blob: cdb46636297c1f9b766c65a0521405f4c404c13a [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "function_list.h"
#include "test_functions.h"
#include "utility.h"
#include <cstring>
static int BuildKernel(const char *name, const char *operator_symbol,
int vectorSize, cl_uint kernel_count, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void ",
name,
"_kernel",
sizeNames[vectorSize],
"( __global double",
sizeNames[vectorSize],
"* out, __global double",
sizeNames[vectorSize],
"* in1, __global double",
sizeNames[vectorSize],
"* in2 )\n"
"{\n"
" size_t i = get_global_id(0);\n"
" out[i] = in1[i] ",
operator_symbol,
" in2[i];\n"
"}\n" };
const char *c3[] = {
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void ",
name,
"_kernel",
sizeNames[vectorSize],
"( __global double* out, __global double* in, __global double* in2)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" double3 d0 = vload3( 0, in + 3 * i );\n"
" double3 d1 = vload3( 0, in2 + 3 * i );\n"
" d0 = d0 ",
operator_symbol,
" d1;\n"
" vstore3( d0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are "
"left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
"buffer size \n"
" double3 d0;\n"
" double3 d1;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" d0 = (double3)( in[3*i], NAN, NAN ); \n"
" d1 = (double3)( in2[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" d0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
" d1 = (double3)( in2[3*i], in2[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" d0 = d0 ",
operator_symbol,
" d1;\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = d0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = d0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c) / sizeof(c[0]);
if (sizeValues[vectorSize] == 3)
{
kern = c3;
kernSize = sizeof(c3) / sizeof(c3[0]);
}
char testName[32];
snprintf(testName, sizeof(testName) - 1, "%s_kernel%s", name,
sizeNames[vectorSize]);
return MakeKernels(kern, (cl_uint)kernSize, testName, kernel_count, k, p,
relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_uint kernel_count;
cl_kernel **kernels;
cl_program *programs;
const char *name;
const char *operator_symbol;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;
static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
{
BuildKernelInfo *info = (BuildKernelInfo *)p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->name, info->operator_symbol, i, info->kernel_count,
info->kernels[i], info->programs + i, info->relaxedMode);
}
// Thread specific data for a worker thread
typedef struct ThreadInfo
{
cl_mem inBuf; // input buffer for the thread
cl_mem inBuf2; // input buffer for the thread
cl_mem outBuf[VECTOR_SIZE_COUNT]; // output buffers for the thread
float maxError; // max error value. Init to 0.
double
maxErrorValue; // position of the max error value (param 1). Init to 0.
double maxErrorValue2; // position of the max error value (param 2). Init
// to 0.
MTdata d;
cl_command_queue tQueue; // per thread command queue to improve performance
} ThreadInfo;
typedef struct TestInfo
{
size_t subBufferSize; // Size of the sub-buffer in elements
const Func *f; // A pointer to the function info
cl_program programs[VECTOR_SIZE_COUNT]; // programs for various vector sizes
cl_kernel
*k[VECTOR_SIZE_COUNT]; // arrays of thread-specific kernels for each
// worker thread: k[vector_size][thread_id]
ThreadInfo *
tinfo; // An array of thread specific information for each worker thread
cl_uint threadCount; // Number of worker threads
cl_uint jobCount; // Number of jobs
cl_uint step; // step between each chunk and the next.
cl_uint scale; // stride between individual test values
float ulps; // max_allowed ulps
int ftz; // non-zero if running in flush to zero mode
bool relaxedMode; // True if the test is being run in relaxed mode, false
// otherwise.
// no special fields
} TestInfo;
// A table of more difficult cases to get right
static const double specialValues[] = {
-NAN,
-INFINITY,
-DBL_MAX,
MAKE_HEX_DOUBLE(-0x1.0000000000001p64, -0x10000000000001LL, 12),
MAKE_HEX_DOUBLE(-0x1.0p64, -0x1LL, 64),
MAKE_HEX_DOUBLE(-0x1.fffffffffffffp63, -0x1fffffffffffffLL, 11),
MAKE_HEX_DOUBLE(-0x1.0000000000001p63, -0x10000000000001LL, 11),
MAKE_HEX_DOUBLE(-0x1.0p63, -0x1LL, 63),
MAKE_HEX_DOUBLE(-0x1.fffffffffffffp62, -0x1fffffffffffffLL, 10),
MAKE_HEX_DOUBLE(-0x1.000002p32, -0x1000002LL, 8),
MAKE_HEX_DOUBLE(-0x1.0p32, -0x1LL, 32),
MAKE_HEX_DOUBLE(-0x1.fffffffffffffp31, -0x1fffffffffffffLL, -21),
MAKE_HEX_DOUBLE(-0x1.0000000000001p31, -0x10000000000001LL, -21),
MAKE_HEX_DOUBLE(-0x1.0p31, -0x1LL, 31),
MAKE_HEX_DOUBLE(-0x1.fffffffffffffp30, -0x1fffffffffffffLL, -22),
-1000.,
-100.,
-4.0,
-3.5,
-3.0,
MAKE_HEX_DOUBLE(-0x1.8000000000001p1, -0x18000000000001LL, -51),
-2.5,
MAKE_HEX_DOUBLE(-0x1.7ffffffffffffp1, -0x17ffffffffffffLL, -51),
-2.0,
MAKE_HEX_DOUBLE(-0x1.8000000000001p0, -0x18000000000001LL, -52),
-1.5,
MAKE_HEX_DOUBLE(-0x1.7ffffffffffffp0, -0x17ffffffffffffLL, -52),
MAKE_HEX_DOUBLE(-0x1.0000000000001p0, -0x10000000000001LL, -52),
-1.0,
MAKE_HEX_DOUBLE(-0x1.fffffffffffffp-1, -0x1fffffffffffffLL, -53),
MAKE_HEX_DOUBLE(-0x1.0000000000001p-1, -0x10000000000001LL, -53),
-0.5,
MAKE_HEX_DOUBLE(-0x1.fffffffffffffp-2, -0x1fffffffffffffLL, -54),
MAKE_HEX_DOUBLE(-0x1.0000000000001p-2, -0x10000000000001LL, -54),
-0.25,
MAKE_HEX_DOUBLE(-0x1.fffffffffffffp-3, -0x1fffffffffffffLL, -55),
MAKE_HEX_DOUBLE(-0x1.0000000000001p-1022, -0x10000000000001LL, -1074),
-DBL_MIN,
MAKE_HEX_DOUBLE(-0x0.fffffffffffffp-1022, -0x0fffffffffffffLL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000fffp-1022, -0x00000000000fffLL, -1074),
MAKE_HEX_DOUBLE(-0x0.00000000000fep-1022, -0x000000000000feLL, -1074),
MAKE_HEX_DOUBLE(-0x0.000000000000ep-1022, -0x0000000000000eLL, -1074),
MAKE_HEX_DOUBLE(-0x0.000000000000cp-1022, -0x0000000000000cLL, -1074),
MAKE_HEX_DOUBLE(-0x0.000000000000ap-1022, -0x0000000000000aLL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000008p-1022, -0x00000000000008LL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000007p-1022, -0x00000000000007LL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000006p-1022, -0x00000000000006LL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000005p-1022, -0x00000000000005LL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000004p-1022, -0x00000000000004LL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000003p-1022, -0x00000000000003LL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000002p-1022, -0x00000000000002LL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000001p-1022, -0x00000000000001LL, -1074),
-0.0,
+NAN,
+INFINITY,
+DBL_MAX,
MAKE_HEX_DOUBLE(+0x1.0000000000001p64, +0x10000000000001LL, 12),
MAKE_HEX_DOUBLE(+0x1.0p64, +0x1LL, 64),
MAKE_HEX_DOUBLE(+0x1.fffffffffffffp63, +0x1fffffffffffffLL, 11),
MAKE_HEX_DOUBLE(+0x1.0000000000001p63, +0x10000000000001LL, 11),
MAKE_HEX_DOUBLE(+0x1.0p63, +0x1LL, 63),
MAKE_HEX_DOUBLE(+0x1.fffffffffffffp62, +0x1fffffffffffffLL, 10),
MAKE_HEX_DOUBLE(+0x1.000002p32, +0x1000002LL, 8),
MAKE_HEX_DOUBLE(+0x1.0p32, +0x1LL, 32),
MAKE_HEX_DOUBLE(+0x1.fffffffffffffp31, +0x1fffffffffffffLL, -21),
MAKE_HEX_DOUBLE(+0x1.0000000000001p31, +0x10000000000001LL, -21),
MAKE_HEX_DOUBLE(+0x1.0p31, +0x1LL, 31),
MAKE_HEX_DOUBLE(+0x1.fffffffffffffp30, +0x1fffffffffffffLL, -22),
+1000.0,
+100.0,
+4.0,
+3.5,
+3.0,
MAKE_HEX_DOUBLE(+0x1.8000000000001p1, +0x18000000000001LL, -51),
+2.5,
MAKE_HEX_DOUBLE(+0x1.7ffffffffffffp1, +0x17ffffffffffffLL, -51),
+2.0,
MAKE_HEX_DOUBLE(+0x1.8000000000001p0, +0x18000000000001LL, -52),
+1.5,
MAKE_HEX_DOUBLE(+0x1.7ffffffffffffp0, +0x17ffffffffffffLL, -52),
MAKE_HEX_DOUBLE(-0x1.0000000000001p0, -0x10000000000001LL, -52),
+1.0,
MAKE_HEX_DOUBLE(+0x1.fffffffffffffp-1, +0x1fffffffffffffLL, -53),
MAKE_HEX_DOUBLE(+0x1.0000000000001p-1, +0x10000000000001LL, -53),
+0.5,
MAKE_HEX_DOUBLE(+0x1.fffffffffffffp-2, +0x1fffffffffffffLL, -54),
MAKE_HEX_DOUBLE(+0x1.0000000000001p-2, +0x10000000000001LL, -54),
+0.25,
MAKE_HEX_DOUBLE(+0x1.fffffffffffffp-3, +0x1fffffffffffffLL, -55),
MAKE_HEX_DOUBLE(+0x1.0000000000001p-1022, +0x10000000000001LL, -1074),
+DBL_MIN,
MAKE_HEX_DOUBLE(+0x0.fffffffffffffp-1022, +0x0fffffffffffffLL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000fffp-1022, +0x00000000000fffLL, -1074),
MAKE_HEX_DOUBLE(+0x0.00000000000fep-1022, +0x000000000000feLL, -1074),
MAKE_HEX_DOUBLE(+0x0.000000000000ep-1022, +0x0000000000000eLL, -1074),
MAKE_HEX_DOUBLE(+0x0.000000000000cp-1022, +0x0000000000000cLL, -1074),
MAKE_HEX_DOUBLE(+0x0.000000000000ap-1022, +0x0000000000000aLL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000008p-1022, +0x00000000000008LL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000007p-1022, +0x00000000000007LL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000006p-1022, +0x00000000000006LL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000005p-1022, +0x00000000000005LL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000004p-1022, +0x00000000000004LL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000003p-1022, +0x00000000000003LL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000002p-1022, +0x00000000000002LL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000001p-1022, +0x00000000000001LL, -1074),
+0.0,
};
static const size_t specialValuesCount =
sizeof(specialValues) / sizeof(specialValues[0]);
static cl_int Test(cl_uint job_id, cl_uint thread_id, void *data);
int TestFunc_Double_Double_Double_Operator(const Func *f, MTdata d,
bool relaxedMode)
{
TestInfo test_info;
cl_int error;
size_t i, j;
float maxError = 0.0f;
double maxErrorVal = 0.0;
double maxErrorVal2 = 0.0;
logFunctionInfo(f->name, sizeof(cl_double), relaxedMode);
// Init test_info
memset(&test_info, 0, sizeof(test_info));
test_info.threadCount = GetThreadCount();
test_info.subBufferSize = BUFFER_SIZE
/ (sizeof(cl_double) * RoundUpToNextPowerOfTwo(test_info.threadCount));
test_info.scale = getTestScale(sizeof(cl_double));
if (gWimpyMode)
{
test_info.subBufferSize = gWimpyBufferSize
/ (sizeof(cl_double)
* RoundUpToNextPowerOfTwo(test_info.threadCount));
}
test_info.step = (cl_uint)test_info.subBufferSize * test_info.scale;
if (test_info.step / test_info.subBufferSize != test_info.scale)
{
// there was overflow
test_info.jobCount = 1;
}
else
{
test_info.jobCount = (cl_uint)((1ULL << 32) / test_info.step);
}
test_info.f = f;
test_info.ulps = f->double_ulps;
test_info.ftz = f->ftz || gForceFTZ;
// cl_kernels aren't thread safe, so we make one for each vector size for
// every thread
for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
{
size_t array_size = test_info.threadCount * sizeof(cl_kernel);
test_info.k[i] = (cl_kernel *)malloc(array_size);
if (NULL == test_info.k[i])
{
vlog_error("Error: Unable to allocate storage for kernels!\n");
error = CL_OUT_OF_HOST_MEMORY;
goto exit;
}
memset(test_info.k[i], 0, array_size);
}
test_info.tinfo =
(ThreadInfo *)malloc(test_info.threadCount * sizeof(*test_info.tinfo));
if (NULL == test_info.tinfo)
{
vlog_error(
"Error: Unable to allocate storage for thread specific data.\n");
error = CL_OUT_OF_HOST_MEMORY;
goto exit;
}
memset(test_info.tinfo, 0,
test_info.threadCount * sizeof(*test_info.tinfo));
for (i = 0; i < test_info.threadCount; i++)
{
cl_buffer_region region = {
i * test_info.subBufferSize * sizeof(cl_double),
test_info.subBufferSize * sizeof(cl_double)
};
test_info.tinfo[i].inBuf =
clCreateSubBuffer(gInBuffer, CL_MEM_READ_ONLY,
CL_BUFFER_CREATE_TYPE_REGION, &region, &error);
if (error || NULL == test_info.tinfo[i].inBuf)
{
vlog_error("Error: Unable to create sub-buffer of gInBuffer for "
"region {%zd, %zd}\n",
region.origin, region.size);
goto exit;
}
test_info.tinfo[i].inBuf2 =
clCreateSubBuffer(gInBuffer2, CL_MEM_READ_ONLY,
CL_BUFFER_CREATE_TYPE_REGION, &region, &error);
if (error || NULL == test_info.tinfo[i].inBuf2)
{
vlog_error("Error: Unable to create sub-buffer of gInBuffer2 for "
"region {%zd, %zd}\n",
region.origin, region.size);
goto exit;
}
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
test_info.tinfo[i].outBuf[j] = clCreateSubBuffer(
gOutBuffer[j], CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION,
&region, &error);
if (error || NULL == test_info.tinfo[i].outBuf[j])
{
vlog_error("Error: Unable to create sub-buffer of "
"gOutBuffer[%d] for region {%zd, %zd}\n",
(int)j, region.origin, region.size);
goto exit;
}
}
test_info.tinfo[i].tQueue =
clCreateCommandQueue(gContext, gDevice, 0, &error);
if (NULL == test_info.tinfo[i].tQueue || error)
{
vlog_error("clCreateCommandQueue failed. (%d)\n", error);
goto exit;
}
test_info.tinfo[i].d = init_genrand(genrand_int32(d));
}
// Init the kernels
{
BuildKernelInfo build_info = { gMinVectorSizeIndex,
test_info.threadCount,
test_info.k,
test_info.programs,
f->name,
f->nameInCode,
relaxedMode };
if ((error = ThreadPool_Do(BuildKernelFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info)))
goto exit;
}
// Run the kernels
if (!gSkipCorrectnessTesting)
{
error = ThreadPool_Do(Test, test_info.jobCount, &test_info);
// Accumulate the arithmetic errors
for (i = 0; i < test_info.threadCount; i++)
{
if (test_info.tinfo[i].maxError > maxError)
{
maxError = test_info.tinfo[i].maxError;
maxErrorVal = test_info.tinfo[i].maxErrorValue;
maxErrorVal2 = test_info.tinfo[i].maxErrorValue2;
}
}
if (error) goto exit;
if (gWimpyMode)
vlog("Wimp pass");
else
vlog("passed");
}
if (gMeasureTimes)
{
// Init input arrays
double *p = (double *)gIn;
double *p2 = (double *)gIn2;
for (j = 0; j < BUFFER_SIZE / sizeof(cl_double); j++)
{
p[j] = DoubleFromUInt32(genrand_int32(d));
p2[j] = DoubleFromUInt32(genrand_int32(d));
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
BUFFER_SIZE, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0,
BUFFER_SIZE, gIn2, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error);
return error;
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeof(cl_double) * sizeValues[j];
size_t localCount = (BUFFER_SIZE + vectorSize - 1)
/ vectorSize; // BUFFER_SIZE / vectorSize rounded up
if ((error = clSetKernelArg(test_info.k[j][0], 0,
sizeof(gOutBuffer[j]), &gOutBuffer[j])))
{
LogBuildError(test_info.programs[j]);
goto exit;
}
if ((error = clSetKernelArg(test_info.k[j][0], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(test_info.programs[j]);
goto exit;
}
if ((error = clSetKernelArg(test_info.k[j][0], 2,
sizeof(gInBuffer2), &gInBuffer2)))
{
LogBuildError(test_info.programs[j]);
goto exit;
}
double sum = 0.0;
double bestTime = INFINITY;
for (i = 0; i < PERF_LOOP_COUNT; i++)
{
uint64_t startTime = GetTime();
if ((error = clEnqueueNDRangeKernel(gQueue, test_info.k[j][0],
1, NULL, &localCount, NULL,
0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
// Make sure OpenCL is done
if ((error = clFinish(gQueue)))
{
vlog_error("Error %d at clFinish\n", error);
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime(endTime, startTime);
sum += time;
if (time < bestTime) bestTime = time;
}
if (gReportAverageTimes) bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double)gDeviceFrequency
* gComputeDevices * gSimdSize * 1e6
/ (BUFFER_SIZE / sizeof(double));
vlog_perf(clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sD%s",
f->name, sizeNames[j]);
}
}
if (!gSkipCorrectnessTesting)
vlog("\t%8.2f @ {%a, %a}", maxError, maxErrorVal, maxErrorVal2);
vlog("\n");
exit:
// Release
for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
{
clReleaseProgram(test_info.programs[i]);
if (test_info.k[i])
{
for (j = 0; j < test_info.threadCount; j++)
clReleaseKernel(test_info.k[i][j]);
free(test_info.k[i]);
}
}
if (test_info.tinfo)
{
for (i = 0; i < test_info.threadCount; i++)
{
free_mtdata(test_info.tinfo[i].d);
clReleaseMemObject(test_info.tinfo[i].inBuf);
clReleaseMemObject(test_info.tinfo[i].inBuf2);
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
clReleaseMemObject(test_info.tinfo[i].outBuf[j]);
clReleaseCommandQueue(test_info.tinfo[i].tQueue);
}
free(test_info.tinfo);
}
return error;
}
static cl_int Test(cl_uint job_id, cl_uint thread_id, void *data)
{
const TestInfo *job = (const TestInfo *)data;
size_t buffer_elements = job->subBufferSize;
size_t buffer_size = buffer_elements * sizeof(cl_double);
cl_uint base = job_id * (cl_uint)job->step;
ThreadInfo *tinfo = job->tinfo + thread_id;
float ulps = job->ulps;
dptr func = job->f->dfunc;
int ftz = job->ftz;
bool relaxedMode = job->relaxedMode;
MTdata d = tinfo->d;
cl_uint j, k;
cl_int error;
const char *name = job->f->name;
cl_ulong *t;
cl_double *r;
cl_double *s;
cl_double *s2;
Force64BitFPUPrecision();
// start the map of the output arrays
cl_event e[VECTOR_SIZE_COUNT];
cl_ulong *out[VECTOR_SIZE_COUNT];
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
out[j] = (cl_ulong *)clEnqueueMapBuffer(
tinfo->tQueue, tinfo->outBuf[j], CL_FALSE, CL_MAP_WRITE, 0,
buffer_size, 0, NULL, e + j, &error);
if (error || NULL == out[j])
{
vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
error);
return error;
}
}
// Get that moving
if ((error = clFlush(tinfo->tQueue))) vlog("clFlush failed\n");
// Init input array
cl_ulong *p = (cl_ulong *)gIn + thread_id * buffer_elements;
cl_ulong *p2 = (cl_ulong *)gIn2 + thread_id * buffer_elements;
j = 0;
int totalSpecialValueCount = specialValuesCount * specialValuesCount;
int indx = (totalSpecialValueCount - 1) / buffer_elements;
if (job_id <= (cl_uint)indx)
{ // test edge cases
cl_double *fp = (cl_double *)p;
cl_double *fp2 = (cl_double *)p2;
uint32_t x, y;
x = (job_id * buffer_elements) % specialValuesCount;
y = (job_id * buffer_elements) / specialValuesCount;
for (; j < buffer_elements; j++)
{
fp[j] = specialValues[x];
fp2[j] = specialValues[y];
if (++x >= specialValuesCount)
{
x = 0;
y++;
if (y >= specialValuesCount) break;
}
}
}
// Init any remaining values.
for (; j < buffer_elements; j++)
{
p[j] = genrand_int64(d);
p2[j] = genrand_int64(d);
}
if ((error = clEnqueueWriteBuffer(tinfo->tQueue, tinfo->inBuf, CL_FALSE, 0,
buffer_size, p, 0, NULL, NULL)))
{
vlog_error("Error: clEnqueueWriteBuffer failed! err: %d\n", error);
goto exit;
}
if ((error = clEnqueueWriteBuffer(tinfo->tQueue, tinfo->inBuf2, CL_FALSE, 0,
buffer_size, p2, 0, NULL, NULL)))
{
vlog_error("Error: clEnqueueWriteBuffer failed! err: %d\n", error);
goto exit;
}
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
// Wait for the map to finish
if ((error = clWaitForEvents(1, e + j)))
{
vlog_error("Error: clWaitForEvents failed! err: %d\n", error);
goto exit;
}
if ((error = clReleaseEvent(e[j])))
{
vlog_error("Error: clReleaseEvent failed! err: %d\n", error);
goto exit;
}
// Fill the result buffer with garbage, so that old results don't carry
// over
uint32_t pattern = 0xffffdead;
memset_pattern4(out[j], &pattern, buffer_size);
if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
out[j], 0, NULL, NULL)))
{
vlog_error("Error: clEnqueueMapBuffer failed! err: %d\n", error);
goto exit;
}
// run the kernel
size_t vectorCount =
(buffer_elements + sizeValues[j] - 1) / sizeValues[j];
cl_kernel kernel = job->k[j][thread_id]; // each worker thread has its
// own copy of the cl_kernel
cl_program program = job->programs[j];
if ((error = clSetKernelArg(kernel, 0, sizeof(tinfo->outBuf[j]),
&tinfo->outBuf[j])))
{
LogBuildError(program);
return error;
}
if ((error = clSetKernelArg(kernel, 1, sizeof(tinfo->inBuf),
&tinfo->inBuf)))
{
LogBuildError(program);
return error;
}
if ((error = clSetKernelArg(kernel, 2, sizeof(tinfo->inBuf2),
&tinfo->inBuf2)))
{
LogBuildError(program);
return error;
}
if ((error = clEnqueueNDRangeKernel(tinfo->tQueue, kernel, 1, NULL,
&vectorCount, NULL, 0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
}
// Get that moving
if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 2 failed\n");
if (gSkipCorrectnessTesting) return CL_SUCCESS;
// Calculate the correctly rounded reference result
r = (cl_double *)gOut_Ref + thread_id * buffer_elements;
s = (cl_double *)gIn + thread_id * buffer_elements;
s2 = (cl_double *)gIn2 + thread_id * buffer_elements;
for (j = 0; j < buffer_elements; j++)
r[j] = (cl_double)func.f_ff(s[j], s2[j]);
// Read the data back -- no need to wait for the first N-1 buffers. This is
// an in order queue.
for (j = gMinVectorSizeIndex; j + 1 < gMaxVectorSizeIndex; j++)
{
out[j] = (cl_ulong *)clEnqueueMapBuffer(
tinfo->tQueue, tinfo->outBuf[j], CL_FALSE, CL_MAP_READ, 0,
buffer_size, 0, NULL, NULL, &error);
if (error || NULL == out[j])
{
vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
error);
goto exit;
}
}
// Wait for the last buffer
out[j] = (cl_ulong *)clEnqueueMapBuffer(tinfo->tQueue, tinfo->outBuf[j],
CL_TRUE, CL_MAP_READ, 0,
buffer_size, 0, NULL, NULL, &error);
if (error || NULL == out[j])
{
vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j, error);
goto exit;
}
// Verify data
t = (cl_ulong *)r;
for (j = 0; j < buffer_elements; j++)
{
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
cl_ulong *q = out[k];
// If we aren't getting the correctly rounded result
if (t[j] != q[j])
{
cl_double test = ((cl_double *)q)[j];
long double correct = func.f_ff(s[j], s2[j]);
float err = Bruteforce_Ulp_Error_Double(test, correct);
int fail = !(fabsf(err) <= ulps);
if (fail && ftz)
{
// retry per section 6.5.3.2
if (IsDoubleResultSubnormal(correct, ulps))
{
fail = fail && (test != 0.0f);
if (!fail) err = 0.0f;
}
// retry per section 6.5.3.3
if (IsDoubleSubnormal(s[j]))
{
long double correct2 = func.f_ff(0.0, s2[j]);
long double correct3 = func.f_ff(-0.0, s2[j]);
float err2 =
Bruteforce_Ulp_Error_Double(test, correct2);
float err3 =
Bruteforce_Ulp_Error_Double(test, correct3);
fail = fail
&& ((!(fabsf(err2) <= ulps))
&& (!(fabsf(err3) <= ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
// retry per section 6.5.3.4
if (IsDoubleResultSubnormal(correct2, ulps)
|| IsDoubleResultSubnormal(correct3, ulps))
{
fail = fail && (test != 0.0f);
if (!fail) err = 0.0f;
}
// try with both args as zero
if (IsDoubleSubnormal(s2[j]))
{
correct2 = func.f_ff(0.0, 0.0);
correct3 = func.f_ff(-0.0, 0.0);
long double correct4 = func.f_ff(0.0, -0.0);
long double correct5 = func.f_ff(-0.0, -0.0);
err2 = Bruteforce_Ulp_Error_Double(test, correct2);
err3 = Bruteforce_Ulp_Error_Double(test, correct3);
float err4 =
Bruteforce_Ulp_Error_Double(test, correct4);
float err5 =
Bruteforce_Ulp_Error_Double(test, correct5);
fail = fail
&& ((!(fabsf(err2) <= ulps))
&& (!(fabsf(err3) <= ulps))
&& (!(fabsf(err4) <= ulps))
&& (!(fabsf(err5) <= ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
if (fabsf(err4) < fabsf(err)) err = err4;
if (fabsf(err5) < fabsf(err)) err = err5;
// retry per section 6.5.3.4
if (IsDoubleResultSubnormal(correct2, ulps)
|| IsDoubleResultSubnormal(correct3, ulps)
|| IsDoubleResultSubnormal(correct4, ulps)
|| IsDoubleResultSubnormal(correct5, ulps))
{
fail = fail && (test != 0.0f);
if (!fail) err = 0.0f;
}
}
}
else if (IsDoubleSubnormal(s2[j]))
{
long double correct2 = func.f_ff(s[j], 0.0);
long double correct3 = func.f_ff(s[j], -0.0);
float err2 =
Bruteforce_Ulp_Error_Double(test, correct2);
float err3 =
Bruteforce_Ulp_Error_Double(test, correct3);
fail = fail
&& ((!(fabsf(err2) <= ulps))
&& (!(fabsf(err3) <= ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
// retry per section 6.5.3.4
if (IsDoubleResultSubnormal(correct2, ulps)
|| IsDoubleResultSubnormal(correct3, ulps))
{
fail = fail && (test != 0.0f);
if (!fail) err = 0.0f;
}
}
}
if (fabsf(err) > tinfo->maxError)
{
tinfo->maxError = fabsf(err);
tinfo->maxErrorValue = s[j];
tinfo->maxErrorValue2 = s2[j];
}
if (fail)
{
vlog_error(
"\nERROR: %s%s: %f ulp error at {%a, %a}: *%a vs. %a\n",
name, sizeNames[k], err, s[j], s2[j], r[j], test);
error = -1;
goto exit;
}
}
}
}
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
out[j], 0, NULL, NULL)))
{
vlog_error("Error: clEnqueueUnmapMemObject %d failed 2! err: %d\n",
j, error);
return error;
}
}
if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 3 failed\n");
if (0 == (base & 0x0fffffff))
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10u scale:%10zu buf_elements:%10u ulps:%5.3f "
"ThreadCount:%2u\n",
base, job->step, job->scale, buffer_elements, job->ulps,
job->threadCount);
}
else
{
vlog(".");
}
fflush(stdout);
}
exit:
return error;
}