blob: a55d2be5d119284f6e789d56d912eec124099d6e [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "../testBase.h"
#include <float.h>
#if defined( __APPLE__ )
#include <signal.h>
#include <sys/signal.h>
#include <setjmp.h>
#endif
extern bool gTestReadWrite;
const char *read1DKernelSourcePattern =
"__kernel void sample_kernel( read_only image1d_t input, sampler_t sampler, __global int *results )\n"
"{\n"
" int tidX = get_global_id(0);\n"
" int offset = tidX;\n"
" %s clr = read_image%s( input, tidX );\n"
" int4 test = (clr != read_image%s( input, sampler, tidX ));\n"
" if ( test.x || test.y || test.z || test.w )\n"
" results[offset] = -1;\n"
" else\n"
" results[offset] = 0;\n"
"}";
const char *read_write1DKernelSourcePattern =
"__kernel void sample_kernel( read_only image1d_t read_only_image, read_write image1d_t read_write_image, sampler_t sampler, __global int *results )\n"
"{\n"
" int tidX = get_global_id(0);\n"
" int offset = tidX;\n"
" %s clr = read_image%s( read_only_image, sampler, tidX );\n"
" write_image%s(read_write_image, tidX, clr);\n"
" atomic_work_item_fence(CLK_IMAGE_MEM_FENCE, memory_order_acq_rel, memory_scope_work_item);\n"
" int4 test = (clr != read_image%s(read_write_image, tidX));\n"
" if ( test.x || test.y || test.z || test.w )\n"
" results[offset] = -1;\n"
" else\n"
" results[offset] = 0;\n"
"}";
int test_read_image_1D( cl_context context, cl_command_queue queue, cl_kernel kernel,
image_descriptor *imageInfo, image_sampler_data *imageSampler,
ExplicitType outputType, MTdata d )
{
int error;
size_t threads[2];
cl_sampler actualSampler;
// generate_random_image_data allocates with malloc, so we use a MallocDataBuffer here
BufferOwningPtr<char> imageValues;
generate_random_image_data( imageInfo, imageValues, d );
if ( gDebugTrace )
log_info( " - Creating image %d by %d...\n", (int)imageInfo->width, (int)imageInfo->height );
// Construct testing sources
cl_mem read_only_image, read_write_image;
cl_image_desc image_desc;
memset(&image_desc, 0x0, sizeof(cl_image_desc));
image_desc.image_type = CL_MEM_OBJECT_IMAGE1D;
image_desc.image_width = imageInfo->width;
image_desc.image_row_pitch = ( gEnablePitch ? imageInfo->rowPitch : 0 );
image_desc.num_mip_levels = 0;
read_only_image = clCreateImage(context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
imageInfo->format,
&image_desc,
imageValues,
&error );
if ( error != CL_SUCCESS )
{
log_error( "ERROR: Unable to create read_only 1D image of size %d pitch %d (%s)\n", (int)imageInfo->width, (int)imageInfo->rowPitch, IGetErrorString( error ) );
return error;
}
if(gTestReadWrite)
{
read_write_image = clCreateImage(context,
CL_MEM_READ_WRITE,
imageInfo->format,
&image_desc,
NULL,
&error );
if ( error != CL_SUCCESS )
{
log_error( "ERROR: Unable to create read_write 1D image of size %d pitch %d (%s)\n",
(int)imageInfo->width,
(int)imageInfo->rowPitch,
IGetErrorString( error ) );
return error;
}
}
if ( gDebugTrace )
log_info( " - Creating kernel arguments...\n" );
// Create sampler to use
actualSampler = clCreateSampler( context, CL_FALSE, CL_ADDRESS_NONE, CL_FILTER_NEAREST, &error );
test_error( error, "Unable to create image sampler" );
// Create results buffer
cl_mem results = clCreateBuffer( context, 0, imageInfo->width * sizeof(cl_int), NULL, &error);
test_error( error, "Unable to create results buffer" );
size_t resultValuesSize = imageInfo->width * sizeof(cl_int);
BufferOwningPtr<int> resultValues(malloc( resultValuesSize ));
memset( resultValues, 0xff, resultValuesSize );
clEnqueueWriteBuffer( queue, results, CL_TRUE, 0, resultValuesSize, resultValues, 0, NULL, NULL );
// Set arguments
int idx = 0;
error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &read_only_image );
test_error( error, "Unable to set kernel arguments" );
if(gTestReadWrite)
{
error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &read_write_image );
test_error( error, "Unable to set kernel arguments" );
}
error = clSetKernelArg( kernel, idx++, sizeof( cl_sampler ), &actualSampler );
test_error( error, "Unable to set kernel arguments" );
error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &results );
test_error( error, "Unable to set kernel arguments" );
// Run the kernel
threads[0] = (size_t)imageInfo->width;
error = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, threads, NULL, 0, NULL, NULL );
test_error( error, "Unable to run kernel" );
if ( gDebugTrace )
log_info( " reading results, %ld kbytes\n", (unsigned long)( imageInfo->width * sizeof(cl_int) / 1024 ) );
error = clEnqueueReadBuffer( queue, results, CL_TRUE, 0, resultValuesSize, resultValues, 0, NULL, NULL );
test_error( error, "Unable to read results from kernel" );
if ( gDebugTrace )
log_info( " results read\n" );
// Check for non-zero comps
bool allZeroes = true;
for ( size_t ic = 0; ic < imageInfo->width; ++ic )
{
if ( resultValues[ic] ) {
allZeroes = false;
break;
}
}
if ( !allZeroes )
{
log_error( " Sampler-less reads differ from reads with sampler.\n" );
return -1;
}
clReleaseSampler(actualSampler);
clReleaseMemObject(results);
clReleaseMemObject(read_only_image);
if(gTestReadWrite)
{
clReleaseMemObject(read_write_image);
}
return 0;
}
int test_read_image_set_1D( cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format, image_sampler_data *imageSampler,
ExplicitType outputType )
{
char programSrc[10240];
const char *ptr;
const char *readFormat;
const char *dataType;
clProgramWrapper program;
clKernelWrapper kernel;
RandomSeed seed( gRandomSeed );
int error;
if (gTestReadWrite && checkForReadWriteImageSupport(device))
{
return TEST_SKIPPED_ITSELF;
}
// Get our operating params
size_t maxWidth;
cl_ulong maxAllocSize, memSize;
image_descriptor imageInfo = { 0 };
size_t pixelSize;
imageInfo.format = format;
imageInfo.height = imageInfo.depth = imageInfo.arraySize = imageInfo.slicePitch = 0;
imageInfo.type = CL_MEM_OBJECT_IMAGE1D;
pixelSize = get_pixel_size( imageInfo.format );
error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
test_error( error, "Unable to get max image 1D size from device" );
if (memSize > (cl_ulong)SIZE_MAX) {
memSize = (cl_ulong)SIZE_MAX;
}
// Determine types
if ( outputType == kInt )
{
readFormat = "i";
dataType = "int4";
}
else if ( outputType == kUInt )
{
readFormat = "ui";
dataType = "uint4";
}
else // kFloat
{
readFormat = "f";
dataType = "float4";
}
if(gTestReadWrite)
{
sprintf( programSrc,
read_write1DKernelSourcePattern,
dataType,
readFormat,
readFormat,
readFormat);
}
else
{
sprintf( programSrc,
read1DKernelSourcePattern,
dataType,
readFormat,
readFormat );
}
ptr = programSrc;
error = create_single_kernel_helper(context, &program, &kernel, 1, &ptr,
"sample_kernel");
test_error( error, "Unable to create testing kernel" );
if ( gTestSmallImages )
{
for ( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
{
imageInfo.rowPitch = imageInfo.width * pixelSize;
{
if ( gDebugTrace )
log_info( " at size %d\n", (int)imageInfo.width );
int retCode = test_read_image_1D( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
if ( retCode )
return retCode;
}
}
}
else if ( gTestMaxImages )
{
// Try a specific set of maximum sizes
size_t numbeOfSizes;
size_t sizes[100][3];
get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, 1, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE1D, imageInfo.format);
for ( size_t idx = 0; idx < numbeOfSizes; idx++ )
{
imageInfo.width = sizes[ idx ][ 0 ];
imageInfo.rowPitch = imageInfo.width * pixelSize;
log_info("Testing %d\n", (int)sizes[ idx ][ 0 ]);
if ( gDebugTrace )
log_info( " at max size %d\n", (int)sizes[ idx ][ 0 ] );
int retCode = test_read_image_1D( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
if ( retCode )
return retCode;
}
}
else
{
for ( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
{
cl_ulong size;
// Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
// image, the result array, plus offset arrays, will fit in the global ram space
do
{
imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed );
imageInfo.rowPitch = imageInfo.width * pixelSize;
if ( gEnablePitch )
{
size_t extraWidth = (int)random_log_in_range( 0, 64, seed );
imageInfo.rowPitch += extraWidth * pixelSize;
}
size = (size_t)imageInfo.rowPitch * 4;
} while ( size > maxAllocSize || ( size * 3 ) > memSize );
if ( gDebugTrace )
log_info( " at size %d (row pitch %d) out of %d\n", (int)imageInfo.width, (int)imageInfo.rowPitch, (int)maxWidth );
int retCode = test_read_image_1D( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
if ( retCode )
return retCode;
}
}
return 0;
}