blob: 57ce50412848216e8751c285999d6a4fee7f6ce5 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "harness/rounding_mode.h"
#include "procs.h"
static const char *fpadd_kernel_code =
"__kernel void test_fpadd(__global float *srcA, __global float *srcB, __global float *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = srcA[tid] + srcB[tid];\n"
"}\n";
static const char *fpsub_kernel_code =
"__kernel void test_fpsub(__global float *srcA, __global float *srcB, __global float *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = srcA[tid] - srcB[tid];\n"
"}\n";
static const char *fpmul_kernel_code =
"__kernel void test_fpmul(__global float *srcA, __global float *srcB, __global float *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = srcA[tid] * srcB[tid];\n"
"}\n";
static const float MAX_ERR = 1e-5f;
static int
verify_fpadd(float *inptrA, float *inptrB, float *outptr, int n, int fileNum)
{
float r;
int i;
float * reference_ptr = (float *)malloc(n * sizeof(float));
for (i=0; i<n; i++)
{
reference_ptr[i] = inptrA[i] + inptrB[i];
}
for (i=0; i<n; i++)
{
if (reference_ptr[i] != outptr[i])
{
log_error("FP_ADD float test failed\n");
return -1;
}
}
free(reference_ptr);
log_info("FP_ADD float test passed\n");
return 0;
}
static int
verify_fpsub(float *inptrA, float *inptrB, float *outptr, int n, int fileNum)
{
float r;
int i;
float * reference_ptr = (float *)malloc(n * sizeof(float));
for (i=0; i<n; i++)
{
reference_ptr[i] = inptrA[i] - inptrB[i];
}
for (i=0; i<n; i++)
{
if (reference_ptr[i] != outptr[i])
{
log_error("FP_SUB float test failed\n");
return -1;
}
}
free(reference_ptr);
log_info("FP_SUB float test passed\n");
return 0;
}
static int
verify_fpmul(float *inptrA, float *inptrB, float *outptr, int n, int fileNum)
{
float r;
int i;
float * reference_ptr = (float *)malloc(n * sizeof(float));
for (i=0; i<n; i++)
{
reference_ptr[i] = inptrA[i] * inptrB[i];
}
for (i=0; i<n; i++)
{
if (reference_ptr[i] != outptr[i])
{
log_error("FP_MUL float test failed\n");
return -1;
}
}
free(reference_ptr);
log_info("FP_MUL float test passed\n");
return 0;
}
#if defined( __APPLE__ )
int test_queue_priority(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
{
int err;
int command_queue_priority = 0;
int command_queue_select_compute_units = 0;
cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, 0, 0, 0, 0, 0, 0 };
int idx = 2;
// Check to see if queue priority is supported
if (((command_queue_priority = is_extension_available(device, "cl_APPLE_command_queue_priority"))) == 0)
{
log_info("cl_APPLE_command_queue_priority extension is not supported - skipping test\n");
}
// Check to see if selecting the number of compute units is supported
if (((command_queue_select_compute_units = is_extension_available(device, "cl_APPLE_command_queue_select_compute_units"))) == 0)
{
log_info("cl_APPLE_command_queue_select_compute_units extension is not supported - skipping test\n");
}
// If neither extension is supported, skip the test
if (!command_queue_priority && !command_queue_select_compute_units)
return 0;
// Setup the queue properties
#ifdef cl_APPLE_command_queue_priority
if (command_queue_priority) {
queue_properties[idx++] = CL_QUEUE_PRIORITY_APPLE;
queue_properties[idx++] = CL_QUEUE_PRIORITY_BACKGROUND_APPLE;
}
#endif
#ifdef cl_APPLE_command_queue_select_compute_units
// Check the number of compute units on the device
cl_uint num_compute_units = 0;
err = clGetDeviceInfo( device, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof( num_compute_units ), &num_compute_units, NULL );
if (err) {
log_error("clGetDeviceInfo for CL_DEVICE_MAX_COMPUTE_UNITS failed: %d", err);
return -1;
}
if (command_queue_select_compute_units) {
queue_properties[idx++] = CL_QUEUE_NUM_COMPUTE_UNITS_APPLE;
queue_properties[idx++] = num_compute_units/2;
}
#endif
queue_properties[idx++] = 0;
// Create the command queue
cl_command_queue background_queue = clCreateCommandQueueWithProperties(context, device, queue_properties, &err);
if (err) {
log_error("clCreateCommandQueueWithPropertiesAPPLE failed: %d", err);
return -1;
}
// Test the command queue
cl_mem streams[4];
cl_program program[3];
cl_kernel kernel[3];
cl_event marker_event;
float *input_ptr[3], *output_ptr, *p;
size_t threads[1];
int i;
MTdata d = init_genrand( gRandomSeed );
size_t length = sizeof(cl_float) * num_elements;
int isRTZ = 0;
RoundingMode oldMode = kDefaultRoundingMode;
// check for floating point capabilities
cl_device_fp_config single_config = 0;
err = clGetDeviceInfo( device, CL_DEVICE_SINGLE_FP_CONFIG, sizeof( single_config ), &single_config, NULL );
if (err) {
log_error("clGetDeviceInfo for CL_DEVICE_SINGLE_FP_CONFIG failed: %d", err);
return -1;
}
//If we only support rtz mode
if( CL_FP_ROUND_TO_ZERO == ( single_config & (CL_FP_ROUND_TO_ZERO|CL_FP_ROUND_TO_NEAREST) ) )
{
//Check to make sure we are an embedded device
char profile[32];
err = clGetDeviceInfo( device, CL_DEVICE_PROFILE, sizeof(profile), profile, NULL);
if( err )
{
log_error("clGetDeviceInfo for CL_DEVICE_PROFILE failed: %d", err);
return -1;
}
if( 0 != strcmp( profile, "EMBEDDED_PROFILE"))
{
log_error( "FAILURE: Device doesn't support CL_FP_ROUND_TO_NEAREST and isn't EMBEDDED_PROFILE\n" );
return -1;
}
isRTZ = 1;
oldMode = get_round();
}
input_ptr[0] = (cl_float *)malloc(length);
input_ptr[1] = (cl_float *)malloc(length);
input_ptr[2] = (cl_float *)malloc(length);
output_ptr = (cl_float *)malloc(length);
streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE, length, NULL, &err);
test_error( err, "clCreateBuffer failed.");
streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, length, NULL, &err);
test_error( err, "clCreateBuffer failed.");
streams[2] = clCreateBuffer(context, CL_MEM_READ_WRITE, length, NULL, &err);
test_error( err, "clCreateBuffer failed.");
streams[3] = clCreateBuffer(context, CL_MEM_READ_WRITE, length, NULL, &err);
test_error( err, "clCreateBuffer failed.");
p = input_ptr[0];
for (i=0; i<num_elements; i++)
p[i] = get_random_float(-MAKE_HEX_FLOAT(0x1.0p31f, 0x1, 31), MAKE_HEX_FLOAT(0x1.0p31f, 0x1, 31), d);
p = input_ptr[1];
for (i=0; i<num_elements; i++)
p[i] = get_random_float(-MAKE_HEX_FLOAT(0x1.0p31f, 0x1, 31), MAKE_HEX_FLOAT(0x1.0p31f, 0x1, 31), d);
p = input_ptr[2];
for (i=0; i<num_elements; i++)
p[i] = get_random_float(-MAKE_HEX_FLOAT(0x1.0p31f, 0x1, 31), MAKE_HEX_FLOAT(0x1.0p31f, 0x1, 31), d);
err = clEnqueueWriteBuffer(queue, streams[0], CL_TRUE, 0, length, input_ptr[0], 0, NULL, NULL);
test_error( err, "clEnqueueWriteBuffer failed.");
err = clEnqueueWriteBuffer(queue, streams[1], CL_TRUE, 0, length, input_ptr[1], 0, NULL, NULL);
test_error( err, "clEnqueueWriteBuffer failed.");
err = clEnqueueWriteBuffer(queue, streams[2], CL_TRUE, 0, length, input_ptr[2], 0, NULL, NULL);
test_error( err, "clEnqueueWriteBuffer failed.");
err = clEnqueueMarkerWithWaitList(queue, 0, NULL, &marker_event);
test_error( err, "clEnqueueMarkerWithWaitList failed.");
clFlush(queue);
err = create_single_kernel_helper(context, &program[0], &kernel[0], 1, &fpadd_kernel_code, "test_fpadd");
test_error( err, "create_single_kernel_helper failed");
err = create_single_kernel_helper(context, &program[1], &kernel[1], 1, &fpsub_kernel_code, "test_fpsub");
test_error( err, "create_single_kernel_helper failed");
err = create_single_kernel_helper(context, &program[2], &kernel[2], 1, &fpmul_kernel_code, "test_fpmul");
test_error( err, "create_single_kernel_helper failed");
err = clSetKernelArg(kernel[0], 0, sizeof streams[0], &streams[0]);
err |= clSetKernelArg(kernel[0], 1, sizeof streams[1], &streams[1]);
err |= clSetKernelArg(kernel[0], 2, sizeof streams[3], &streams[3]);
test_error( err, "clSetKernelArgs failed.");
err = clSetKernelArg(kernel[1], 0, sizeof streams[0], &streams[0]);
err |= clSetKernelArg(kernel[1], 1, sizeof streams[1], &streams[1]);
err |= clSetKernelArg(kernel[1], 2, sizeof streams[3], &streams[3]);
test_error( err, "clSetKernelArgs failed.");
err = clSetKernelArg(kernel[2], 0, sizeof streams[0], &streams[0]);
err |= clSetKernelArg(kernel[2], 1, sizeof streams[1], &streams[1]);
err |= clSetKernelArg(kernel[2], 2, sizeof streams[3], &streams[3]);
test_error( err, "clSetKernelArgs failed.");
threads[0] = (unsigned int)num_elements;
for (i=0; i<3; i++)
{
err = clEnqueueNDRangeKernel(queue, kernel[i], 1, NULL, threads, NULL, 1, &marker_event, NULL);
test_error( err, "clEnqueueNDRangeKernel failed.");
err = clEnqueueReadBuffer(queue, streams[3], CL_TRUE, 0, length, output_ptr, 0, NULL, NULL);
test_error( err, "clEnqueueReadBuffer failed.");
if( isRTZ )
set_round( kRoundTowardZero, kfloat );
switch (i)
{
case 0:
err = verify_fpadd(input_ptr[0], input_ptr[1], output_ptr, num_elements, i);
break;
case 1:
err = verify_fpsub(input_ptr[0], input_ptr[1], output_ptr, num_elements, i);
break;
case 2:
err = verify_fpmul(input_ptr[0], input_ptr[1], output_ptr, num_elements, i);
break;
}
if( isRTZ )
set_round( oldMode, kfloat );
}
// cleanup
clReleaseCommandQueue(background_queue);
clReleaseEvent(marker_event);
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
clReleaseMemObject(streams[2]);
clReleaseMemObject(streams[3]);
for (i=0; i<3; i++)
{
clReleaseKernel(kernel[i]);
clReleaseProgram(program[i]);
}
free(input_ptr[0]);
free(input_ptr[1]);
free(input_ptr[2]);
free(output_ptr);
free_mtdata( d );
return err;
}
#endif