blob: 3265aab011ca571a4829c48d71c995ae4b0cb2c0 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "../testBase.h"
// Defined in test_fill_2D_3D.cpp
extern int test_fill_image_generic( cl_context context, cl_command_queue queue, image_descriptor *imageInfo,
const size_t origin[], const size_t region[], ExplicitType outputType, MTdata d );
static int test_fill_image_2D_array( cl_context context, cl_command_queue queue, image_descriptor *imageInfo, ExplicitType outputType, MTdata d )
{
size_t origin[ 3 ], region[ 3 ];
int ret = 0, retCode;
// First, try just a full covering region
origin[ 0 ] = origin[ 1 ] = origin[ 2 ] = 0;
region[ 0 ] = imageInfo->width;
region[ 1 ] = imageInfo->height;
region[ 2 ] = imageInfo->arraySize;
retCode = test_fill_image_generic( context, queue, imageInfo, origin, region, outputType, d );
if ( retCode < 0 )
return retCode;
else
ret += retCode;
// Now try a sampling of different random regions
for ( int i = 0; i < 8; i++ )
{
// Pick a random size
region[ 0 ] = ( imageInfo->width > 8 ) ? (size_t)random_in_range( 8, (int)imageInfo->width - 1, d ) : imageInfo->width;
region[ 1 ] = ( imageInfo->height > 8 ) ? (size_t)random_in_range( 8, (int)imageInfo->height - 1, d ) : imageInfo->height;
region[ 2 ] = ( imageInfo->arraySize > 8 ) ? (size_t)random_in_range( 8, (int)imageInfo->arraySize - 1, d ) : imageInfo->arraySize;
// Now pick positions within valid ranges
origin[ 0 ] = ( imageInfo->width > region[ 0 ] ) ? (size_t)random_in_range( 0, (int)( imageInfo->width - region[ 0 ] - 1 ), d ) : 0;
origin[ 1 ] = ( imageInfo->height > region[ 1 ] ) ? (size_t)random_in_range( 0, (int)( imageInfo->height - region[ 1 ] - 1 ), d ) : 0;
origin[ 2 ] = ( imageInfo->arraySize > region[ 2 ] ) ? (size_t)random_in_range( 0, (int)( imageInfo->arraySize - region[ 2 ] - 1 ), d ) : 0;
// Go for it!
retCode = test_fill_image_generic( context, queue, imageInfo, origin, region, outputType, d );
if ( retCode < 0 )
return retCode;
else
ret += retCode;
}
return ret;
}
int test_fill_image_set_2D_array( cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format, ExplicitType outputType )
{
size_t maxWidth, maxHeight, maxArraySize;
cl_ulong maxAllocSize, memSize;
image_descriptor imageInfo = { 0 };
RandomSeed seed( gRandomSeed );
const size_t rowPadding_default = 80;
size_t rowPadding = gEnablePitch ? rowPadding_default : 0;
size_t slicePadding = gEnablePitch ? 3 : 0;
size_t pixelSize;
memset(&imageInfo, 0x0, sizeof(image_descriptor));
imageInfo.type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
imageInfo.format = format;
pixelSize = get_pixel_size( imageInfo.format );
int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE_MAX_ARRAY_SIZE, sizeof( maxArraySize ), &maxArraySize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
test_error( error, "Unable to get max image 2D array size from device" );
if (memSize > (cl_ulong)SIZE_MAX) {
memSize = (cl_ulong)SIZE_MAX;
}
if ( gTestSmallImages )
{
for ( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
{
imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding;
if (gEnablePitch)
{
rowPadding = rowPadding_default;
do {
rowPadding++;
imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding;
} while ((imageInfo.rowPitch % pixelSize) != 0);
}
for ( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ )
{
imageInfo.slicePitch = imageInfo.rowPitch * (imageInfo.height + slicePadding);
for ( imageInfo.arraySize = 2; imageInfo.arraySize < 9; imageInfo.arraySize++ )
{
if ( gDebugTrace )
log_info( " at size %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.arraySize );
int ret = test_fill_image_2D_array( context, queue, &imageInfo, outputType, seed );
if ( ret )
return -1;
}
}
}
}
else if ( gTestMaxImages )
{
// Try a specific set of maximum sizes
size_t numbeOfSizes;
size_t sizes[100][3];
get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, maxArraySize, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D_ARRAY, imageInfo.format);
for ( size_t idx = 0; idx < numbeOfSizes; idx++ )
{
imageInfo.width = sizes[ idx ][ 0 ];
imageInfo.height = sizes[ idx ][ 1 ];
imageInfo.arraySize = sizes[ idx ][ 2 ];
imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding;
if (gEnablePitch)
{
rowPadding = rowPadding_default;
do {
rowPadding++;
imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding;
} while ((imageInfo.rowPitch % pixelSize) != 0);
}
imageInfo.slicePitch = imageInfo.rowPitch * (imageInfo.height + slicePadding);
// Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
// image, the result array, plus offset arrays, will fit in the global ram space
cl_ulong size = (cl_ulong)imageInfo.slicePitch * (cl_ulong)imageInfo.arraySize * 4 * 4;
while (size > maxAllocSize || (size * 3) > memSize) {
if (imageInfo.arraySize == 1) {
// arraySize cannot be 0.
break;
}
imageInfo.arraySize--;
size = (cl_ulong)imageInfo.slicePitch * (cl_ulong)imageInfo.arraySize * 4 * 4;
}
while (size > maxAllocSize || (size * 3) > memSize) {
imageInfo.height--;
imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
size = (cl_ulong)imageInfo.slicePitch * (cl_ulong)imageInfo.arraySize * 4 * 4;
}
log_info( "Testing %d x %d x %d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.arraySize);
if ( test_fill_image_2D_array( context, queue, &imageInfo, outputType, seed ) )
return -1;
}
}
else
{
for ( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
{
cl_ulong size;
// Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
// image, the result array, plus offset arrays, will fit in the global ram space
do
{
imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 64, seed );
imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 64, seed );
imageInfo.arraySize = (size_t)random_log_in_range( 16, (int)maxArraySize / 32,seed );
imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding;
if (gEnablePitch)
{
rowPadding = rowPadding_default;
do {
rowPadding++;
imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding;
} while ((imageInfo.rowPitch % pixelSize) != 0);
}
imageInfo.slicePitch = imageInfo.rowPitch * (imageInfo.height + slicePadding);
size = (cl_ulong)imageInfo.slicePitch * (cl_ulong)imageInfo.arraySize * 4 * 4;
} while ( size > maxAllocSize || ( size * 3 ) > memSize );
if ( gDebugTrace )
log_info( " at size %d,%d,%d (pitch %d,%d) out of %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.arraySize, (int)imageInfo.rowPitch, (int)imageInfo.slicePitch, (int)maxWidth, (int)maxHeight, (int)maxArraySize );
int ret = test_fill_image_2D_array( context, queue, &imageInfo, outputType, seed );
if ( ret )
return -1;
}
}
return 0;
}