_0.cc
// cld2_generated_quad*.cc cld2_generated_deltaocta*.cc
// cld2_generated_distinctocta*.cc
// cld_generated_score_quad_octa_1024_256.cc
// 2014.01 Now implementing quadgram dual lookup tables, to allow main table
// sizes that are 1/3/5 times a power of two, instead of just powers of two.
// Gives more flexibility of total footprint for CLD2.
extern const int kLanguageToPLangSize;
extern const int kCloseSetSize;
extern const UTF8PropObj cld_generated_CjkUni_obj;
extern const CLD2TableSummary kCjkCompat_obj;
extern const CLD2TableSummary kCjkDeltaBi_obj;
extern const CLD2TableSummary kDistinctBiTable_obj;
extern const CLD2TableSummary kQuad_obj;
extern const CLD2TableSummary kQuad_obj2; // Dual lookup tables
extern const CLD2TableSummary kDeltaOcta_obj;
extern const CLD2TableSummary kDistinctOcta_obj;
extern const short kAvgDeltaOctaScore[];
#ifdef CLD2_DYNAMIC_MODE
// CLD2_DYNAMIC_MODE is defined:
// Data will be read from an mmap opened at runtime.
// Convenience for nulling things out completely at any point.
static ScoringTables NULL_TABLES = {
NULL, //&cld_generated_CjkUni_obj,
NULL, //&kCjkCompat_obj,
NULL, //&kCjkDeltaBi_obj,
NULL, //&kDistinctBiTable_obj,
NULL, //&kQuad_obj,
NULL, //&kQuad_obj2,
NULL, //&kDeltaOcta_obj,
NULL, //&kDistinctOcta_obj,
NULL, //kAvgDeltaOctaScore,
};
static ScoringTables kScoringtables = NULL_TABLES; // copy constructed
static bool dynamicDataLoaded = false;
static bool dataSourceIsFile = false;
static ScoringTables* dynamicTables = NULL;
static void* mmapAddress = NULL;
static uint32_t mmapLength = 0;
bool isDataLoaded() { return dynamicDataLoaded; }
bool isDataDynamic() { return true; } // Because CLD2_DYNAMIC_MODE is defined
void loadDataFromFile(const char* fileName) {
if (isDataLoaded()) {
unloadData();
}
dynamicTables = CLD2DynamicDataLoader::loadDataFile(fileName, &mmapAddress, &mmapLength);
kScoringtables = *dynamicTables;
dataSourceIsFile = true;
dynamicDataLoaded = true;
};
void loadDataFromRawAddress(const void* rawAddress, const uint32_t length) {
if (isDataLoaded()) {
unloadData();
}
dynamicTables = CLD2DynamicDataLoader::loadDataRaw(rawAddress, length);
kScoringtables = *dynamicTables;
dataSourceIsFile = false;
dynamicDataLoaded = true;
}
void unloadData() {
if (!dynamicDataLoaded) return;
if (dataSourceIsFile) {
CLD2DynamicDataLoader::unloadDataFile(&dynamicTables, &mmapAddress, &mmapLength);
} else {
CLD2DynamicDataLoader::unloadDataRaw(&dynamicTables);
}
dynamicDataLoaded = false;
dataSourceIsFile = false; // vacuous
kScoringtables = NULL_TABLES; // Housekeeping: null all pointers
}
#else // !CLD2_DYNAMIC_MODE
// This initializes kScoringtables.quadgram_obj etc.
static const ScoringTables kScoringtables = {
&cld_generated_CjkUni_obj,
&kCjkCompat_obj,
&kCjkDeltaBi_obj,
&kDistinctBiTable_obj,
&kQuad_obj,
&kQuad_obj2, // Dual lookup tables
&kDeltaOcta_obj,
&kDistinctOcta_obj,
kAvgDeltaOctaScore,
};
// Method implementations below are provided so that callers aren't *forced*
// to depend upon the CLD2_DYNAMIC_MODE flag, but can use runtime checks
// instead. For more information, refer to CLD2 issue 16:
// https://code.google.com/p/cld2/issues/detail?id=16
bool isDataLoaded() { return true; } // Data is statically linked
bool isDataDynamic() { return false; } // Because CLD2_DYNAMIC_MODE is not defined
void loadDataFromFile(const char* fileName) {
// This is a bug in the calling code.
fprintf(stderr, "WARNING: Dynamic mode not active, loadDataFromFile has no effect!\n");
}
void loadDataFromRawAddress(const void* rawAddress, const uint32_t length) {
// This is a bug in the calling code.
fprintf(stderr, "WARNING: Dynamic mode not active, loadDataFromRawAddress has no effect!\n");
}
void unloadData() {
// This is a bug in the calling code.
fprintf(stderr, "WARNING: Dynamic mode not active, unloadData has no effect!\n");
}
#endif // #ifdef CLD2_DYNAMIC_MODE
static const bool FLAGS_cld_no_minimum_bytes = false;
static const bool FLAGS_cld_forcewords = true;
static const bool FLAGS_cld_showme = false;
static const bool FLAGS_cld_echotext = true;
static const int32 FLAGS_cld_textlimit = 160;
static const int32 FLAGS_cld_smoothwidth = 20;
static const bool FLAGS_cld_2011_hints = true;
static const int32 FLAGS_cld_max_lang_tag_scan_kb = 8;
static const bool FLAGS_dbgscore = false;
static const int kLangHintInitial = 12; // Boost language by N initially
static const int kLangHintBoost = 12; // Boost language by N/16 per quadgram
static const int kShortSpanThresh = 32; // Bytes
static const int kMaxSecondChanceLen = 1024; // Look at first 1K of short spans
static const int kCheapSqueezeTestThresh = 4096; // Only look for squeezing
// after this many text bytes
static const int kCheapSqueezeTestLen = 256; // Bytes to test to trigger sqz
static const int kSpacesTriggerPercent = 25; // Trigger sqz if >=25% spaces
static const int kPredictTriggerPercent = 67; // Trigger sqz if >=67% predicted
static const int kChunksizeDefault = 48; // Squeeze 48-byte chunks
static const int kSpacesThreshPercent = 25; // Squeeze if >=25% spaces
static const int kPredictThreshPercent = 40; // Squeeze if >=40% predicted
static const int kMaxSpaceScan = 32; // Bytes
static const int kGoodLang1Percent = 70;
static const int kGoodLang1and2Percent = 93;
static const int kShortTextThresh = 256; // Bytes
static const int kMinChunkSizeQuads = 4; // Chunk is at least four quads
static const int kMaxChunkSizeQuads = 1024; // Chunk is at most 1K quads
static const int kDefaultWordSpan = 256; // Scan at least this many initial
// bytes with word scoring
static const int kReallyBigWordSpan = 9999999; // Forces word scoring all text
static const int kMinReliableSeq = 50; // Record in seq if >= 50% reliable
static const int kPredictionTableSize = 4096; // Must be exactly 4096 for
// cheap compressor
static const int kNonEnBoilerplateMinPercent = 17; // <this => no second
static const int kNonFIGSBoilerplateMinPercent = 20; // <this => no second
static const int kGoodFirstMinPercent = 26; // <this => UNK
static const int kGoodFirstReliableMinPercent = 51; // <this => unreli
static const int kIgnoreMaxPercent = 20; // >this => unreli
static const int kKeepMinPercent = 2; // <this => unreli
// Statistically closest language, based on quadgram table
// Those that are far from other languges map to UNKNOWN_LANGUAGE
// Subscripted by Language
//
// From lang_correlation.txt and hand-edits
// sed 's/^\([^ ]*\) \([^ ]*\) coef=0\.\(..\).*$/
// (\3 >= kMinCorrPercent) ? \2 : UNKNOWN_LANGUAGE,
// \/\/ \1/' lang_correlation.txt >/tmp/closest_lang_decl.txt
//
static const int kMinCorrPercent = 24; // Pick off how close you want
// 24 catches PERSIAN <== ARABIC
// but not SPANISH <== PORTUGESE
static Language Unknown = UNKNOWN_LANGUAGE;
// Suspect idea
// Subscripted by Language
static const Language kClosestAltLanguage[] = {
(28 >= kMinCorrPercent) ? SCOTS : UNKNOWN_LANGUAGE, // ENGLISH
(36 >= kMinCorrPercent) ? NORWEGIAN : UNKNOWN_LANGUAGE, // DANISH
(31 >= kMinCorrPercent) ? AFRIKAANS : UNKNOWN_LANGUAGE, // DUTCH
(15 >= kMinCorrPercent) ? ESTONIAN : UNKNOWN_LANGUAGE, // FINNISH
(11 >= kMinCorrPercent) ? OCCITAN : UNKNOWN_LANGUAGE, // FRENCH
(17 >= kMinCorrPercent) ? LUXEMBOURGISH : UNKNOWN_LANGUAGE, // GERMAN
(27 >= kMinCorrPercent) ? YIDDISH : UNKNOWN_LANGUAGE, // HEBREW
(16 >= kMinCorrPercent) ? CORSICAN : UNKNOWN_LANGUAGE, // ITALIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // Japanese
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // Korean
(41 >= kMinCorrPercent) ? NORWEGIAN_N : UNKNOWN_LANGUAGE, // NORWEGIAN
( 5 >= kMinCorrPercent) ? SLOVAK : UNKNOWN_LANGUAGE, // POLISH
(23 >= kMinCorrPercent) ? SPANISH : UNKNOWN_LANGUAGE, // PORTUGUESE
(33 >= kMinCorrPercent) ? BULGARIAN : UNKNOWN_LANGUAGE, // RUSSIAN
(28 >= kMinCorrPercent) ? GALICIAN : UNKNOWN_LANGUAGE, // SPANISH
(17 >= kMinCorrPercent) ? NORWEGIAN : UNKNOWN_LANGUAGE, // SWEDISH
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // Chinese
(42 >= kMinCorrPercent) ? SLOVAK : UNKNOWN_LANGUAGE, // CZECH
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // GREEK
(35 >= kMinCorrPercent) ? FAROESE : UNKNOWN_LANGUAGE, // ICELANDIC
( 7 >= kMinCorrPercent) ? LITHUANIAN : UNKNOWN_LANGUAGE, // LATVIAN
( 7 >= kMinCorrPercent) ? LATVIAN : UNKNOWN_LANGUAGE, // LITHUANIAN
( 4 >= kMinCorrPercent) ? LATIN : UNKNOWN_LANGUAGE, // ROMANIAN
( 4 >= kMinCorrPercent) ? SLOVAK : UNKNOWN_LANGUAGE, // HUNGARIAN
(15 >= kMinCorrPercent) ? FINNISH : UNKNOWN_LANGUAGE, // ESTONIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // Ignore
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // Unknown
(33 >= kMinCorrPercent) ? RUSSIAN : UNKNOWN_LANGUAGE, // BULGARIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // CROATIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // SERBIAN
(24 >= kMinCorrPercent) ? SCOTS_GAELIC : UNKNOWN_LANGUAGE, // IRISH
(28 >= kMinCorrPercent) ? SPANISH : UNKNOWN_LANGUAGE, // GALICIAN
( 8 >= kMinCorrPercent) ? INDONESIAN : UNKNOWN_LANGUAGE, // TAGALOG
(29 >= kMinCorrPercent) ? AZERBAIJANI : UNKNOWN_LANGUAGE, // TURKISH
(28 >= kMinCorrPercent) ? RUSSIAN : UNKNOWN_LANGUAGE, // UKRAINIAN
(37 >= kMinCorrPercent) ? MARATHI : UNKNOWN_LANGUAGE, // HINDI
(29 >= kMinCorrPercent) ? BULGARIAN : UNKNOWN_LANGUAGE, // MACEDONIAN
(14 >= kMinCorrPercent) ? ASSAMESE : UNKNOWN_LANGUAGE, // BENGALI
(46 >= kMinCorrPercent) ? MALAY : UNKNOWN_LANGUAGE, // INDONESIAN
( 9 >= kMinCorrPercent) ? INTERLINGUA : UNKNOWN_LANGUAGE, // LATIN
(46 >= kMinCorrPercent) ? INDONESIAN : UNKNOWN_LANGUAGE, // MALAY
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // MALAYALAM
( 4 >= kMinCorrPercent) ? BRETON : UNKNOWN_LANGUAGE, // WELSH
( 8 >= kMinCorrPercent) ? HINDI : UNKNOWN_LANGUAGE, // NEPALI
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // TELUGU
( 3 >= kMinCorrPercent) ? ESPERANTO : UNKNOWN_LANGUAGE, // ALBANIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // TAMIL
(22 >= kMinCorrPercent) ? UKRAINIAN : UNKNOWN_LANGUAGE, // BELARUSIAN
(15 >= kMinCorrPercent) ? SUNDANESE : UNKNOWN_LANGUAGE, // JAVANESE
(19 >= kMinCorrPercent) ? CATALAN : UNKNOWN_LANGUAGE, // OCCITAN
(27 >= kMinCorrPercent) ? PERSIAN : UNKNOWN_LANGUAGE, // URDU
(36 >= kMinCorrPercent) ? HINDI : UNKNOWN_LANGUAGE, // BIHARI
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // GUJARATI
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // THAI
(24 >= kMinCorrPercent) ? PERSIAN : UNKNOWN_LANGUAGE, // ARABIC
(19 >= kMinCorrPercent) ? OCCITAN : UNKNOWN_LANGUAGE, // CATALAN
( 4 >= kMinCorrPercent) ? LATIN : UNKNOWN_LANGUAGE, // ESPERANTO
( 3 >= kMinCorrPercent) ? GERMAN : UNKNOWN_LANGUAGE, // BASQUE
( 9 >= kMinCorrPercent) ? LATIN : UNKNOWN_LANGUAGE, // INTERLINGUA
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // KANNADA
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // PUNJABI
(24 >= kMinCorrPercent) ? IRISH : UNKNOWN_LANGUAGE, // SCOTS_GAELIC
( 7 >= kMinCorrPercent) ? KINYARWANDA : UNKNOWN_LANGUAGE, // SWAHILI
(28 >= kMinCorrPercent) ? SERBIAN : UNKNOWN_LANGUAGE, // SLOVENIAN
(37 >= kMinCorrPercent) ? HINDI : UNKNOWN_LANGUAGE, // MARATHI
( 3 >= kMinCorrPercent) ? ITALIAN : UNKNOWN_LANGUAGE, // MALTESE
( 1 >= kMinCorrPercent) ? YORUBA : UNKNOWN_LANGUAGE, // VIETNAMESE
(15 >= kMinCorrPercent) ? DUTCH : UNKNOWN_LANGUAGE, // FRISIAN
(42 >= kMinCorrPercent) ? CZECH : UNKNOWN_LANGUAGE, // SLOVAK
// Original ( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // ChineseT
(24 >= kMinCorrPercent) ? CHINESE : UNKNOWN_LANGUAGE, // ChineseT
(35 >= kMinCorrPercent) ? ICELANDIC : UNKNOWN_LANGUAGE, // FAROESE
(15 >= kMinCorrPercent) ? JAVANESE : UNKNOWN_LANGUAGE, // SUNDANESE
(17 >= kMinCorrPercent) ? TAJIK : UNKNOWN_LANGUAGE, // UZBEK
( 7 >= kMinCorrPercent) ? TIGRINYA : UNKNOWN_LANGUAGE, // AMHARIC
(29 >= kMinCorrPercent) ? TURKISH : UNKNOWN_LANGUAGE, // AZERBAIJANI
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // GEORGIAN
( 7 >= kMinCorrPercent) ? AMHARIC : UNKNOWN_LANGUAGE, // TIGRINYA
(27 >= kMinCorrPercent) ? URDU : UNKNOWN_LANGUAGE, // PERSIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // BOSNIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // SINHALESE
(41 >= kMinCorrPercent) ? NORWEGIAN : UNKNOWN_LANGUAGE, // NORWEGIAN_N
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // PORTUGUESE_P
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // PORTUGUESE_B
(37 >= kMinCorrPercent) ? ZULU : UNKNOWN_LANGUAGE, // XHOSA
(37 >= kMinCorrPercent) ? XHOSA : UNKNOWN_LANGUAGE, // ZULU
( 2 >= kMinCorrPercent) ? SPANISH : UNKNOWN_LANGUAGE, // GUARANI
(29 >= kMinCorrPercent) ? TSWANA : UNKNOWN_LANGUAGE, // SESOTHO
( 7 >= kMinCorrPercent) ? TURKISH : UNKNOWN_LANGUAGE, // TURKMEN
( 8 >= kMinCorrPercent) ? KAZAKH : UNKNOWN_LANGUAGE, // KYRGYZ
( 5 >= kMinCorrPercent) ? FRENCH : UNKNOWN_LANGUAGE, // BRETON
( 3 >= kMinCorrPercent) ? GANDA : UNKNOWN_LANGUAGE, // TWI
(27 >= kMinCorrPercent) ? HEBREW : UNKNOWN_LANGUAGE, // YIDDISH
(28 >= kMinCorrPercent) ? SLOVENIAN : UNKNOWN_LANGUAGE, // SERBO_CROATIAN
(12 >= kMinCorrPercent) ? OROMO : UNKNOWN_LANGUAGE, // SOMALI
( 9 >= kMinCorrPercent) ? UZBEK : UNKNOWN_LANGUAGE, // UIGHUR
(15 >= kMinCorrPercent) ? PERSIAN : UNKNOWN_LANGUAGE, // KURDISH
( 6 >= kMinCorrPercent) ? KYRGYZ : UNKNOWN_LANGUAGE, // MONGOLIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // ARMENIAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // LAOTHIAN
( 8 >= kMinCorrPercent) ? URDU : UNKNOWN_LANGUAGE, // SINDHI
(10 >= kMinCorrPercent) ? ITALIAN : UNKNOWN_LANGUAGE, // RHAETO_ROMANCE
(31 >= kMinCorrPercent) ? DUTCH : UNKNOWN_LANGUAGE, // AFRIKAANS
(17 >= kMinCorrPercent) ? GERMAN : UNKNOWN_LANGUAGE, // LUXEMBOURGISH
( 2 >= kMinCorrPercent) ? SCOTS : UNKNOWN_LANGUAGE, // BURMESE
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // KHMER
(45 >= kMinCorrPercent) ? DZONGKHA : UNKNOWN_LANGUAGE, // TIBETAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // DHIVEHI
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // CHEROKEE
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // SYRIAC
( 8 >= kMinCorrPercent) ? DUTCH : UNKNOWN_LANGUAGE, // LIMBU
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // ORIYA
(14 >= kMinCorrPercent) ? BENGALI : UNKNOWN_LANGUAGE, // ASSAMESE
(16 >= kMinCorrPercent) ? ITALIAN : UNKNOWN_LANGUAGE, // CORSICAN
( 5 >= kMinCorrPercent) ? INTERLINGUA : UNKNOWN_LANGUAGE, // INTERLINGUE
( 8 >= kMinCorrPercent) ? KYRGYZ : UNKNOWN_LANGUAGE, // KAZAKH
( 4 >= kMinCorrPercent) ? SWAHILI : UNKNOWN_LANGUAGE, // LINGALA
(11 >= kMinCorrPercent) ? RUSSIAN : UNKNOWN_LANGUAGE, // MOLDAVIAN
(19 >= kMinCorrPercent) ? PERSIAN : UNKNOWN_LANGUAGE, // PASHTO
( 5 >= kMinCorrPercent) ? AYMARA : UNKNOWN_LANGUAGE, // QUECHUA
( 5 >= kMinCorrPercent) ? KINYARWANDA : UNKNOWN_LANGUAGE, // SHONA
(17 >= kMinCorrPercent) ? UZBEK : UNKNOWN_LANGUAGE, // TAJIK
(13 >= kMinCorrPercent) ? BASHKIR : UNKNOWN_LANGUAGE, // TATAR
(11 >= kMinCorrPercent) ? SAMOAN : UNKNOWN_LANGUAGE, // TONGA
( 2 >= kMinCorrPercent) ? TWI : UNKNOWN_LANGUAGE, // YORUBA
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // CREOLES_AND_PIDGINS_ENGLISH_BASED
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // CREOLES_AND_PIDGINS_FRENCH_BASED
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // CREOLES_AND_PIDGINS_PORTUGUESE_BASED
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // CREOLES_AND_PIDGINS_OTHER
( 6 >= kMinCorrPercent) ? TONGA : UNKNOWN_LANGUAGE, // MAORI
( 3 >= kMinCorrPercent) ? OROMO : UNKNOWN_LANGUAGE, // WOLOF
( 1 >= kMinCorrPercent) ? MONGOLIAN : UNKNOWN_LANGUAGE, // ABKHAZIAN
( 8 >= kMinCorrPercent) ? SOMALI : UNKNOWN_LANGUAGE, // AFAR
( 5 >= kMinCorrPercent) ? QUECHUA : UNKNOWN_LANGUAGE, // AYMARA
(13 >= kMinCorrPercent) ? TATAR : UNKNOWN_LANGUAGE, // BASHKIR
( 3 >= kMinCorrPercent) ? ENGLISH : UNKNOWN_LANGUAGE, // BISLAMA
(45 >= kMinCorrPercent) ? TIBETAN : UNKNOWN_LANGUAGE, // DZONGKHA
( 4 >= kMinCorrPercent) ? TONGA : UNKNOWN_LANGUAGE, // FIJIAN
( 7 >= kMinCorrPercent) ? INUPIAK : UNKNOWN_LANGUAGE, // GREENLANDIC
( 3 >= kMinCorrPercent) ? AFAR : UNKNOWN_LANGUAGE, // HAUSA
( 3 >= kMinCorrPercent) ? OCCITAN : UNKNOWN_LANGUAGE, // HAITIAN_CREOLE
( 7 >= kMinCorrPercent) ? GREENLANDIC : UNKNOWN_LANGUAGE, // INUPIAK
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // INUKTITUT
( 4 >= kMinCorrPercent) ? HINDI : UNKNOWN_LANGUAGE, // KASHMIRI
(30 >= kMinCorrPercent) ? RUNDI : UNKNOWN_LANGUAGE, // KINYARWANDA
( 2 >= kMinCorrPercent) ? TAGALOG : UNKNOWN_LANGUAGE, // MALAGASY
(17 >= kMinCorrPercent) ? GERMAN : UNKNOWN_LANGUAGE, // NAURU
(12 >= kMinCorrPercent) ? SOMALI : UNKNOWN_LANGUAGE, // OROMO
(30 >= kMinCorrPercent) ? KINYARWANDA : UNKNOWN_LANGUAGE, // RUNDI
(11 >= kMinCorrPercent) ? TONGA : UNKNOWN_LANGUAGE, // SAMOAN
( 1 >= kMinCorrPercent) ? LINGALA : UNKNOWN_LANGUAGE, // SANGO
(32 >= kMinCorrPercent) ? MARATHI : UNKNOWN_LANGUAGE, // SANSKRIT
(16 >= kMinCorrPercent) ? ZULU : UNKNOWN_LANGUAGE, // SISWANT
( 5 >= kMinCorrPercent) ? SISWANT : UNKNOWN_LANGUAGE, // TSONGA
(29 >= kMinCorrPercent) ? SESOTHO : UNKNOWN_LANGUAGE, // TSWANA
( 2 >= kMinCorrPercent) ? ESTONIAN : UNKNOWN_LANGUAGE, // VOLAPUK
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // ZHUANG
( 1 >= kMinCorrPercent) ? MALAY : UNKNOWN_LANGUAGE, // KHASI
(28 >= kMinCorrPercent) ? ENGLISH : UNKNOWN_LANGUAGE, // SCOTS
(15 >= kMinCorrPercent) ? KINYARWANDA : UNKNOWN_LANGUAGE, // GANDA
( 7 >= kMinCorrPercent) ? ENGLISH : UNKNOWN_LANGUAGE, // MANX
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // MONTENEGRIN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // AKAN
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // IGBO
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // MAURITIAN_CREOLE
( 0 >= kMinCorrPercent) ? Unknown : UNKNOWN_LANGUAGE, // HAWAIIAN
};
// COMPILE_ASSERT(arraysize(kClosestAltLanguage) == NUM_LANGUAGES,
// kClosestAltLanguage_has_incorrect_size);
inline bool FlagFinish(int flags) {return (flags & kCLDFlagFinish) != 0;}
inline bool FlagSqueeze(int flags) {return (flags & kCLDFlagSqueeze) != 0;}
inline bool FlagRepeats(int flags) {return (flags & kCLDFlagRepeats) != 0;}
inline bool FlagTop40(int flags) {return (flags & kCLDFlagTop40) != 0;}
inline bool FlagShort(int flags) {return (flags & kCLDFlagShort) != 0;}
inline bool FlagHint(int flags) {return (flags & kCLDFlagHint) != 0;}
inline bool FlagUseWords(int flags) {return (flags & kCLDFlagUseWords) != 0;}
// Defines Top40 packed languages
// Google top 40 languages
//
// Tier 0/1 Language enum list (16)
// ENGLISH, /*no en_GB,*/ FRENCH, ITALIAN, GERMAN, SPANISH, // E - FIGS
// DUTCH, CHINESE, CHINESE_T, JAPANESE, KOREAN,
// PORTUGUESE, RUSSIAN, POLISH, TURKISH, THAI,
// ARABIC,
//
// Tier 2 Language enum list (22)
// SWEDISH, FINNISH, DANISH, /*no pt-PT,*/ ROMANIAN, HUNGARIAN,
// HEBREW, INDONESIAN, CZECH, GREEK, NORWEGIAN,
// VIETNAMESE, BULGARIAN, CROATIAN, LITHUANIAN, SLOVAK,
// TAGALOG, SLOVENIAN, SERBIAN, CATALAN, LATVIAN,
// UKRAINIAN, HINDI,
//
// use SERBO_CROATIAN instead of BOSNIAN, SERBIAN, CROATIAN, MONTENEGRIN(21)
//
// Include IgnoreMe (TG_UNKNOWN_LANGUAGE, 25+1) as a top 40
void DemoteNotTop40(Tote* chunk_tote, uint16 psplus_one) {
// REVISIT
}
void PrintText(FILE* f, Language cur_lang, const string& temp) {
if (temp.size() == 0) {return;}
fprintf(f, "PrintText[%s]%s<br>\n", LanguageName(cur_lang), temp.c_str());
}
//------------------------------------------------------------------------------
// For --cld_html debugging output. Not thread safe
//------------------------------------------------------------------------------
static Language prior_lang = UNKNOWN_LANGUAGE;
static bool prior_unreliable = false;
//------------------------------------------------------------------------------
// End For --cld_html debugging output
//------------------------------------------------------------------------------
// Backscan to word boundary, returning how many bytes n to go back
// so that src - n is non-space ans src - n - 1 is space.
// If not found in kMaxSpaceScan bytes, return 0..3 to a clean UTF-8 boundary
int BackscanToSpace(const char* src, int limit) {
int n = 0;
limit = minint(limit, kMaxSpaceScan);
while (n < limit) {
if (src[-n - 1] == ' ') {return n;} // We are at _X
++n;
}
n = 0;
while (n < limit) {
if ((src[-n] & 0xc0) != 0x80) {return n;} // We are at char begin
++n;
}
return 0;
}
// Forwardscan to word boundary, returning how many bytes n to go forward
// so that src + n is non-space ans src + n - 1 is space.
// If not found in kMaxSpaceScan bytes, return 0..3 to a clean UTF-8 boundary
int ForwardscanToSpace(const char* src, int limit) {
int n = 0;
limit = minint(limit, kMaxSpaceScan);
while (n < limit) {
if (src[n] == ' ') {return n + 1;} // We are at _X
++n;
}
n = 0;
while (n < limit) {
if ((src[n] & 0xc0) != 0x80) {return n;} // We are at char begin
++n;
}
return 0;
}
// This uses a cheap predictor to get a measure of compression, and
// hence a measure of repetitiveness. It works on complete UTF-8 characters
// instead of bytes, because three-byte UTF-8 Indic, etc. text compress highly
// all the time when done with a byte-based count. Sigh.
//
// To allow running prediction across multiple chunks, caller passes in current
// 12-bit hash value and int[4096] prediction table. Caller inits these to 0.
//
// Returns the number of *bytes* correctly predicted, increments by 1..4 for
// each correctly-predicted character.
//
// NOTE: Overruns by up to three bytes. Not a problem with valid UTF-8 text
//
// TODO(dsites) make this use just one byte per UTF-8 char and incr by charlen
int CountPredictedBytes(const char* isrc, int src_len, int* hash, int* tbl) {
int p_count = 0;
const uint8* src = reinterpret_cast<const uint8*>(isrc);
const uint8* srclimit = src + src_len;
int local_hash = *hash;
while (src < srclimit) {
int c = src[0];
int incr = 1;
// Pick up one char and length
if (c < 0xc0) {
// One-byte or continuation byte: 00xxxxxx 01xxxxxx 10xxxxxx
// Do nothing more
} else if ((c & 0xe0) == 0xc0) {
// Two-byte
c = (c << 8) | src[1];
incr = 2;
} else if ((c & 0xf0) == 0xe0) {
// Three-byte
c = (c << 16) | (src[1] << 8) | src[2];
incr = 3;
} else {
// Four-byte
c = (c << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
incr = 4;
}
src += incr;
int p = tbl[local_hash]; // Prediction
tbl[local_hash] = c; // Update prediction
if (c == p) {
p_count += incr; // Count bytes of good predictions
}
local_hash = ((local_hash << 4) ^ c) & 0xfff;
}
*hash = local_hash;
return p_count;
}
// Counts number of spaces; a little faster than one-at-a-time
// Doesn't count odd bytes at end
int CountSpaces4(const char* src, int src_len) {
int s_count = 0;
for (int i = 0; i < (src_len & ~3); i += 4) {
s_count += (src[i] == ' ');
s_count += (src[i+1] == ' ');
s_count += (src[i+2] == ' ');
s_count += (src[i+3] == ' ');
}
return s_count;
}
// Remove words of text that have more than half their letters predicted
// correctly by our cheap predictor, moving the remaining words in-place
// to the front of the input buffer.
//
// To allow running prediction across multiple chunks, caller passes in current
// 12-bit hash value and int[4096] prediction table. Caller inits these to 0.
//
// Return the new, possibly-shorter length
//
// Result Buffer ALWAYS has leading space and trailing space space space NUL,
// if input does
//
int CheapRepWordsInplace(char* isrc, int src_len, int* hash, int* tbl) {
const uint8* src = reinterpret_cast<const uint8*>(isrc);
const uint8* srclimit = src + src_len;
char* dst = isrc;
int local_hash = *hash;
char* word_dst = dst; // Start of next word
int good_predict_bytes = 0;
int word_length_bytes = 0;
while (src < srclimit) {
int c = src[0];
int incr = 1;
*dst++ = c;
if (c == ' ') {
if ((good_predict_bytes * 2) > word_length_bytes) {
// Word is well-predicted: backup to start of this word
dst = word_dst;
if (FLAGS_cld_showme) {
// Mark the deletion point with period
// Don't repeat multiple periods
// Cannot mark with more bytes or may overwrite unseen input
if ((isrc < (dst - 2)) && (dst[-2] != '.')) {
*dst++ = '.';
*dst++ = ' ';
}
}
}
word_dst = dst; // Start of next word
good_predict_bytes = 0;
word_length_bytes = 0;
}
// Pick up one char and length
if (c < 0xc0) {
// One-byte or continuation byte: 00xxxxxx 01xxxxxx 10xxxxxx
// Do nothing more
} else if ((c & 0xe0) == 0xc0) {
// Two-byte
*dst++ = src[1];
c = (c << 8) | src[1];
incr = 2;
} else if ((c & 0xf0) == 0xe0) {
// Three-byte
*dst++ = src[1];
*dst++ = src[2];
c = (c << 16) | (src[1] << 8) | src[2];
incr = 3;
} else {
// Four-byte
*dst++ = src[1];
*dst++ = src[2];
*dst++ = src[3];
c = (c << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
incr = 4;
}
src += incr;
word_length_bytes += incr;
int p = tbl[local_hash]; // Prediction
tbl[local_hash] = c; // Update prediction
if (c == p) {
good_predict_bytes += incr; // Count good predictions
}
local_hash = ((local_hash << 4) ^ c) & 0xfff;
}
*hash = local_hash;
if ((dst - isrc) < (src_len - 3)) {
// Pad and make last char clean UTF-8 by putting following spaces
dst[0] = ' ';
dst[1] = ' ';
dst[2] = ' ';
dst[3] = '\0';
} else if ((dst - isrc) < src_len) {
// Make last char clean UTF-8 by putting following space off the end
dst[0] = ' ';
}
return static_cast<int>(dst - isrc);
}
// This alternate form overwrites redundant words, thus avoiding corrupting the
// backmap for generate a vector of original-text ranges.
int CheapRepWordsInplaceOverwrite(char* isrc, int src_len, int* hash, int* tbl) {
const uint8* src = reinterpret_cast<const uint8*>(isrc);
const uint8* srclimit = src + src_len;
char* dst = isrc;
int local_hash = *hash;
char* word_dst = dst; // Start of next word
int good_predict_bytes = 0;
int word_length_bytes = 0;
while (src < srclimit) {
int c = src[0];
int incr = 1;
*dst++ = c;
if (c == ' ') {
if ((good_predict_bytes * 2) > word_length_bytes) {
// Word [word_dst..dst-1) is well-predicted: overwrite
for (char* p = word_dst; p < dst - 1; ++p) {*p = '.';}
}
word_dst = dst; // Start of next word
good_predict_bytes = 0;
word_length_bytes = 0;
}
// Pick up one char and length
if (c < 0xc0) {
// One-byte or continuation byte: 00xxxxxx 01xxxxxx 10xxxxxx
// Do nothing more
} else if ((c & 0xe0) == 0xc0) {
// Two-byte
*dst++ = src[1];
c = (c << 8) | src[1];
incr = 2;
} else if ((c & 0xf0) == 0xe0) {
// Three-byte
*dst++ = src[1];
*dst++ = src[2];
c = (c << 16) | (src[1] << 8) | src[2];
incr = 3;
} else {
// Four-byte
*dst++ = src[1];
*dst++ = src[2];
*dst++ = src[3];
c = (c << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
incr = 4;
}
src += incr;
word_length_bytes += incr;
int p = tbl[local_hash]; // Prediction
tbl[local_hash] = c; // Update prediction
if (c == p) {
good_predict_bytes += incr; // Count good predictions
}
local_hash = ((local_hash << 4) ^ c) & 0xfff;
}
*hash = local_hash;
if ((dst - isrc) < (src_len - 3)) {
// Pad and make last char clean UTF-8 by putting following spaces
dst[0] = ' ';
dst[1] = ' ';
dst[2] = ' ';
dst[3] = '\0';
} else if ((dst - isrc) < src_len) {
// Make last char clean UTF-8 by putting following space off the end
dst[0] = ' ';
}
return static_cast<int>(dst - isrc);
}
// Remove portions of text that have a high density of spaces, or that are
// overly repetitive, squeezing the remaining text in-place to the front of the
// input buffer.
//
// Squeezing looks at density of space/prediced chars in fixed-size chunks,
// specified by chunksize. A chunksize <= 0 uses the default size of 48 bytes.
//
// Return the new, possibly-shorter length
//
// Result Buffer ALWAYS has leading space and trailing space space space NUL,
// if input does
//
int CheapSqueezeInplace(char* isrc,
int src_len,
int ichunksize) {
char* src = isrc;
char* dst = src;
char* srclimit = src + src_len;
bool skipping = false;
int hash = 0;
// Allocate local prediction table.
int* predict_tbl = new int[kPredictionTableSize];
memset(predict_tbl, 0, kPredictionTableSize * sizeof(predict_tbl[0]));
int chunksize = ichunksize;
if (chunksize == 0) {chunksize = kChunksizeDefault;}
int space_thresh = (chunksize * kSpacesThreshPercent) / 100;
int predict_thresh = (chunksize * kPredictThreshPercent) / 100;
while (src < srclimit) {
int remaining_bytes = srclimit - src;
int len = minint(chunksize, remaining_bytes);
// Make len land us on a UTF-8 character boundary.
// Ah. Also fixes mispredict because we could get out of phase
// Loop always terminates at trailing space in buffer
while ((src[len] & 0xc0) == 0x80) {++len;} // Move past continuation bytes
int space_n = CountSpaces4(src, len);
int predb_n = CountPredictedBytes(src, len, &hash, predict_tbl);
if ((space_n >= space_thresh) || (predb_n >= predict_thresh)) {
// Skip the text
if (!skipping) {
// Keeping-to-skipping transition; do it at a space
int n = BackscanToSpace(dst, static_cast<int>(dst - isrc));
dst -= n;
if (dst == isrc) {
// Force a leading space if the first chunk is deleted
*dst++ = ' ';
}
if (FLAGS_cld_showme) {
// Mark the deletion point with black square U+25A0
*dst++ = static_cast<unsigned char>(0xe2);
*dst++ = static_cast<unsigned char>(0x96);
*dst++ = static_cast<unsigned char>(0xa0);
*dst++ = ' ';
}
skipping = true;
}
} else {
// Keep the text
if (skipping) {
// Skipping-to-keeping transition; do it at a space
int n = ForwardscanToSpace(src, len);
src += n;
remaining_bytes -= n; // Shrink remaining length
len -= n;
skipping = false;
}
// "len" can be negative in some cases
if (len > 0) {
memmove(dst, src, len);
dst += len;
}
}
src += len;
}
if ((dst - isrc) < (src_len - 3)) {
// Pad and make last char clean UTF-8 by putting following spaces
dst[0] = ' ';
dst[1] = ' ';
dst[2] = ' ';
dst[3] = '\0';
} else if ((dst - isrc) < src_len) {
// Make last char clean UTF-8 by putting following space off the end
dst[0] = ' ';
}
// Deallocate local prediction table
delete[] predict_tbl;
return static_cast<int>(dst - isrc);
}
// This alternate form overwrites redundant words, thus avoiding corrupting the
// backmap for generate a vector of original-text ranges.
int CheapSqueezeInplaceOverwrite(char* isrc,
int src_len,
int ichunksize) {
char* src = isrc;
char* dst = src;
char* srclimit = src + src_len;
bool skipping = false;
int hash = 0;
// Allocate local prediction table.
int* predict_tbl = new int[kPredictionTableSize];
memset(predict_tbl, 0, kPredictionTableSize * sizeof(predict_tbl[0]));
int chunksize = ichunksize;
if (chunksize == 0) {chunksize = kChunksizeDefault;}
int space_thresh = (chunksize * kSpacesThreshPercent) / 100;
int predict_thresh = (chunksize * kPredictThreshPercent) / 100;
// Always keep first byte (space)
++src;
++dst;
while (src < srclimit) {
int remaining_bytes = srclimit - src;
int len = minint(chunksize, remaining_bytes);
// Make len land us on a UTF-8 character boundary.
// Ah. Also fixes mispredict because we could get out of phase
// Loop always terminates at trailing space in buffer
while ((src[len] & 0xc0) == 0x80) {++len;} // Move past continuation bytes
int space_n = CountSpaces4(src, len);
int predb_n = CountPredictedBytes(src, len, &hash, predict_tbl);
if ((space_n >= space_thresh) || (predb_n >= predict_thresh)) {
// Overwrite the text [dst-n..dst)
if (!skipping) {
// Keeping-to-skipping transition; do it at a space
int n = BackscanToSpace(dst, static_cast<int>(dst - isrc));
// Text [word_dst..dst) is well-predicted: overwrite
for (char* p = dst - n; p < dst; ++p) {*p = '.';}
skipping = true;
}
// Overwrite the text [dst..dst+len)
for (char* p = dst; p < dst + len; ++p) {*p = '.';}
dst[len - 1] = ' '; // Space at end so we can see what is happening
} else {
// Keep the text
if (skipping) {
// Skipping-to-keeping transition; do it at a space
int n = ForwardscanToSpace(src, len);
// Text [dst..dst+n) is well-predicted: overwrite
for (char* p = dst; p < dst + n - 1; ++p) {*p = '.';}
skipping = false;
}
}
dst += len;
src += len;
}
if ((dst - isrc) < (src_len - 3)) {
// Pad and make last char clean UTF-8 by putting following spaces
dst[0] = ' ';
dst[1] = ' ';
dst[2] = ' ';
dst[3] = '\0';
} else if ((dst - isrc) < src_len) {
// Make last char clean UTF-8 by putting following space off the end
dst[0] = ' ';
}
// Deallocate local prediction table
delete[] predict_tbl;
return static_cast<int>(dst - isrc);
}
// Timing 2.8GHz P4 (dsites 2008.03.20) with 170KB input
// About 90 MB/sec, with or without memcpy, chunksize 48 or 4096
// Just CountSpaces is about 340 MB/sec
// Byte-only CountPredictedBytes is about 150 MB/sec
// Byte-only CountPredictedBytes, conditional tbl[] = is about 85! MB/sec
// Byte-only CountPredictedBytes is about 180 MB/sec, byte tbl, byte/int c
// Unjammed byte-only both = 170 MB/sec
// Jammed byte-only both = 120 MB/sec
// Back to original w/slight updates, 110 MB/sec
//
bool CheapSqueezeTriggerTest(const char* src, int src_len, int testsize) {
// Don't trigger at all on short text
if (src_len < testsize) {return false;}
int space_thresh = (testsize * kSpacesTriggerPercent) / 100;
int predict_thresh = (testsize * kPredictTriggerPercent) / 100;
int hash = 0;
// Allocate local prediction table.
int* predict_tbl = new int[kPredictionTableSize];
memset(predict_tbl, 0, kPredictionTableSize * sizeof(predict_tbl[0]));
bool retval = false;
if ((CountSpaces4(src, testsize) >= space_thresh) ||
(CountPredictedBytes(src, testsize, &hash, predict_tbl) >=
predict_thresh)) {
retval = true;
}
// Deallocate local prediction table
delete[] predict_tbl;
return retval;
}
// Delete any extended languages from doc_tote
void RemoveExtendedLanguages(DocTote* doc_tote) {
// Now a nop
}
static const int kMinReliableKeepPercent = 41; // Remove lang if reli < this
// For Tier3 languages, require a minimum number of bytes to be first-place lang
static const int kGoodFirstT3MinBytes = 24; // <this => no first
// Move bytes for unreliable langs to another lang or UNKNOWN
// doc_tote is sorted, so cannot Add
//
// If both CHINESE and CHINESET are present and unreliable, do not delete both;
// merge both into CHINESE.
//
//dsites 2009.03.19
// we also want to remove Tier3 languages as the first lang if there is very
// little text like ej1 ej2 ej3 ej4
// maybe fold this back in earlier
//
void RemoveUnreliableLanguages(DocTote* doc_tote,
bool FLAGS_cld2_html, bool FLAGS_cld2_quiet) {
// Prepass to merge some low-reliablility languages
// TODO: this shouldn't really reach in to the internal structure of doc_tote
int total_bytes = 0;
for (int sub = 0; sub < doc_tote->MaxSize(); ++sub) {
int plang = doc_tote->Key(sub);
if (plang == DocTote::kUnusedKey) {continue;} // Empty slot
Language lang = static_cast<Language>(plang);
int bytes = doc_tote->Value(sub);
int reli = doc_tote->Reliability(sub);
if (bytes == 0) {continue;} // Zero bytes
total_bytes += bytes;
// Reliable percent = stored reliable score over stored bytecount
int reliable_percent = reli / bytes;
if (reliable_percent >= kMinReliableKeepPercent) {continue;} // Keeper
// This language is too unreliable to keep, but we might merge it.
Language altlang = UNKNOWN_LANGUAGE;
if (lang <= HAWAIIAN) {altlang = kClosestAltLanguage[lang];}
if (altlang == UNKNOWN_LANGUAGE) {continue;} // No alternative
// Look for alternative in doc_tote
int altsub = doc_tote->Find(altlang);
if (altsub < 0) {continue;} // No alternative text
int bytes2 = doc_tote->Value(altsub);
int reli2 = doc_tote->Reliability(altsub);
if (bytes2 == 0) {continue;} // Zero bytes
// Reliable percent is stored reliable score over stored bytecount
int reliable_percent2 = reli2 / bytes2;
// Merge one language into the other. Break ties toward lower lang #
int tosub = altsub;
int fromsub = sub;
bool into_lang = false;
if ((reliable_percent2 < reliable_percent) ||
((reliable_percent2 == reliable_percent) && (lang < altlang))) {
tosub = sub;
fromsub = altsub;
into_lang = true;
}
// Make sure merged reliability doesn't drop and is enough to avoid delete
int newpercent = maxint(reliable_percent, reliable_percent2);
newpercent = maxint(newpercent, kMinReliableKeepPercent);
int newbytes = bytes + bytes2;
int newreli = newpercent * newbytes;
doc_tote->SetKey(fromsub, DocTote::kUnusedKey);
doc_tote->SetScore(fromsub, 0);
doc_tote->SetReliability(fromsub, 0);
doc_tote->SetScore(tosub, newbytes);
doc_tote->SetReliability(tosub, newreli);
// Show fate of unreliable languages if at least 10 bytes
if (FLAGS_cld2_html && (newbytes >= 10) &&
!FLAGS_cld2_quiet) {
if (into_lang) {
fprintf(stderr, "{Unreli %s.%dR,%dB => %s} ",
LanguageCode(altlang), reliable_percent2, bytes2,
LanguageCode(lang));
} else {
fprintf(stderr, "{Unreli %s.%dR,%dB => %s} ",
LanguageCode(lang), reliable_percent, bytes,
LanguageCode(altlang));
}
}
}
// Pass to delete any remaining unreliable languages
for (int sub = 0; sub < doc_tote->MaxSize(); ++sub) {
int plang = doc_tote->Key(sub);
if (plang == DocTote::kUnusedKey) {continue;} // Empty slot
Language lang = static_cast<Language>(plang);
int bytes = doc_tote->Value(sub);
int reli = doc_tote->Reliability(sub);
if (bytes == 0) {continue;} // Zero bytes
// Reliable percent is stored as reliable score over stored bytecount
int reliable_percent = reli / bytes;
if (reliable_percent >= kMinReliableKeepPercent) { // Keeper?
continue; // yes
}
// Delete unreliable entry
doc_tote->SetKey(sub, DocTote::kUnusedKey);
doc_tote->SetScore(sub, 0);
doc_tote->SetReliability(sub, 0);
// Show fate of unreliable languages if at least 10 bytes
if (FLAGS_cld2_html && (bytes >= 10) &&
!FLAGS_cld2_quiet) {
fprintf(stderr, "{Unreli %s.%dR,%dB} ",
LanguageCode(lang), reliable_percent, bytes);
}
}
////if (FLAGS_cld2_html) {fprintf(stderr, "<br>\n");}
}
// Move all the text bytes from lower byte-count to higher one
void MoveLang1ToLang2(Language lang1, Language lang2,
int lang1_sub, int lang2_sub,
DocTote* doc_tote,
ResultChunkVector* resultchunkvector) {
// In doc_tote, move all the bytes lang1 => lang2
int sum = doc_tote->Value(lang2_sub) + doc_tote->Value(lang1_sub);
doc_tote->SetValue(lang2_sub, sum);
sum = doc_tote->Score(lang2_sub) + doc_tote->Score(lang1_sub);
doc_tote->SetScore(lang2_sub, sum);
sum = doc_tote->Reliability(lang2_sub) + doc_tote->Reliability(lang1_sub);
doc_tote->SetReliability(lang2_sub, sum);
// Delete old entry
doc_tote->SetKey(lang1_sub, DocTote::kUnusedKey);
doc_tote->SetScore(lang1_sub, 0);
doc_tote->SetReliability(lang1_sub, 0);
// In resultchunkvector, move all the bytes lang1 => lang2
if (resultchunkvector == NULL) {return;}
int k = 0;
uint16 prior_lang = UNKNOWN_LANGUAGE;
for (int i = 0; i < static_cast<int>(resultchunkvector->size()); ++i) {
ResultChunk* rc = &(*resultchunkvector)[i];
if (rc->lang1 == lang1) {
// Update entry[i] lang1 => lang2
rc->lang1 = lang2;
}
// One change may produce two merges -- entry before and entry after
if ((rc->lang1 == prior_lang) && (k > 0)) {
// Merge with previous, deleting entry[i]
ResultChunk* prior_rc = &(*resultchunkvector)[k - 1];
prior_rc->bytes += rc->bytes;
// fprintf(stderr, "MoveLang1ToLang2 merged [%d] => [%d]<br>\n", i, k-1);
} else {
// Keep entry[i]
(*resultchunkvector)[k] = (*resultchunkvector)[i];
// fprintf(stderr, "MoveLang1ToLang2 keep [%d] => [%d]<br>\n", i, k);
++k;
}
prior_lang = rc->lang1;
}
resultchunkvector->resize(k);
}
// Move less likely byte count to more likely for close pairs of languages
// If given, also update resultchunkvector
void RefineScoredClosePairs(DocTote* doc_tote,
ResultChunkVector* resultchunkvector,
bool FLAGS_cld2_html, bool FLAGS_cld2_quiet) {
for (int sub = 0; sub < doc_tote->MaxSize(); ++sub) {
int close_packedlang = doc_tote->Key(sub);
int subscr = LanguageCloseSet(static_cast<Language>(close_packedlang));
if (subscr == 0) {continue;}
// We have a close pair language -- if the other one is also scored and the
// longword score differs enough, put all our eggs into one basket
// Nonzero longword score: Go look for the other of this pair
for (int sub2 = sub + 1; sub2 < doc_tote->MaxSize(); ++sub2) {
if (LanguageCloseSet(static_cast<Language>(doc_tote->Key(sub2))) == subscr) {
// We have a matching pair
int close_packedlang2 = doc_tote->Key(sub2);
// Move all the text bytes from lower byte-count to higher one
int from_sub, to_sub;
Language from_lang, to_lang;
if (doc_tote->Value(sub) < doc_tote->Value(sub2)) {
from_sub = sub;
to_sub = sub2;
from_lang = static_cast<Language>(close_packedlang);
to_lang = static_cast<Language>(close_packedlang2);
} else {
from_sub = sub2;
to_sub = sub;
from_lang = static_cast<Language>(close_packedlang2);
to_lang = static_cast<Language>(close_packedlang);
}
if ((FLAGS_cld2_html || FLAGS_dbgscore) && !FLAGS_cld2_quiet) {
// Show fate of closepair language
int val = doc_tote->Value(from_sub); // byte count
int reli = doc_tote->Reliability(from_sub);
int reliable_percent = reli / (val ? val : 1); // avoid zdiv
fprintf(stderr, "{CloseLangPair: %s.%dR,%dB => %s}<br>\n",
LanguageCode(from_lang),
reliable_percent,
doc_tote->Value(from_sub),
LanguageCode(to_lang));
}
MoveLang1ToLang2(from_lang, to_lang, from_sub, to_sub,
doc_tote, resultchunkvector);
break; // Exit inner for sub2 loop
}
} // End for sub2
} // End for sub
}
void ApplyAllLanguageHints(Tote* chunk_tote, int tote_grams,
uint8* lang_hint_boost) {
}
void PrintHtmlEscapedText(FILE* f, const char* txt, int len) {
string temp(txt, len);
fprintf(f, "%s", GetHtmlEscapedText(temp).c_str());
}
void PrintLang(FILE* f, Tote* chunk_tote,
Language cur_lang, bool cur_unreliable,
Language prior_lang, bool prior_unreliable) {
if (cur_lang == prior_lang) {
fprintf(f, "[]");
} else {
fprintf(f, "[%s%s]", LanguageCode(cur_lang), cur_unreliable ? "*" : "");
}
}
void PrintTopLang(Language top_lang) {
if ((top_lang == prior_lang) && (top_lang != UNKNOWN_LANGUAGE)) {
fprintf(stderr, "[] ");
} else {
fprintf(stderr, "[%s] ", LanguageName(top_lang));
prior_lang = top_lang;
}
}
void PrintTopLangSpeculative(Language top_lang) {
fprintf(stderr, "<span style=\"color:#%06X;\">", 0xa0a0a0);
if ((top_lang == prior_lang) && (top_lang != UNKNOWN_LANGUAGE)) {
fprintf(stderr, "[] ");
} else {
fprintf(stderr, "[%s] ", LanguageName(top_lang));
prior_lang = top_lang;
}
fprintf(stderr, "</span>\n");
}
void PrintLangs(FILE* f, const Language* language3, const int* percent3,
const int* text_bytes, const bool* is_reliable) {
fprintf(f, "<br>&nbsp;&nbsp;Initial_Languages ");
if (language3[0] != UNKNOWN_LANGUAGE) {
fprintf(f, "%s%s(%d%%) ",
LanguageName(language3[0]),
*is_reliable ? "" : "*",
percent3[0]);
}
if (language3[1] != UNKNOWN_LANGUAGE) {
fprintf(f, "%s(%d%%) ", LanguageName(language3[1]), percent3[1]);
}
if (language3[2] != UNKNOWN_LANGUAGE) {
fprintf(f, "%s(%d%%) ", LanguageName(language3[2]), percent3[2]);
}
fprintf(f, "%d bytes \n", *text_bytes);
fprintf(f, "<br>\n");
}
// Return internal probability score (sum) per 1024 bytes
double GetNormalizedScore(Language lang, ULScript ulscript,
int bytecount, int score) {
if (bytecount <= 0) {return 0.0;}
return (score << 10) / bytecount;
}
// Extract return values before fixups
void ExtractLangEtc(DocTote* doc_tote, int total_text_bytes,
int* reliable_percent3, Language* language3, int* percent3,
double* normalized_score3,
int* text_bytes, bool* is_reliable) {
reliable_percent3[0] = 0;
reliable_percent3[1] = 0;
reliable_percent3[2] = 0;
language3[0] = UNKNOWN_LANGUAGE;
language3[1] = UNKNOWN_LANGUAGE;
language3[2] = UNKNOWN_LANGUAGE;
percent3[0] = 0;
percent3[1] = 0;
percent3[2] = 0;
normalized_score3[0] = 0.0;
normalized_score3[1] = 0.0;
normalized_score3[2] = 0.0;
*text_bytes = total_text_bytes;
*is_reliable = false;
int bytecount1 = 0;
int bytecount2 = 0;
int bytecount3 = 0;
int lang1 = doc_tote->Key(0);
if ((lang1 != DocTote::kUnusedKey) && (lang1 != UNKNOWN_LANGUAGE)) {
// We have a top language
language3[0] = static_cast<Language>(lang1);
bytecount1 = doc_tote->Value(0);
int reli1 = doc_tote->Reliability(0);
reliable_percent3[0] = reli1 / (bytecount1 ? bytecount1 : 1); // avoid zdiv
normalized_score3[0] = GetNormalizedScore(language3[0],
ULScript_Common,
bytecount1,
doc_tote->Score(0));
}
int lang2 = doc_tote->Key(1);
if ((lang2 != DocTote::kUnusedKey) && (lang2 != UNKNOWN_LANGUAGE)) {
language3[1] = static_cast<Language>(lang2);
bytecount2 = doc_tote->Value(1);
int reli2 = doc_tote->Reliability(1);
reliable_percent3[1] = reli2 / (bytecount2 ? bytecount2 : 1); // avoid zdiv
normalized_score3[1] = GetNormalizedScore(language3[1],
ULScript_Common,
bytecount2,
doc_tote->Score(1));
}
int lang3 = doc_tote->Key(2);
if ((lang3 != DocTote::kUnusedKey) && (lang3 != UNKNOWN_LANGUAGE)) {
language3[2] = static_cast<Language>(lang3);
bytecount3 = doc_tote->Value(2);
int reli3 = doc_tote->Reliability(2);
reliable_percent3[2] = reli3 / (bytecount3 ? bytecount3 : 1); // avoid zdiv
normalized_score3[2] = GetNormalizedScore(language3[2],
ULScript_Common,
bytecount3,
doc_tote->Score(2));
}
// Increase total bytes to sum (top 3) if low for some reason
int total_bytecount12 = bytecount1 + bytecount2;
int total_bytecount123 = total_bytecount12 + bytecount3;
if (total_text_bytes < total_bytecount123) {
total_text_bytes = total_bytecount123;
*text_bytes = total_text_bytes;
}
// Sum minus previous % gives better roundoff behavior than bytecount/total
int total_text_bytes_div = maxint(1, total_text_bytes); // Avoid zdiv
percent3[0] = (bytecount1 * 100) / total_text_bytes_div;
percent3[1] = (total_bytecount12 * 100) / total_text_bytes_div;
percent3[2] = (total_bytecount123 * 100) / total_text_bytes_div;
percent3[2] -= percent3[1];
percent3[1] -= percent3[0];
// Roundoff, say 96% 1.6% 1.4%, will produce non-obvious 96% 1% 2%
// Fix this explicitly
if (percent3[1] < percent3[2]) {
++percent3[1];
--percent3[2];
}
if (percent3[0] < percent3[1]) {
++percent3[0];
--percent3[1];
}
*text_bytes = total_text_bytes;
if ((lang1 != DocTote::kUnusedKey) && (lang1 != UNKNOWN_LANGUAGE)) {
// We have a top language
// Its reliability is overall result reliability
int bytecount = doc_tote->Value(0);
int reli = doc_tote->Reliability(0);
int reliable_percent = reli / (bytecount ? bytecount : 1); // avoid zdiv
*is_reliable = (reliable_percent >= kMinReliableKeepPercent);
} else {
// No top language at all. This can happen with zero text or 100% Klingon
// if extended=false. Just return all UNKNOWN_LANGUAGE, unreliable.
*is_reliable = false;
}
// If ignore percent is too large, set unreliable.
int ignore_percent = 100 - (percent3[0] + percent3[1] + percent3[2]);
if ((ignore_percent > kIgnoreMaxPercent)) {
*is_reliable = false;
}
}
bool IsFIGS(Language lang) {
if (lang == FRENCH) {return true;}
if (lang == ITALIAN) {return true;}
if (lang == GERMAN) {return true;}
if (lang == SPANISH) {return true;}
return false;
}
bool IsEFIGS(Language lang) {
if (lang == ENGLISH) {return true;}
if (lang == FRENCH) {return true;}
if (lang == ITALIAN) {return true;}
if (lang == GERMAN) {return true;}
if (lang == SPANISH) {return true;}
return false;
}
// For Tier3 languages, require more bytes of text to override
// the first-place language
static const int kGoodSecondT1T2MinBytes = 15; // <this => no second
static const int kGoodSecondT3MinBytes = 128; // <this => no second
// Calculate a single summary language for the document, and its reliability.
// Returns language3[0] or language3[1] or ENGLISH or UNKNOWN_LANGUAGE
// This is the heart of matching human-rater perception.
// reliable_percent3[] is currently unused
//
// Do not return Tier3 second language unless there are at least 128 bytes
void CalcSummaryLang(DocTote* doc_tote, int total_text_bytes,
const int* reliable_percent3,
const Language* language3,
const int* percent3,
Language* summary_lang, bool* is_reliable,
bool FLAGS_cld2_html, bool FLAGS_cld2_quiet) {
// Vector of active languages; changes if we delete some
int slot_count = 3;
int active_slot[3] = {0, 1, 2};
int ignore_percent = 0;
int return_percent = percent3[0]; // Default to top lang
*summary_lang = language3[0];
*is_reliable = true;
if (percent3[0] < kKeepMinPercent) {*is_reliable = false;}
// If any of top 3 is IGNORE, remove it and increment ignore_percent
for (int i = 0; i < 3; ++i) {
if (language3[i] == TG_UNKNOWN_LANGUAGE) {
ignore_percent += percent3[i];
// Move the rest up, levaing input vectors unchanged
for (int j=i+1; j < 3; ++j) {
active_slot[j - 1] = active_slot[j];
}
-- slot_count;
// Logically remove Ignore from percentage-text calculation
// (extra 1 in 101 avoids zdiv, biases slightly small)
return_percent = (percent3[0] * 100) / (101 - ignore_percent);
*summary_lang = language3[active_slot[0]];
if (percent3[active_slot[0]] < kKeepMinPercent) {*is_reliable = false;}
}
}
// If English and X, where X (not UNK) is big enough,
// assume the English is boilerplate and return X.
// Logically remove English from percentage-text calculation
int second_bytes = (total_text_bytes * percent3[active_slot[1]]) / 100;
// Require more bytes of text for Tier3 languages
int minbytesneeded = kGoodSecondT1T2MinBytes;
int plang_second = PerScriptNumber(ULScript_Latin, language3[active_slot[1]]);
if ((language3[active_slot[0]] == ENGLISH) &&
(language3[active_slot[1]] != ENGLISH) &&
(language3[active_slot[1]] != UNKNOWN_LANGUAGE) &&
(percent3[active_slot[1]] >= kNonEnBoilerplateMinPercent) &&
(second_bytes >= minbytesneeded)) {
ignore_percent += percent3[active_slot[0]];
return_percent = (percent3[active_slot[1]] * 100) / (101 - ignore_percent);
*summary_lang = language3[active_slot[1]];
if (percent3[active_slot[1]] < kKeepMinPercent) {*is_reliable = false;}
// Else If FIGS and X, where X (not UNK, EFIGS) is big enough,
// assume the FIGS is boilerplate and return X.
// Logically remove FIGS from percentage-text calculation
} else if (IsFIGS(language3[active_slot[0]]) &&
!IsEFIGS(language3[active_slot[1]]) &&
(language3[active_slot[1]] != UNKNOWN_LANGUAGE) &&
(percent3[active_slot[1]] >= kNonFIGSBoilerplateMinPercent) &&
(second_bytes >= minbytesneeded)) {
ignore_percent += percent3[active_slot[0]];
return_percent = (percent3[active_slot[1]] * 100) / (101 - ignore_percent);
*summary_lang = language3[active_slot[1]];
if (percent3[active_slot[1]] < kKeepMinPercent) {*is_reliable = false;}
// Else we are returning the first language, but want to improve its
// return_percent if the second language should be ignored
} else if ((language3[active_slot[1]] == ENGLISH) &&
(language3[active_slot[0]] != ENGLISH)) {
ignore_percent += percent3[active_slot[1]];
return_percent = (percent3[active_slot[0]] * 100) / (101 - ignore_percent);
} else if (IsFIGS(language3[active_slot[1]]) &&
!IsEFIGS(language3[active_slot[0]])) {
ignore_percent += percent3[active_slot[1]];
return_percent = (percent3[active_slot[0]] * 100) / (101 - ignore_percent);
}
// If return percent is too small (too many languages), return UNKNOWN
if ((return_percent < kGoodFirstMinPercent)) {
if (FLAGS_cld2_html && !FLAGS_cld2_quiet) {
fprintf(stderr, "{Unreli %s %d%% percent too small} ",
LanguageCode(*summary_lang), return_percent);
}
*summary_lang = UNKNOWN_LANGUAGE;
*is_reliable = false;
}
// If return percent is small, return language but set unreliable.
if ((return_percent < kGoodFirstReliableMinPercent)) {
*is_reliable = false;
}
// If ignore percent is too large, set unreliable.
ignore_percent = 100 - (percent3[0] + percent3[1] + percent3[2]);
if ((ignore_percent > kIgnoreMaxPercent)) {
*is_reliable = false;
}
// If we removed all the active languages, return UNKNOWN
if (slot_count == 0) {
if (FLAGS_cld2_html && !FLAGS_cld2_quiet) {
fprintf(stderr, "{Unreli %s no languages left} ",
LanguageCode(*summary_lang));
}
*summary_lang = UNKNOWN_LANGUAGE;
*is_reliable = false;
}
}
void AddLangPriorBoost(Language lang, uint32 langprob,
ScoringContext* scoringcontext) {
// This is called 0..n times with language hints
// but we don't know the script -- so boost either or both Latn, Othr.
if (IsLatnLanguage(lang)) {
LangBoosts* langprior_boost = &scoringcontext->langprior_boost.latn;
int n = langprior_boost->n;
langprior_boost->langprob[n] = langprob;
langprior_boost->n = langprior_boost->wrap(n + 1);
}
if (IsOthrLanguage(lang)) {
LangBoosts* langprior_boost = &scoringcontext->langprior_boost.othr;
int n = langprior_boost->n;
langprior_boost->langprob[n] = langprob;
langprior_boost->n = langprior_boost->wrap(n + 1);
}
}
void AddOneWhack(Language whacker_lang, Language whackee_lang,
ScoringContext* scoringcontext) {
uint32 langprob = MakeLangProb(whackee_lang, 1);
// This logic avoids hr-Latn whacking sr-Cyrl, but still whacks sr-Latn
if (IsLatnLanguage(whacker_lang) && IsLatnLanguage(whackee_lang)) {
LangBoosts* langprior_whack = &scoringcontext->langprior_whack.latn;
int n = langprior_whack->n;
langprior_whack->langprob[n] = langprob;
langprior_whack->n = langprior_whack->wrap(n + 1);
}
if (IsOthrLanguage(whacker_lang) && IsOthrLanguage(whackee_lang)) {
LangBoosts* langprior_whack = &scoringcontext->langprior_whack.othr;
int n = langprior_whack->n;
langprior_whack->langprob[n] = langprob;
langprior_whack->n = langprior_whack->wrap(n + 1);
}
}
void AddCloseLangWhack(Language lang, ScoringContext* scoringcontext) {
// We do not in general want zh-Hans and zh-Hant to be close pairs,
// but we do here.
if (lang == CLD2::CHINESE) {
AddOneWhack(lang, CLD2::CHINESE_T, scoringcontext);
return;
}
if (lang == CLD2::CHINESE_T) {
AddOneWhack(lang, CLD2::CHINESE, scoringcontext);
return;
}
int base_lang_set = LanguageCloseSet(lang);
if (base_lang_set == 0) {return;}
// TODO: add an explicit list of each set to avoid this 512-times loop
for (int i = 0; i < kLanguageToPLangSize; ++i) {
Language lang2 = static_cast<Language>(i);
if ((base_lang_set == LanguageCloseSet(lang2)) && (lang != lang2)) {
AddOneWhack(lang, lang2, scoringcontext);
}
}
}
void ApplyHints(const char* buffer,
int buffer_length,
bool is_plain_text,
const CLDHints* cld_hints,
ScoringContext* scoringcontext) {
CLDLangPriors lang_priors;
InitCLDLangPriors(&lang_priors);
// We now use lang= tags.
// Last look, circa 2008 found only 15% of web pages with lang= tags and
// many of those were wrong. Now (July 2011), we find 44% of web pages have
// lang= tags, and most of them are correct. So we now give them substantial
// weight in each chunk scored.
if (!is_plain_text) {
// Get any contained language tags in first n KB
int32 max_scan_bytes = FLAGS_cld_max_lang_tag_scan_kb << 10;
string lang_tags = GetLangTagsFromHtml(buffer, buffer_length,
max_scan_bytes);
SetCLDLangTagsHint(lang_tags, &lang_priors);
if (scoringcontext->flags_cld2_html) {
if (!lang_tags.empty()) {
fprintf(scoringcontext->debug_file, "<br>lang_tags '%s'<br>\n",
lang_tags.c_str());
}
}
}
if (cld_hints != NULL) {
if ((cld_hints->content_language_hint != NULL) &&
(cld_hints->content_language_hint[0] != '\0')) {
SetCLDContentLangHint(cld_hints->content_language_hint, &lang_priors);
}
// Input is from GetTLD(), already lowercased
if ((cld_hints->tld_hint != NULL) && (cld_hints->tld_hint[0] != '\0')) {
SetCLDTLDHint(cld_hints->tld_hint, &lang_priors);
}
if (cld_hints->encoding_hint != UNKNOWN_ENCODING) {
Encoding enc = static_cast<Encoding>(cld_hints->encoding_hint);
SetCLDEncodingHint(enc, &lang_priors);
}
if (cld_hints->language_hint != UNKNOWN_LANGUAGE) {
SetCLDLanguageHint(cld_hints->language_hint, &lang_priors);
}
}
// Keep no more than four different languages with hints
TrimCLDLangPriors(4, &lang_priors);
if (scoringcontext->flags_cld2_html) {
string print_temp = DumpCLDLangPriors(&lang_priors);
if (!print_temp.empty()) {
fprintf(scoringcontext->debug_file, "DumpCLDLangPriors %s<br>\n",
print_temp.c_str());
}
}
// Put boosts into ScoringContext
for (int i = 0; i < GetCLDLangPriorCount(&lang_priors); ++i) {
Language lang = GetCLDPriorLang(lang_priors.prior[i]);
int qprob = GetCLDPriorWeight(lang_priors.prior[i]);
if (qprob > 0) {
uint32 langprob = MakeLangProb(lang, qprob);
AddLangPriorBoost(lang, langprob, scoringcontext);
}
}
// Put whacks into scoring context
// We do not in general want zh-Hans and zh-Hant to be close pairs,
// but we do here. Use close_set_count[kCloseSetSize] to count zh, zh-Hant
std::vector<int> close_set_count(kCloseSetSize + 1, 0);
for (int i = 0; i < GetCLDLangPriorCount(&lang_priors); ++i) {
Language lang = GetCLDPriorLang(lang_priors.prior[i]);
++close_set_count[LanguageCloseSet(lang)];
if (lang == CLD2::CHINESE) {++close_set_count[kCloseSetSize];}
if (lang == CLD2::CHINESE_T) {++close_set_count[kCloseSetSize];}
}
// If a boost language is in a close set, force suppressing the others in
// that set, if exactly one of the set is present
for (int i = 0; i < GetCLDLangPriorCount(&lang_priors); ++i) {
Language lang = GetCLDPriorLang(lang_priors.prior[i]);
int qprob = GetCLDPriorWeight(lang_priors.prior[i]);
if (qprob > 0) {
int close_set = LanguageCloseSet(lang);
if ((close_set > 0) && (close_set_count[close_set] == 1)) {
AddCloseLangWhack(lang, scoringcontext);
}
if (((lang == CLD2::CHINESE) || (lang == CLD2::CHINESE_T)) &&
(close_set_count[kCloseSetSize] == 1)) {
AddCloseLangWhack(lang, scoringcontext);
}
}
}
}
// Results language3/percent3/text_bytes must be exactly three items
Language DetectLanguageSummaryV2(
const char* buffer,
int buffer_length,
bool is_plain_text,
const CLDHints* cld_hints,
bool allow_extended_lang,
int flags,
Language plus_one,
Language* language3,
int* percent3,
double* normalized_score3,
ResultChunkVector* resultchunkvector,
int* text_bytes,
bool* is_reliable) {
language3[0] = UNKNOWN_LANGUAGE;
language3[1] = UNKNOWN_LANGUAGE;
language3[2] = UNKNOWN_LANGUAGE;
percent3[0] = 0;
percent3[1] = 0;
percent3[2] = 0;
normalized_score3[0] = 0.0;
normalized_score3[1] = 0.0;
normalized_score3[2] = 0.0;
if (resultchunkvector != NULL) {
resultchunkvector->clear();
}
*text_bytes = 0;
*is_reliable = false;
if ((flags & kCLDFlagEcho) != 0) {
string temp(buffer, buffer_length);
if ((flags & kCLDFlagHtml) != 0) {
fprintf(stderr, "CLD2[%d] '%s'<br>\n",
buffer_length, GetHtmlEscapedText(temp).c_str());
} else {
fprintf(stderr, "CLD2[%d] '%s'\n",
buffer_length, GetPlainEscapedText(temp).c_str());
}
}
#ifdef CLD2_DYNAMIC_MODE
// In dynamic mode, we immediately return UNKNOWN_LANGUAGE if the data file
// hasn't been loaded yet. This is the only sane thing we can do, as there
// are no scoring tables to consult.
bool dataLoaded = isDataLoaded();
if ((flags & kCLDFlagVerbose) != 0) {
fprintf(stderr, "Data loaded: %s\n", (dataLoaded ? "true" : "false"));
}
if (!dataLoaded) {
return UNKNOWN_LANGUAGE;
}
#endif
// Exit now if no text
if (buffer_length == 0) {return UNKNOWN_LANGUAGE;}
if (kScoringtables.quadgram_obj == NULL) {return UNKNOWN_LANGUAGE;}
// Document totals
DocTote doc_tote; // Reliability = 0..100
// ScoringContext carries state across scriptspans
ScoringContext scoringcontext;
scoringcontext.debug_file = stderr;
scoringcontext.flags_cld2_score_as_quads =
((flags & kCLDFlagScoreAsQuads) != 0);
scoringcontext.flags_cld2_html = ((flags & kCLDFlagHtml) != 0);
scoringcontext.flags_cld2_cr = ((flags & kCLDFlagCr) != 0);
scoringcontext.flags_cld2_verbose = ((flags & kCLDFlagVerbose) != 0);
scoringcontext.prior_chunk_lang = UNKNOWN_LANGUAGE;
scoringcontext.ulscript = ULScript_Common;
scoringcontext.scoringtables = &kScoringtables;
scoringcontext.scanner = NULL;
scoringcontext.init(); // Clear the internal memory arrays
// Now thread safe.
bool FLAGS_cld2_html = ((flags & kCLDFlagHtml) != 0);
bool FLAGS_cld2_quiet = ((flags & kCLDFlagQuiet) != 0);
ApplyHints(buffer, buffer_length, is_plain_text, cld_hints, &scoringcontext);
// Four individual script totals, Latin, Han, other2, other3
int next_other_tote = 2;
int tote_num = 0;
// Four totes for up to four different scripts pending at once
Tote totes[4]; // [0] Latn [1] Hani [2] other [3] other
bool tote_seen[4] = {false, false, false, false};
int tote_grams[4] = {0, 0, 0, 0}; // Number in partial chunk
ULScript tote_script[4] =
{ULScript_Latin, ULScript_Hani, ULScript_Common, ULScript_Common};
// Loop through text spans in a single script
ScriptScanner ss(buffer, buffer_length, is_plain_text);
LangSpan scriptspan;
scoringcontext.scanner = &ss;
scriptspan.text = NULL;
scriptspan.text_bytes = 0;
scriptspan.offset = 0;
scriptspan.ulscript = ULScript_Common;
scriptspan.lang = UNKNOWN_LANGUAGE;
int total_text_bytes = 0;
int textlimit = FLAGS_cld_textlimit << 10; // in KB
if (textlimit == 0) {textlimit = 0x7fffffff;}
int advance_by = 2; // Advance 2 bytes
int advance_limit = textlimit >> 3; // For first 1/8 of max document
int initial_word_span = kDefaultWordSpan;
if (FLAGS_cld_forcewords) {
initial_word_span = kReallyBigWordSpan;
}
// Pick up chunk sizes
// Smoothwidth is units of quadgrams, about 2.5 chars (unigrams) each
// Sanity check -- force into a reasonable range
int chunksizequads = FLAGS_cld_smoothwidth;
chunksizequads = minint(maxint(chunksizequads, kMinChunkSizeQuads),
kMaxChunkSizeQuads);
int chunksizeunis = (chunksizequads * 5) >> 1;
// Varying short-span limit doesn't work well -- skips too much beyond 20KB
// int spantooshortlimit = advance_by * FLAGS_cld_smoothwidth;
int spantooshortlimit = kShortSpanThresh;
// For debugging only. Not thread-safe
prior_lang = UNKNOWN_LANGUAGE;
prior_unreliable = false;
// Allocate full-document prediction table for finding repeating words
int hash = 0;
int* predict_tbl = new int[kPredictionTableSize];
if (FlagRepeats(flags)) {
memset(predict_tbl, 0, kPredictionTableSize * sizeof(predict_tbl[0]));
}
// Loop through scriptspans accumulating number of text bytes in each language
while (ss.GetOneScriptSpanLower(&scriptspan)) {
ULScript ulscript = scriptspan.ulscript;
// Squeeze out big chunks of text span if asked to
if (FlagSqueeze(flags)) {
// Remove repetitive or mostly-spaces chunks
int newlen;
int chunksize = 0; // Use the default
if (resultchunkvector != NULL) {
newlen = CheapSqueezeInplaceOverwrite(scriptspan.text,
scriptspan.text_bytes,
chunksize);
} else {
newlen = CheapSqueezeInplace(scriptspan.text, scriptspan.text_bytes,
chunksize);
}
scriptspan.text_bytes = newlen;
} else {
// Check now and then to see if we should be squeezing
if (((kCheapSqueezeTestThresh >> 1) < scriptspan.text_bytes) &&
!FlagFinish(flags)) {
// fprintf(stderr, "CheapSqueezeTriggerTest, "
// "first %d bytes of %d (>%d/2)<br>\n",
// kCheapSqueezeTestLen,
// scriptspan.text_bytes,
// kCheapSqueezeTestThresh);
if (CheapSqueezeTriggerTest(scriptspan.text,
scriptspan.text_bytes,
kCheapSqueezeTestLen)) {
// Recursive call with big-chunk squeezing set
if (FLAGS_cld2_html || FLAGS_dbgscore) {
fprintf(stderr,
"<br>---text_bytes[%d] Recursive(Squeeze)---<br><br>\n",
total_text_bytes);
}
// Deallocate full-document prediction table
delete[] predict_tbl;
return DetectLanguageSummaryV2(
buffer,
buffer_length,
is_plain_text,
cld_hints,
allow_extended_lang,
flags | kCLDFlagSqueeze,
plus_one,
language3,
percent3,
normalized_score3,
resultchunkvector,
text_bytes,
is_reliable);
}
}
}
// Remove repetitive words if asked to
if (FlagRepeats(flags)) {
// Remove repetitive words
int newlen;
if (resultchunkvector != NULL) {
newlen = CheapRepWordsInplaceOverwrite(scriptspan.text,
scriptspan.text_bytes,
&hash, predict_tbl);
} else {
newlen = CheapRepWordsInplace(scriptspan.text, scriptspan.text_bytes,
&hash, predict_tbl);
}
scriptspan.text_bytes = newlen;
}
// Scoring depends on scriptspan buffer ALWAYS having
// leading space and off-the-end space space space NUL,
// DCHECK(scriptspan.text[0] == ' ');
// DCHECK(scriptspan.text[scriptspan.text_bytes + 0] == ' ');
// DCHECK(scriptspan.text[scriptspan.text_bytes + 1] == ' ');
// DCHECK(scriptspan.text[scriptspan.text_bytes + 2] == ' ');
// DCHECK(scriptspan.text[scriptspan.text_bytes + 3] == '\0');
// The real scoring
// Accumulate directly into the document total, or accmulate in one of four
// chunk totals. The purpose of the multiple chunk totals is to piece
// together short choppy pieces of text in alternating scripts. One total is
// dedicated to Latin text, one to Han text, and the other two are dynamicly
// assigned.
scoringcontext.ulscript = scriptspan.ulscript;
// FLAGS_cld2_html = scoringcontext.flags_cld2_html;
ScoreOneScriptSpan(scriptspan,
&scoringcontext,
&doc_tote,
resultchunkvector);
total_text_bytes += scriptspan.text_bytes;
} // End while (ss.GetOneScriptSpanLower())
// Deallocate full-document prediction table
delete[] predict_tbl;
if (FLAGS_cld2_html && !FLAGS_cld2_quiet) {
// If no forced <cr>, put one in front of dump
if (!scoringcontext.flags_cld2_cr) {fprintf(stderr, "<br>\n");}
doc_tote.Dump(stderr);
}
// If extended langauges are disallowed, remove them here
if (!allow_extended_lang) {
RemoveExtendedLanguages(&doc_tote);
}
// Force close pairs to one or the other
// If given, also update resultchunkvector
RefineScoredClosePairs(&doc_tote, resultchunkvector,
FLAGS_cld2_html, FLAGS_cld2_quiet);
// Calculate return results
// Find top three byte counts in tote heap
int reliable_percent3[3];
// Cannot use Add, etc. after sorting
doc_tote.Sort(3);
ExtractLangEtc(&doc_tote, total_text_bytes,
reliable_percent3, language3, percent3, normalized_score3,
text_bytes, is_reliable);
bool have_good_answer = false;
if (FlagFinish(flags)) {
// Force a result
have_good_answer = true;
} else if (total_text_bytes <= kShortTextThresh) {
// Don't recurse on short text -- we already did word scores
have_good_answer = true;
} else if (*is_reliable &&
(percent3[0] >= kGoodLang1Percent)) {
have_good_answer = true;
} else if (*is_reliable &&
((percent3[0] + percent3[1]) >= kGoodLang1and2Percent)) {
have_good_answer = true;
}
if (have_good_answer) {
// This is the real, non-recursive return
// Move bytes for unreliable langs to another lang or UNKNOWN
RemoveUnreliableLanguages(&doc_tote, FLAGS_cld2_html, FLAGS_cld2_quiet);
// Redo the result extraction after the removal above
doc_tote.Sort(3);
ExtractLangEtc(&doc_tote, total_text_bytes,
reliable_percent3, language3, percent3, normalized_score3,
text_bytes, is_reliable);
Language summary_lang;
CalcSummaryLang(&doc_tote, total_text_bytes,
reliable_percent3, language3, percent3,
&summary_lang, is_reliable,
FLAGS_cld2_html, FLAGS_cld2_quiet);
if (FLAGS_cld2_html && !FLAGS_cld2_quiet) {
for (int i = 0; i < 3; ++i) {
if (language3[i] != UNKNOWN_LANGUAGE) {
fprintf(stderr, "%s.%dR(%d%%) ",
LanguageCode(language3[i]),
reliable_percent3[i],
percent3[i]);
}
}
fprintf(stderr, "%d bytes ", total_text_bytes);
fprintf(stderr, "= %s%c ",
LanguageName(summary_lang), *is_reliable ? ' ' : '*');
fprintf(stderr, "<br><br>\n");
}
// Slightly condensed if quiet
if (FLAGS_cld2_html && FLAGS_cld2_quiet) {
fprintf(stderr, "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ");
for (int i = 0; i < 3; ++i) {
if (language3[i] != UNKNOWN_LANGUAGE) {
fprintf(stderr, "&nbsp;&nbsp;%s %d%% ",
LanguageCode(language3[i]),
percent3[i]);
}
}
fprintf(stderr, "= %s%c ",
LanguageName(summary_lang), *is_reliable ? ' ' : '*');
fprintf(stderr, "<br>\n");
}
return summary_lang;
}
// Not a good answer -- do recursive call to refine
if ((FLAGS_cld2_html || FLAGS_dbgscore) && !FLAGS_cld2_quiet) {
// This is what we hope to improve on in the recursive call, if any
PrintLangs(stderr, language3, percent3, text_bytes, is_reliable);
}
// For restriction to Top40 + one, the one is 1st/2nd lang that is not Top40
// For this purpose, we treate "Ignore" as top40
Language new_plus_one = UNKNOWN_LANGUAGE;
if (total_text_bytes < kShortTextThresh) {
// Short text: Recursive call with top40 and short set
if (FLAGS_cld2_html || FLAGS_dbgscore) {
fprintf(stderr, "&nbsp;&nbsp;---text_bytes[%d] "
"Recursive(Top40/Rep/Short/Words)---<br><br>\n",
total_text_bytes);
}
return DetectLanguageSummaryV2(
buffer,
buffer_length,
is_plain_text,
cld_hints,
allow_extended_lang,
flags | kCLDFlagTop40 | kCLDFlagRepeats |
kCLDFlagShort | kCLDFlagUseWords | kCLDFlagFinish,
new_plus_one,
language3,
percent3,
normalized_score3,
resultchunkvector,
text_bytes,
is_reliable);
}
// Longer text: Recursive call with top40 set
if (FLAGS_cld2_html || FLAGS_dbgscore) {
fprintf(stderr,
"&nbsp;&nbsp;---text_bytes[%d] Recursive(Top40/Rep)---<br><br>\n",
total_text_bytes);
}
return DetectLanguageSummaryV2(
buffer,
buffer_length,
is_plain_text,
cld_hints,
allow_extended_lang,
flags | kCLDFlagTop40 | kCLDFlagRepeats |
kCLDFlagFinish,
new_plus_one,
language3,
percent3,
normalized_score3,
resultchunkvector,
text_bytes,
is_reliable);
}
// For debugging and wrappers. Not thread safe.
static char temp_detectlanguageversion[32];
// Return version text string
// String is "code_version - data_build_date"
const char* DetectLanguageVersion() {
if (kScoringtables.quadgram_obj == NULL) {return "";}
sprintf(temp_detectlanguageversion,
"V2.0 - %u", kScoringtables.quadgram_obj->kCLDTableBuildDate);
return temp_detectlanguageversion;
}
} // End namespace CLD2