blob: dddebb40ee2bd2182a9f2acddd42929e1ec2fe61 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <string.h>
#include <stdio.h>
#if !defined(_WIN32)
#include <libgen.h>
#include <sys/param.h>
#endif
#include "mingw_compat.h"
#if defined (__MINGW32__)
#include <sys/param.h>
#endif
#include <time.h>
#include "errorHelpers.h"
#include "harness/compat.h"
#include "harness/mt19937.h"
#include "harness/kernelHelpers.h"
#include "harness/rounding_mode.h"
#include "harness/fpcontrol.h"
#include "harness/testHarness.h"
#include "harness/parseParameters.h"
#if defined( __APPLE__ )
#include <sys/sysctl.h>
#endif
#if defined( __linux__ )
#include <unistd.h>
#include <sys/syscall.h>
#include <linux/sysctl.h>
#endif
#if defined (_WIN32)
#include <string.h>
#endif
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
#include <emmintrin.h>
#endif
#if defined(__PPC__)
// Global varaiable used to hold the FPU control register state. The FPSCR register can not
// be used because not all Power implementations retain or observed the NI (non-IEEE
// mode) bit.
__thread fpu_control_t fpu_control = 0;
#endif
#ifndef MAXPATHLEN
#define MAXPATHLEN 2048
#endif
char appName[ MAXPATHLEN ] = "";
cl_context gContext = NULL;
cl_command_queue gQueue = NULL;
cl_program gProgram[5] = { NULL, NULL, NULL, NULL, NULL };
cl_program gProgram_double[5] = { NULL, NULL, NULL, NULL, NULL };
int gForceFTZ = 0;
int gSeed = 0;
int gSeedSpecified = 0;
int gHasDouble = 0;
MTdata gMTdata = NULL;
int gSkipNanInf = 0;
int gIgnoreZeroSign = 0;
cl_mem bufA = NULL;
cl_mem bufB = NULL;
cl_mem bufC = NULL;
cl_mem bufD = NULL;
cl_mem bufE = NULL;
cl_mem bufC_double = NULL;
cl_mem bufD_double = NULL;
float *buf1, *buf2, *buf3, *buf4, *buf5, *buf6;
float *correct[8];
int *skipTest[8];
double *buf3_double, *buf4_double, *buf5_double, *buf6_double;
double *correct_double[8];
static const char **gArgList;
static size_t gArgCount;
#define BUFFER_SIZE (1024*1024)
static int ParseArgs( int argc, const char **argv );
static void PrintUsage( void );
test_status InitCL( cl_device_id device );
static void ReleaseCL( void );
static int RunTest( int testNumber );
static int RunTest_Double( int testNumber );
#if defined(__ANDROID__)
#define nanf( X ) strtof( "NAN", ( char ** ) NULL )
#define nan( X ) strtod( "NAN", ( char ** ) NULL )
#endif
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
// defeat x87 on MSVC
float sse_add(float x, float y)
{
volatile float a = x;
volatile float b = y;
// defeat x87
__m128 va = _mm_set_ss( (float) a );
__m128 vb = _mm_set_ss( (float) b );
va = _mm_add_ss( va, vb );
_mm_store_ss( (float*) &a, va );
return a;
}
double sse_add_sd(double x, double y)
{
volatile double a = x;
volatile double b = y;
// defeat x87
__m128d va = _mm_set_sd( (double) a );
__m128d vb = _mm_set_sd( (double) b );
va = _mm_add_sd( va, vb );
_mm_store_sd( (double*) &a, va );
return a;
}
float sse_sub(float x, float y)
{
volatile float a = x;
volatile float b = y;
// defeat x87
__m128 va = _mm_set_ss( (float) a );
__m128 vb = _mm_set_ss( (float) b );
va = _mm_sub_ss( va, vb );
_mm_store_ss( (float*) &a, va );
return a;
}
double sse_sub_sd(double x, double y)
{
volatile double a = x;
volatile double b = y;
// defeat x87
__m128d va = _mm_set_sd( (double) a );
__m128d vb = _mm_set_sd( (double) b );
va = _mm_sub_sd( va, vb );
_mm_store_sd( (double*) &a, va );
return a;
}
float sse_mul(float x, float y)
{
volatile float a = x;
volatile float b = y;
// defeat x87
__m128 va = _mm_set_ss( (float) a );
__m128 vb = _mm_set_ss( (float) b );
va = _mm_mul_ss( va, vb );
_mm_store_ss( (float*) &a, va );
return a;
}
double sse_mul_sd(double x, double y)
{
volatile double a = x;
volatile double b = y;
// defeat x87
__m128d va = _mm_set_sd( (double) a );
__m128d vb = _mm_set_sd( (double) b );
va = _mm_mul_sd( va, vb );
_mm_store_sd( (double*) &a, va );
return a;
}
#endif
#ifdef __PPC__
float ppc_mul(float a, float b)
{
float p;
if (gForceFTZ) {
// Flush input a to zero if it is sub-normal
if (fabsf(a) < FLT_MIN) {
a = copysignf(0.0, a);
}
// Flush input b to zero if it is sub-normal
if (fabsf(b) < FLT_MIN) {
b = copysignf(0.0, b);
}
// Perform multiply
p = a * b;
// Flush the product if it is a sub-normal
if (fabs((double)a * (double)b) < FLT_MIN) {
p = copysignf(0.0, p);
}
} else {
p = a * b;
}
return p;
}
#endif
int test_contractions_float_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest(0);
}
int test_contractions_float_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest(1);
}
int test_contractions_float_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest(2);
}
int test_contractions_float_3(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest(3);
}
int test_contractions_float_4(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest(4);
}
int test_contractions_float_5(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest(5);
}
int test_contractions_float_6(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest(6);
}
int test_contractions_float_7(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest(7);
}
int test_contractions_double_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest_Double(0);
}
int test_contractions_double_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest_Double(1);
}
int test_contractions_double_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest_Double(2);
}
int test_contractions_double_3(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest_Double(3);
}
int test_contractions_double_4(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest_Double(4);
}
int test_contractions_double_5(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest_Double(5);
}
int test_contractions_double_6(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest_Double(6);
}
int test_contractions_double_7(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return RunTest_Double(7);
}
test_definition test_list[] = {
ADD_TEST( contractions_float_0 ),
ADD_TEST( contractions_float_1 ),
ADD_TEST( contractions_float_2 ),
ADD_TEST( contractions_float_3 ),
ADD_TEST( contractions_float_4 ),
ADD_TEST( contractions_float_5 ),
ADD_TEST( contractions_float_6 ),
ADD_TEST( contractions_float_7 ),
ADD_TEST( contractions_double_0 ),
ADD_TEST( contractions_double_1 ),
ADD_TEST( contractions_double_2 ),
ADD_TEST( contractions_double_3 ),
ADD_TEST( contractions_double_4 ),
ADD_TEST( contractions_double_5 ),
ADD_TEST( contractions_double_6 ),
ADD_TEST( contractions_double_7 ),
};
const int test_num = ARRAY_SIZE( test_list );
int main( int argc, const char **argv )
{
argc = parseCustomParam(argc, argv);
if (argc == -1)
{
return -1;
}
int error = ParseArgs( argc, argv );
if( !error )
{
error = runTestHarnessWithCheck( gArgCount, gArgList, test_num, test_list, true, 0, InitCL );
}
if( gQueue )
{
int flush_error = clFinish( gQueue );
if( flush_error )
log_error( "clFinish failed: %d\n", flush_error );
}
ReleaseCL();
free( gArgList );
return error;
}
static int ParseArgs( int argc, const char **argv )
{
gArgList = (const char **)calloc( argc, sizeof( char*) );
if( NULL == gArgList )
{
vlog_error( "Failed to allocate memory for argList\n" );
return 1;
}
gArgList[0] = argv[0];
gArgCount = 1;
int length_of_seed = 0;
{ // Extract the app name
strncpy( appName, argv[0], MAXPATHLEN );
#if (defined( __APPLE__ ) || defined(__linux__) || defined(__MINGW32__))
char baseName[MAXPATHLEN];
char *base = NULL;
strncpy( baseName, argv[0], MAXPATHLEN );
base = basename( baseName );
if( NULL != base )
{
strncpy( appName, base, sizeof( appName ) );
appName[ sizeof( appName ) -1 ] = '\0';
}
#elif defined (_WIN32)
char fname[_MAX_FNAME + _MAX_EXT + 1];
char ext[_MAX_EXT];
errno_t err = _splitpath_s( argv[0], NULL, 0, NULL, 0,
fname, _MAX_FNAME, ext, _MAX_EXT );
if (err == 0) { // no error
strcat (fname, ext); //just cat them, size of frame can keep both
strncpy (appName, fname, sizeof(appName));
appName[ sizeof( appName ) -1 ] = '\0';
}
#endif
}
for( int i = 1; i < argc; i++ )
{
const char *arg = argv[i];
if( NULL == arg )
break;
if( arg[0] == '-' )
{
while( arg[1] != '\0' )
{
arg++;
switch( *arg )
{
case 'h':
PrintUsage();
return -1;
case 's':
arg++;
gSeed = atoi( arg );
while (arg[length_of_seed] >='0' && arg[length_of_seed]<='9')
length_of_seed++;
gSeedSpecified = 1;
arg+=length_of_seed-1;
break;
case 'z':
gForceFTZ ^= 1;
break;
default:
vlog( " <-- unknown flag: %c (0x%2.2x)\n)", *arg, *arg );
PrintUsage();
return -1;
}
}
}
else
{
gArgList[gArgCount] = arg;
gArgCount++;
}
}
vlog( "\n\nTest binary built %s %s\n", __DATE__, __TIME__ );
PrintArch();
return 0;
}
static void PrintUsage( void )
{
vlog( "%s [-z]: <optional: test names>\n", appName );
vlog( "\tOptions:\n" );
vlog( "\t\t-z\tToggle FTZ mode (Section 6.5.3) for all functions. (Set by device capabilities by default.)\n" );
vlog( "\t\t-sNUMBER set random seed.\n");
vlog( "\n" );
vlog( "\tTest names:\n" );
for( int i = 0; i < test_num; i++ )
{
vlog( "\t\t%s\n", test_list[i].name );
}
}
const char *sizeNames[] = { "float", "float2", "float4", "float8", "float16" };
const char *sizeNames_double[] = { "double", "double2", "double4", "double8", "double16" };
test_status InitCL( cl_device_id device )
{
int error;
uint32_t i, j;
int *bufSkip = NULL;
int isRTZ = 0;
RoundingMode oldRoundMode = kDefaultRoundingMode;
cl_device_fp_config floatCapabilities = 0;
if( (error = clGetDeviceInfo(device, CL_DEVICE_SINGLE_FP_CONFIG, sizeof(floatCapabilities), &floatCapabilities, NULL)))
floatCapabilities = 0;
if(0 == (CL_FP_DENORM & floatCapabilities) )
gForceFTZ ^= 1;
// check for cl_khr_fp64
gHasDouble = is_extension_available(device, "cl_khr_fp64" );
if(0 == (CL_FP_INF_NAN & floatCapabilities) )
gSkipNanInf = 1;
// Embedded devices that flush to zero are allowed to have an undefined sign.
if (gIsEmbedded && gForceFTZ)
gIgnoreZeroSign = 1;
gContext = clCreateContext( NULL, 1, &device, notify_callback, NULL, &error );
if( NULL == gContext || error )
{
vlog_error( "clCreateDeviceGroup failed. %d\n", error );
return TEST_FAIL;
}
gQueue = clCreateCommandQueue( gContext, device, 0, &error );
if( NULL == gQueue || error )
{
vlog_error( "clCreateContext failed. %d\n", error );
return TEST_FAIL;
}
// setup input buffers
bufA = clCreateBuffer( gContext, CL_MEM_READ_WRITE, BUFFER_SIZE, NULL, NULL );
bufB = clCreateBuffer( gContext, CL_MEM_READ_WRITE, BUFFER_SIZE, NULL, NULL );
bufC = clCreateBuffer( gContext, CL_MEM_READ_WRITE, BUFFER_SIZE, NULL, NULL );
bufD = clCreateBuffer( gContext, CL_MEM_READ_WRITE, BUFFER_SIZE, NULL, NULL );
bufE = clCreateBuffer( gContext, CL_MEM_READ_WRITE, BUFFER_SIZE, NULL, NULL );
if( bufA == NULL ||
bufB == NULL ||
bufC == NULL ||
bufD == NULL ||
bufE == NULL )
{
vlog_error( "clCreateArray failed for input\n" );
return TEST_FAIL;
}
if( gHasDouble )
{
bufC_double = clCreateBuffer( gContext, CL_MEM_READ_WRITE, BUFFER_SIZE, NULL, NULL );
bufD_double = clCreateBuffer( gContext, CL_MEM_READ_WRITE, BUFFER_SIZE, NULL, NULL );
if( bufC_double == NULL ||
bufD_double == NULL )
{
vlog_error( "clCreateArray failed for input DP\n" );
return TEST_FAIL;
}
}
const char *kernels[] = {
"", "#pragma OPENCL FP_CONTRACT OFF\n"
"__kernel void kernel1( __global ", NULL, " *out, const __global ", NULL, " *a, const __global ", NULL, " *b, const __global ", NULL, " *c )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = a[i] * b[i] + c[i];\n"
"}\n"
"\n"
"__kernel void kernel2( __global ", NULL, " *out, const __global ", NULL, " *a, const __global ", NULL, " *b, const __global ", NULL, " *c )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = a[i] * b[i] - c[i];\n"
"}\n"
"\n"
"__kernel void kernel3( __global ", NULL, " *out, const __global ", NULL, " *a, const __global ", NULL, " *b, const __global ", NULL, " *c )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = c[i] + a[i] * b[i];\n"
"}\n"
"\n"
"__kernel void kernel4( __global ", NULL, " *out, const __global ", NULL, " *a, const __global ", NULL, " *b, const __global ", NULL, " *c )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = c[i] - a[i] * b[i];\n"
"}\n"
"\n"
"__kernel void kernel5( __global ", NULL, " *out, const __global ", NULL, " *a, const __global ", NULL, " *b, const __global ", NULL, " *c )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = -(a[i] * b[i] + c[i]);\n"
"}\n"
"\n"
"__kernel void kernel6( __global ", NULL, " *out, const __global ", NULL, " *a, const __global ", NULL, " *b, const __global ", NULL, " *c )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = -(a[i] * b[i] - c[i]);\n"
"}\n"
"\n"
"__kernel void kernel7( __global ", NULL, " *out, const __global ", NULL, " *a, const __global ", NULL, " *b, const __global ", NULL, " *c )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = -(c[i] + a[i] * b[i]);\n"
"}\n"
"\n"
"__kernel void kernel8( __global ", NULL, " *out, const __global ", NULL, " *a, const __global ", NULL, " *b, const __global ", NULL, " *c )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = -(c[i] - a[i] * b[i]);\n"
"}\n"
"\n" };
for (i = 0; i < sizeof(sizeNames) / sizeof(sizeNames[0]); i++)
{
size_t strCount = sizeof(kernels) / sizeof(kernels[0]);
kernels[0] = "";
for (j = 2; j < strCount; j += 2) kernels[j] = sizeNames[i];
error = create_single_kernel_helper(gContext, &gProgram[i], nullptr,
strCount, kernels, nullptr);
if (CL_SUCCESS != error || nullptr == gProgram[i])
{
log_error("Error: Unable to create test program! (%s) (in %s:%d)\n",
IGetErrorString(error), __FILE__, __LINE__);
return TEST_FAIL;
}
}
if (gHasDouble)
{
kernels[0] = "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n";
for (i = 0; i < sizeof(sizeNames_double) / sizeof(sizeNames_double[0]);
i++)
{
size_t strCount = sizeof(kernels) / sizeof(kernels[0]);
for (j = 2; j < strCount; j += 2) kernels[j] = sizeNames_double[i];
error = create_single_kernel_helper(gContext, &gProgram_double[i],
nullptr, strCount, kernels,
nullptr);
if (CL_SUCCESS != error || nullptr == gProgram_double[i])
{
log_error(
"Error: Unable to create test program! (%s) (in %s:%d)\n",
IGetErrorString(error), __FILE__, __LINE__);
return TEST_FAIL;
}
}
}
if( 0 == gSeedSpecified )
{
time_t currentTime = time( NULL );
struct tm *t = localtime(&currentTime);
gSeed = t->tm_sec + 60 * ( t->tm_min + 60 * (t->tm_hour + 24 * (t->tm_yday + 365 * t->tm_year)));
gSeed = (uint32_t) (((uint64_t) gSeed * (uint64_t) gSeed ) >> 16);
}
gMTdata = init_genrand( gSeed );
// Init bufA and bufB
{
buf1 = (float *)malloc( BUFFER_SIZE );
buf2 = (float *)malloc( BUFFER_SIZE );
buf3 = (float *)malloc( BUFFER_SIZE );
buf4 = (float *)malloc( BUFFER_SIZE );
buf5 = (float *)malloc( BUFFER_SIZE );
buf6 = (float *)malloc( BUFFER_SIZE );
bufSkip = (int *)malloc( BUFFER_SIZE );
if( NULL == buf1 || NULL == buf2 || NULL == buf3 || NULL == buf4 || NULL == buf5 || NULL == buf6 || NULL == bufSkip)
{
vlog_error( "Out of memory initializing buffers\n" );
return TEST_FAIL;
}
for( i = 0; i < sizeof( correct ) / sizeof( correct[0] ); i++ )
{
correct[i] = (float *)malloc( BUFFER_SIZE );
skipTest[i] = (int *)malloc( BUFFER_SIZE );
if(( NULL == correct[i] ) || ( NULL == skipTest[i]))
{
vlog_error( "Out of memory initializing buffers 2\n" );
return TEST_FAIL;
}
}
for( i = 0; i < BUFFER_SIZE / sizeof(float); i++ )
((uint32_t*) buf1)[i] = genrand_int32( gMTdata );
if( (error = clEnqueueWriteBuffer(gQueue, bufA, CL_FALSE, 0, BUFFER_SIZE, buf1, 0, NULL, NULL) ))
{
vlog_error( "Failure %d at clEnqueueWriteBuffer1\n", error );
return TEST_FAIL;
}
for( i = 0; i < BUFFER_SIZE / sizeof(float); i++ )
((uint32_t*) buf2)[i] = genrand_int32( gMTdata );
if( (error = clEnqueueWriteBuffer(gQueue, bufB, CL_FALSE, 0, BUFFER_SIZE, buf2, 0, NULL, NULL) ))
{
vlog_error( "Failure %d at clEnqueueWriteBuffer2\n", error );
return TEST_FAIL;
}
void *ftzInfo = NULL;
if( gForceFTZ )
ftzInfo = FlushToZero();
if ((CL_FP_ROUND_TO_ZERO == get_default_rounding_mode(device)) && gIsEmbedded) {
oldRoundMode = set_round(kRoundTowardZero, kfloat);
isRTZ = 1;
}
float *f = (float*) buf1;
float *f2 = (float*) buf2;
float *f3 = (float*) buf3;
float *f4 = (float*) buf4;
for( i = 0; i < BUFFER_SIZE / sizeof(float); i++ )
{
float q = f[i];
float q2 = f2[i];
feclearexcept(FE_OVERFLOW);
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
// VS2005 might use x87 for straight multiplies, and we can't
// turn that off
f3[i] = sse_mul(q, q2);
f4[i] = sse_mul(-q, q2);
#elif defined(__PPC__)
// None of the current generation PPC processors support HW
// FTZ, emulate it in sw.
f3[i] = ppc_mul(q, q2);
f4[i] = ppc_mul(-q, q2);
#else
f3[i] = q * q2;
f4[i] = -q * q2;
#endif
// Skip test if the device doesn't support infinities and NaN AND the result overflows
// or either input is an infinity of NaN
bufSkip[i] = (gSkipNanInf && ((FE_OVERFLOW == (FE_OVERFLOW & fetestexcept(FE_OVERFLOW))) ||
(fabsf(q) == FLT_MAX) || (q != q) ||
(fabsf(q2) == FLT_MAX) || (q2 != q2)));
}
if( gForceFTZ )
UnFlushToZero(ftzInfo);
if (isRTZ)
(void)set_round(oldRoundMode, kfloat);
if( (error = clEnqueueWriteBuffer(gQueue, bufC, CL_FALSE, 0, BUFFER_SIZE, buf3, 0, NULL, NULL) ))
{
vlog_error( "Failure %d at clEnqueueWriteBuffer3\n", error );
return TEST_FAIL;
}
if( (error = clEnqueueWriteBuffer(gQueue, bufD, CL_FALSE, 0, BUFFER_SIZE, buf4, 0, NULL, NULL) ))
{
vlog_error( "Failure %d at clEnqueueWriteBuffer4\n", error );
return TEST_FAIL;
}
// Fill the buffers with NaN
float *f5 = (float*) buf5;
float nan_val = nanf("");
for( i = 0; i < BUFFER_SIZE / sizeof( float ); i++ )
f5[i] = nan_val;
// calculate reference results
for( i = 0; i < BUFFER_SIZE / sizeof( float ); i++ )
{
for ( j=0; j<8; j++)
{
feclearexcept(FE_OVERFLOW);
switch (j)
{
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
// VS2005 might use x87 for straight add/sub, and we can't
// turn that off
case 0:
correct[0][i] = sse_add(buf3[i],buf4[i]); break;
case 1:
correct[1][i] = sse_sub(buf3[i],buf3[i]); break;
case 2:
correct[2][i] = sse_add(buf4[i],buf3[i]); break;
case 3:
correct[3][i] = sse_sub(buf3[i],buf3[i]); break;
case 4:
correct[4][i] = -sse_add(buf3[i],buf4[i]); break;
case 5:
correct[5][i] = -sse_sub(buf3[i],buf3[i]); break;
case 6:
correct[6][i] = -sse_add(buf4[i],buf3[i]); break;
case 7:
correct[7][i] = -sse_sub(buf3[i],buf3[i]); break;
#else
case 0:
correct[0][i] = buf3[i] + buf4[i]; break;
case 1:
correct[1][i] = buf3[i] - buf3[i]; break;
case 2:
correct[2][i] = buf4[i] + buf3[i]; break;
case 3:
correct[3][i] = buf3[i] - buf3[i]; break;
case 4:
correct[4][i] = -(buf3[i] + buf4[i]); break;
case 5:
correct[5][i] = -(buf3[i] - buf3[i]); break;
case 6:
correct[6][i] = -(buf4[i] + buf3[i]); break;
case 7:
correct[7][i] = -(buf3[i] - buf3[i]); break;
#endif
}
// Further skip test inputs if the device doesn support infinities AND NaNs
// resulting sum overflows
skipTest[j][i] = (bufSkip[i] ||
(gSkipNanInf && (FE_OVERFLOW == (FE_OVERFLOW & fetestexcept(FE_OVERFLOW)))));
#if defined(__PPC__)
// Since the current Power processors don't emulate flush to zero in HW,
// it must be emulated in SW instead.
if (gForceFTZ)
{
if ((fabsf(correct[j][i]) < FLT_MIN) && (correct[j][i] != 0.0f))
correct[j][i] = copysignf(0.0f, correct[j][i]);
}
#endif
}
}
if( gHasDouble )
{
// Spec requires correct non-flushed results
// for doubles. We disable FTZ if this is default on
// the platform (like ARM) for reference result computation
// It is no-op if platform default is not FTZ (e.g. x86)
FPU_mode_type oldMode;
DisableFTZ( &oldMode );
buf3_double = (double *)malloc( BUFFER_SIZE );
buf4_double = (double *)malloc( BUFFER_SIZE );
buf5_double = (double *)malloc( BUFFER_SIZE );
buf6_double = (double *)malloc( BUFFER_SIZE );
if( NULL == buf3_double || NULL == buf4_double || NULL == buf5_double || NULL == buf6_double )
{
vlog_error( "Out of memory initializing DP buffers\n" );
return TEST_FAIL;
}
for( i = 0; i < sizeof( correct_double ) / sizeof( correct_double[0] ); i++ )
{
correct_double[i] = (double *)malloc( BUFFER_SIZE );
if( NULL == correct_double[i] )
{
vlog_error( "Out of memory initializing DP buffers 2\n" );
return TEST_FAIL;
}
}
double *f = (double*) buf1;
double *f2 = (double*) buf2;
double *f3 = (double*) buf3_double;
double *f4 = (double*) buf4_double;
for( i = 0; i < BUFFER_SIZE / sizeof(double); i++ )
{
double q = f[i];
double q2 = f2[i];
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
// VS2005 might use x87 for straight multiplies, and we can't
// turn that off
f3[i] = sse_mul_sd(q, q2);
f4[i] = sse_mul_sd(-q, q2);
#else
f3[i] = q * q2;
f4[i] = -q * q2;
#endif
}
if( (error = clEnqueueWriteBuffer(gQueue, bufC_double, CL_FALSE, 0, BUFFER_SIZE, buf3_double, 0, NULL, NULL) ))
{
vlog_error( "Failure %d at clEnqueueWriteBuffer3\n", error );
return TEST_FAIL;
}
if( (error = clEnqueueWriteBuffer(gQueue, bufD_double, CL_FALSE, 0, BUFFER_SIZE, buf4_double, 0, NULL, NULL) ))
{
vlog_error( "Failure %d at clEnqueueWriteBuffer4\n", error );
return TEST_FAIL;
}
// Fill the buffers with NaN
double *f5 = (double*) buf5_double;
double nan_val = nanf("");
for( i = 0; i < BUFFER_SIZE / sizeof( double ); i++ )
f5[i] = nan_val;
// calculate reference results
for( i = 0; i < BUFFER_SIZE / sizeof( double ); i++ )
{
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
// VS2005 might use x87 for straight add/sub, and we can't
// turn that off
correct_double[0][i] = sse_add_sd(buf3_double[i],buf4_double[i]);
correct_double[1][i] = sse_sub_sd(buf3_double[i],buf3_double[i]);
correct_double[2][i] = sse_add_sd(buf4_double[i],buf3_double[i]);
correct_double[3][i] = sse_sub_sd(buf3_double[i],buf3_double[i]);
correct_double[4][i] = -sse_add_sd(buf3_double[i],buf4_double[i]);
correct_double[5][i] = -sse_sub_sd(buf3_double[i],buf3_double[i]);
correct_double[6][i] = -sse_add_sd(buf4_double[i],buf3_double[i]);
correct_double[7][i] = -sse_sub_sd(buf3_double[i],buf3_double[i]);
#else
correct_double[0][i] = buf3_double[i] + buf4_double[i];
correct_double[1][i] = buf3_double[i] - buf3_double[i];
correct_double[2][i] = buf4_double[i] + buf3_double[i];
correct_double[3][i] = buf3_double[i] - buf3_double[i];
correct_double[4][i] = -(buf3_double[i] + buf4_double[i]);
correct_double[5][i] = -(buf3_double[i] - buf3_double[i]);
correct_double[6][i] = -(buf4_double[i] + buf3_double[i]);
correct_double[7][i] = -(buf3_double[i] - buf3_double[i]);
#endif
}
// Restore previous FP state since we modified it for
// reference result computation (see DisableFTZ call above)
RestoreFPState(&oldMode);
}
}
char c[1000];
static const char *no_yes[] = { "NO", "YES" };
vlog( "\nCompute Device info:\n" );
clGetDeviceInfo( device, CL_DEVICE_NAME, sizeof(c), (void *)&c, NULL);
vlog( "\tDevice Name: %s\n", c );
clGetDeviceInfo( device, CL_DEVICE_VENDOR, sizeof(c), (void *)&c, NULL);
vlog( "\tVendor: %s\n", c );
clGetDeviceInfo( device, CL_DEVICE_VERSION, sizeof(c), (void *)&c, NULL);
vlog( "\tDevice Version: %s\n", c );
clGetDeviceInfo( device, CL_DEVICE_OPENCL_C_VERSION, sizeof(c), &c, NULL);
vlog( "\tCL C Version: %s\n", c );
clGetDeviceInfo( device, CL_DRIVER_VERSION, sizeof(c), (void *)&c, NULL);
vlog( "\tDriver Version: %s\n", c );
vlog( "\tSubnormal values supported? %s\n", no_yes[0 != (CL_FP_DENORM & floatCapabilities)] );
vlog( "\tTesting with FTZ mode ON? %s\n", no_yes[0 != gForceFTZ] );
vlog( "\tTesting Doubles? %s\n", no_yes[0 != gHasDouble] );
vlog( "\tRandom Number seed: 0x%8.8x\n", gSeed );
vlog( "\n\n" );
return TEST_PASS;
}
static void ReleaseCL( void )
{
clReleaseMemObject(bufA);
clReleaseMemObject(bufB);
clReleaseMemObject(bufC);
clReleaseMemObject(bufD);
clReleaseMemObject(bufE);
clReleaseProgram(gProgram[0]);
clReleaseProgram(gProgram[1]);
clReleaseProgram(gProgram[2]);
clReleaseProgram(gProgram[3]);
clReleaseProgram(gProgram[4]);
if( gHasDouble )
{
clReleaseMemObject(bufC_double);
clReleaseMemObject(bufD_double);
clReleaseProgram(gProgram_double[0]);
clReleaseProgram(gProgram_double[1]);
clReleaseProgram(gProgram_double[2]);
clReleaseProgram(gProgram_double[3]);
clReleaseProgram(gProgram_double[4]);
}
clReleaseCommandQueue(gQueue);
clReleaseContext(gContext);
}
static int RunTest( int testNumber )
{
size_t i;
int error = 0;
cl_mem args[4];
float *c;
const char *kernelName[] = { "kernel1", "kernel2", "kernel3", "kernel4",
"kernel5", "kernel6", "kernel7", "kernel8" };
switch( testNumber )
{
case 0: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufD; c = buf4; break; // a * b + c
case 1: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufC; c = buf3; break;
case 2: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufD; c = buf4; break;
case 3: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufC; c = buf3; break;
case 4: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufD; c = buf4; break;
case 5: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufC; c = buf3; break;
case 6: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufD; c = buf4; break;
case 7: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufC; c = buf3; break;
default:
vlog_error( "Unknown test case %d passed to RunTest\n", testNumber );
return -1;
}
int vectorSize;
for( vectorSize = 0; vectorSize < 5; vectorSize++ )
{
cl_kernel k = clCreateKernel( gProgram[ vectorSize ], kernelName[ testNumber ], &error );
if( NULL == k || error )
{
vlog_error( "%d) Unable to find kernel \"%s\" for vector size: %d\n", error, kernelName[ testNumber ], 1 << vectorSize );
return -2;
}
// set the kernel args
for( i = 0; i < sizeof(args ) / sizeof( args[0]); i++ )
if( (error = clSetKernelArg(k, i, sizeof( cl_mem ), args + i) ))
{
vlog_error( "Error %d setting kernel arg # %ld\n", error, i );
return error;
}
// write NaNs to the result array
if( (error = clEnqueueWriteBuffer(gQueue, bufE, CL_TRUE, 0, BUFFER_SIZE, buf5, 0, NULL, NULL) ))
{
vlog_error( "Failure %d at clWriteArray %d\n", error, testNumber );
return error;
}
// execute the kernel
size_t gDim[3] = { BUFFER_SIZE / (sizeof( cl_float ) * (1<<vectorSize)), 0, 0 };
if( ((error = clEnqueueNDRangeKernel(gQueue, k, 1, NULL, gDim, NULL, 0, NULL, NULL) )))
{
vlog_error( "Got Error # %d trying to execture kernel\n", error );
return error;
}
// read the data back
if( (error = clEnqueueReadBuffer(gQueue, bufE, CL_TRUE, 0, BUFFER_SIZE, buf6, 0, NULL, NULL ) ))
{
vlog_error( "Failure %d at clReadArray %d\n", error, testNumber );
return error;
}
// verify results
float *test = (float*) buf6;
float *a = (float*) buf1;
float *b = (float*) buf2;
for( i = 0; i < BUFFER_SIZE / sizeof( float ); i++ )
{
if( isnan(test[i]) && isnan(correct[testNumber][i] ) )
continue;
if( skipTest[testNumber][i] )
continue;
// sign of zero must be correct
if(( ((uint32_t*) test)[i] != ((uint32_t*) correct[testNumber])[i] ) &&
!(gIgnoreZeroSign && (test[i] == 0.0f) && (correct[testNumber][i] == 0.0f)) )
{
switch( testNumber )
{
// Zeros for these should be positive
case 0: vlog_error( "%ld) Error for %s %s: %a * %a + %a = *%a vs. %a\n", i, sizeNames[ vectorSize], kernelName[ testNumber ],
a[i], b[i], c[i], correct[testNumber][i], test[i] ); clReleaseKernel(k); return -1;
case 1: vlog_error( "%ld) Error for %s %s: %a * %a - %a = *%a vs. %a\n", i, sizeNames[ vectorSize], kernelName[ testNumber ],
a[i], b[i], c[i], correct[testNumber][i], test[i] ); clReleaseKernel(k); return -1;
case 2: vlog_error( "%ld) Error for %s %s: %a + %a * %a = *%a vs. %a\n", i, sizeNames[ vectorSize], kernelName[ testNumber ],
c[i], a[i], b[i], correct[testNumber][i], test[i] ); clReleaseKernel(k); return -1;
case 3: vlog_error( "%ld) Error for %s %s: %a - %a * %a = *%a vs. %a\n", i, sizeNames[ vectorSize], kernelName[ testNumber ],
c[i], a[i], b[i], correct[testNumber][i], test[i] ); clReleaseKernel(k); return -1;
// Zeros for these should be negative
case 4: vlog_error( "%ld) Error for %s %s: -(%a * %a + %a) = *%a vs. %a\n", i, sizeNames[ vectorSize], kernelName[ testNumber ],
a[i], b[i], c[i], correct[testNumber][i], test[i] ); clReleaseKernel(k); return -1;
case 5: vlog_error( "%ld) Error for %s %s: -(%a * %a - %a) = *%a vs. %a\n", i, sizeNames[ vectorSize], kernelName[ testNumber ],
a[i], b[i], c[i], correct[testNumber][i], test[i] ); clReleaseKernel(k); return -1;
case 6: vlog_error( "%ld) Error for %s %s: -(%a + %a * %a) = *%a vs. %a\n", i, sizeNames[ vectorSize], kernelName[ testNumber ],
c[i], a[i], b[i], correct[testNumber][i], test[i] ); clReleaseKernel(k); return -1;
case 7: vlog_error( "%ld) Error for %s %s: -(%a - %a * %a) = *%a vs. %a\n", i, sizeNames[ vectorSize], kernelName[ testNumber ],
c[i], a[i], b[i], correct[testNumber][i], test[i] ); clReleaseKernel(k); return -1;
default:
vlog_error( "error: Unknown test number!\n" );
clReleaseKernel(k);
return -2;
}
}
}
clReleaseKernel(k);
}
return error;
}
static int RunTest_Double( int testNumber )
{
if( !gHasDouble )
{
vlog("Double is not supported, test not run.\n");
return 0;
}
size_t i;
int error = 0;
cl_mem args[4];
double *c;
const char *kernelName[] = { "kernel1", "kernel2", "kernel3", "kernel4",
"kernel5", "kernel6", "kernel7", "kernel8" };
switch( testNumber )
{
case 0: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufD_double; c = buf4_double; break; // a * b + c
case 1: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufC_double; c = buf3_double; break;
case 2: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufD_double; c = buf4_double; break;
case 3: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufC_double; c = buf3_double; break;
case 4: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufD_double; c = buf4_double; break;
case 5: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufC_double; c = buf3_double; break;
case 6: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufD_double; c = buf4_double; break;
case 7: args[0] = bufE; args[1] = bufA; args[2] = bufB; args[3] = bufC_double; c = buf3_double; break;
default:
vlog_error( "Unknown test case %d passed to RunTest\n", testNumber );
return -1;
}
int vectorSize;
for( vectorSize = 0; vectorSize < 5; vectorSize++ )
{
cl_kernel k = clCreateKernel( gProgram_double[ vectorSize ], kernelName[ testNumber ], &error );
if( NULL == k || error )
{
vlog_error( "%d) Unable to find kernel \"%s\" for vector size: %d\n", error, kernelName[ testNumber ], 1 << vectorSize );
return -2;
}
// set the kernel args
for( i = 0; i < sizeof(args ) / sizeof( args[0]); i++ )
if( (error = clSetKernelArg(k, i, sizeof( cl_mem ), args + i) ))
{
vlog_error( "Error %d setting kernel arg # %ld\n", error, i );
return error;
}
// write NaNs to the result array
if( (error = clEnqueueWriteBuffer(gQueue, bufE, CL_FALSE, 0, BUFFER_SIZE, buf5_double, 0, NULL, NULL) ))
{
vlog_error( "Failure %d at clWriteArray %d\n", error, testNumber );
return error;
}
// execute the kernel
size_t gDim[3] = { BUFFER_SIZE / (sizeof( cl_double ) * (1<<vectorSize)), 0, 0 };
if( ((error = clEnqueueNDRangeKernel(gQueue, k, 1, NULL, gDim, NULL, 0, NULL, NULL) )))
{
vlog_error( "Got Error # %d trying to execture kernel\n", error );
return error;
}
// read the data back
if( (error = clEnqueueReadBuffer(gQueue, bufE, CL_TRUE, 0, BUFFER_SIZE, buf6_double, 0, NULL, NULL ) ))
{
vlog_error( "Failure %d at clReadArray %d\n", error, testNumber );
return error;
}
// verify results
double *test = (double*) buf6_double;
double *a = (double*) buf1;
double *b = (double*) buf2;
for( i = 0; i < BUFFER_SIZE / sizeof( double ); i++ )
{
if( isnan(test[i]) && isnan(correct_double[testNumber][i] ) )
continue;
// sign of zero must be correct
if( ((uint64_t*) test)[i] != ((uint64_t*) correct_double[testNumber])[i] )
{
switch( testNumber )
{
// Zeros for these should be positive
case 0: vlog_error( "%ld) Error for %s %s: %a * %a + %a = *%a vs. %a\n", i, sizeNames_double[ vectorSize], kernelName[ testNumber ],
a[i], b[i], c[i], correct[testNumber][i], test[i] ); return -1;
case 1: vlog_error( "%ld) Error for %s %s: %a * %a - %a = *%a vs. %a\n", i, sizeNames_double[ vectorSize], kernelName[ testNumber ],
a[i], b[i], c[i], correct[testNumber][i], test[i] ); return -1;
case 2: vlog_error( "%ld) Error for %s %s: %a + %a * %a = *%a vs. %a\n", i, sizeNames_double[ vectorSize], kernelName[ testNumber ],
c[i], a[i], b[i], correct[testNumber][i], test[i] ); return -1;
case 3: vlog_error( "%ld) Error for %s %s: %a - %a * %a = *%a vs. %a\n", i, sizeNames_double[ vectorSize], kernelName[ testNumber ],
c[i], a[i], b[i], correct[testNumber][i], test[i] ); return -1;
// Zeros for these should be negative
case 4: vlog_error( "%ld) Error for %s %s: -(%a * %a + %a) = *%a vs. %a\n", i, sizeNames_double[ vectorSize], kernelName[ testNumber ],
a[i], b[i], c[i], correct[testNumber][i], test[i] ); return -1;
case 5: vlog_error( "%ld) Error for %s %s: -(%a * %a - %a) = *%a vs. %a\n", i, sizeNames_double[ vectorSize], kernelName[ testNumber ],
a[i], b[i], c[i], correct[testNumber][i], test[i] ); return -1;
case 6: vlog_error( "%ld) Error for %s %s: -(%a + %a * %a) = *%a vs. %a\n", i, sizeNames_double[ vectorSize], kernelName[ testNumber ],
c[i], a[i], b[i], correct[testNumber][i], test[i] ); return -1;
case 7: vlog_error( "%ld) Error for %s %s: -(%a - %a * %a) = *%a vs. %a\n", i, sizeNames_double[ vectorSize], kernelName[ testNumber ],
c[i], a[i], b[i], correct[testNumber][i], test[i] ); return -1;
default:
vlog_error( "error: Unknown test number!\n" );
return -2;
}
}
}
clReleaseKernel(k);
}
return error;
}