blob: 68f7b9cdd210ff83a6eb5e2997ca45724269168b [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "cl_utils.h"
#include <stdlib.h>
#if !defined (_WIN32)
#include <sys/mman.h>
#endif
#include "test_config.h"
#include "string.h"
#include "harness/kernelHelpers.h"
#include "harness/testHarness.h"
#define HALF_MIN 1.0p-14
const char *vector_size_name_extensions[kVectorSizeCount+kStrangeVectorSizeCount] = { "", "2", "4", "8", "16", "3" };
const char *vector_size_strings[kVectorSizeCount+kStrangeVectorSizeCount] = { "1", "2", "4", "8", "16", "3" };
const char *align_divisors[kVectorSizeCount+kStrangeVectorSizeCount] = { "1", "2", "4", "8", "16", "4" };
const char *align_types[kVectorSizeCount+kStrangeVectorSizeCount] = { "half", "int", "int2", "int4", "int8", "int2" };
void *gIn_half = NULL;
void *gOut_half = NULL;
void *gOut_half_reference = NULL;
void *gOut_half_reference_double = NULL;
void *gIn_single = NULL;
void *gOut_single = NULL;
void *gOut_single_reference = NULL;
void *gIn_double = NULL;
// void *gOut_double = NULL;
// void *gOut_double_reference = NULL;
cl_mem gInBuffer_half = NULL;
cl_mem gOutBuffer_half = NULL;
cl_mem gInBuffer_single = NULL;
cl_mem gOutBuffer_single = NULL;
cl_mem gInBuffer_double = NULL;
// cl_mem gOutBuffer_double = NULL;
cl_context gContext = NULL;
cl_command_queue gQueue = NULL;
uint32_t gDeviceFrequency = 0;
uint32_t gComputeDevices = 0;
size_t gMaxThreadGroupSize = 0;
size_t gWorkGroupSize = 0;
bool gWimpyMode = false;
int gWimpyReductionFactor = 512;
int gTestDouble = 0;
#if defined( __APPLE__ )
int gReportTimes = 1;
#else
int gReportTimes = 0;
#endif
#pragma mark -
test_status InitCL( cl_device_id device )
{
size_t configSize = sizeof( gComputeDevices );
int error;
#if MULTITHREAD
if( (error = clGetDeviceInfo( device, CL_DEVICE_MAX_COMPUTE_UNITS, configSize, &gComputeDevices, NULL )) )
#endif
gComputeDevices = 1;
configSize = sizeof( gMaxThreadGroupSize );
if( (error = clGetDeviceInfo( device, CL_DEVICE_MAX_WORK_GROUP_SIZE, configSize, &gMaxThreadGroupSize, NULL )) )
gMaxThreadGroupSize = 1;
// Use only one-eighth the work group size
if (gMaxThreadGroupSize > 8)
gWorkGroupSize = gMaxThreadGroupSize / 8;
else
gWorkGroupSize = gMaxThreadGroupSize;
configSize = sizeof( gDeviceFrequency );
if( (error = clGetDeviceInfo( device, CL_DEVICE_MAX_CLOCK_FREQUENCY, configSize, &gDeviceFrequency, NULL )) )
gDeviceFrequency = 1;
// Check extensions
int hasDouble = is_extension_available(device, "cl_khr_fp64");
gTestDouble ^= hasDouble;
//detect whether profile of the device is embedded
char profile[64] = "";
if( (error = clGetDeviceInfo( device, CL_DEVICE_PROFILE, sizeof(profile), profile, NULL ) ) )
{
vlog_error( "Unable to get device CL DEVICE PROFILE string. (%d) \n", error );
}
else if( strstr(profile, "EMBEDDED_PROFILE" ) )
{
gIsEmbedded = 1;
}
vlog( "%d compute devices at %f GHz\n", gComputeDevices, (double) gDeviceFrequency / 1000. );
vlog( "Max thread group size is %lld.\n", (uint64_t) gMaxThreadGroupSize );
gContext = clCreateContext( NULL, 1, &device, notify_callback, NULL, &error );
if( NULL == gContext )
{
vlog_error( "clCreateDeviceGroup failed. (%d)\n", error );
return TEST_FAIL;
}
gQueue = clCreateCommandQueue(gContext, device, 0, &error);
if( NULL == gQueue )
{
vlog_error( "clCreateCommandQueue failed. (%d)\n", error );
return TEST_FAIL;
}
#if defined( __APPLE__ )
// FIXME: use clProtectedArray
#endif
//Allocate buffers
gIn_half = malloc( getBufferSize(device)/2 );
gOut_half = malloc( BUFFER_SIZE/2 );
gOut_half_reference = malloc( BUFFER_SIZE/2 );
gOut_half_reference_double = malloc( BUFFER_SIZE/2 );
gIn_single = malloc( BUFFER_SIZE );
gOut_single = malloc( getBufferSize(device) );
gOut_single_reference = malloc( getBufferSize(device) );
gIn_double = malloc( 2*BUFFER_SIZE );
// gOut_double = malloc( (2*getBufferSize(device)) );
// gOut_double_reference = malloc( (2*getBufferSize(device)) );
if ( NULL == gIn_half ||
NULL == gOut_half ||
NULL == gOut_half_reference ||
NULL == gOut_half_reference_double ||
NULL == gIn_single ||
NULL == gOut_single ||
NULL == gOut_single_reference ||
NULL == gIn_double // || NULL == gOut_double || NULL == gOut_double_reference
)
return TEST_FAIL;
gInBuffer_half = clCreateBuffer(gContext, CL_MEM_READ_ONLY, getBufferSize(device) / 2, NULL, &error);
if( gInBuffer_half == NULL )
{
vlog_error( "clCreateArray failed for input (%d)\n", error );
return TEST_FAIL;
}
gInBuffer_single = clCreateBuffer(gContext, CL_MEM_READ_ONLY, BUFFER_SIZE, NULL, &error );
if( gInBuffer_single == NULL )
{
vlog_error( "clCreateArray failed for input (%d)\n", error );
return TEST_FAIL;
}
gInBuffer_double = clCreateBuffer(gContext, CL_MEM_READ_ONLY, BUFFER_SIZE*2, NULL, &error );
if( gInBuffer_double == NULL )
{
vlog_error( "clCreateArray failed for input (%d)\n", error );
return TEST_FAIL;
}
gOutBuffer_half = clCreateBuffer(gContext, CL_MEM_WRITE_ONLY, BUFFER_SIZE/2, NULL, &error );
if( gOutBuffer_half == NULL )
{
vlog_error( "clCreateArray failed for output (%d)\n", error );
return TEST_FAIL;
}
gOutBuffer_single = clCreateBuffer(gContext, CL_MEM_WRITE_ONLY, getBufferSize(device), NULL, &error );
if( gOutBuffer_single == NULL )
{
vlog_error( "clCreateArray failed for output (%d)\n", error );
return TEST_FAIL;
}
#if 0
gOutBuffer_double = clCreateBuffer(gContext, CL_MEM_WRITE_ONLY, (size_t)(2*getBufferSize(device)), NULL, &error );
if( gOutBuffer_double == NULL )
{
vlog_error( "clCreateArray failed for output (%d)\n", error );
return TEST_FAIL;
}
#endif
char string[16384];
vlog( "\nCompute Device info:\n" );
error = clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(string), string, NULL);
vlog( "\tDevice Name: %s\n", string );
error = clGetDeviceInfo(device, CL_DEVICE_VENDOR, sizeof(string), string, NULL);
vlog( "\tVendor: %s\n", string );
error = clGetDeviceInfo(device, CL_DEVICE_VERSION, sizeof(string), string, NULL);
vlog( "\tDevice Version: %s\n", string );
error = clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, sizeof(string), string, NULL);
vlog( "\tOpenCL C Version: %s\n", string );
error = clGetDeviceInfo(device, CL_DRIVER_VERSION, sizeof(string), string, NULL);
vlog( "\tDriver Version: %s\n", string );
vlog( "\tProcessing with %d devices\n", gComputeDevices );
vlog( "\tDevice Frequency: %d MHz\n", gDeviceFrequency );
vlog( "\tHas double? %s\n", hasDouble ? "YES" : "NO" );
vlog( "\tTest double? %s\n", gTestDouble ? "YES" : "NO" );
return TEST_PASS;
}
cl_program MakeProgram( cl_device_id device, const char *source[], int count )
{
int error;
int i;
//create the program
cl_program program;
error = create_single_kernel_helper_create_program(gContext, &program, (cl_uint)count, source);
if( NULL == program )
{
vlog_error( "\t\tFAILED -- Failed to create program. (%d)\n", error );
return NULL;
}
// build it
if( (error = clBuildProgram( program, 1, &device, NULL, NULL, NULL )) )
{
size_t len;
char buffer[16384];
vlog_error("\t\tFAILED -- clBuildProgramExecutable() failed:\n");
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
vlog_error("Log: %s\n", buffer);
vlog_error("Source :\n");
for(i = 0; i < count; ++i) {
vlog_error("%s", source[i]);
}
vlog_error("\n");
clReleaseProgram( program );
return NULL;
}
return program;
}
void ReleaseCL(void)
{
clReleaseMemObject(gInBuffer_half);
clReleaseMemObject(gOutBuffer_half);
clReleaseMemObject(gInBuffer_single);
clReleaseMemObject(gOutBuffer_single);
clReleaseMemObject(gInBuffer_double);
// clReleaseMemObject(gOutBuffer_double);
clReleaseCommandQueue(gQueue);
clReleaseContext(gContext);
free(gIn_half);
free(gOut_half);
free(gOut_half_reference);
free(gOut_half_reference_double);
free(gIn_single);
free(gOut_single);
free(gOut_single_reference);
free(gIn_double);
}
cl_uint numVecs(cl_uint count, int vectorSizeIdx, bool aligned) {
if(aligned && g_arrVecSizes[vectorSizeIdx] == 3) {
return count/4;
}
return (count + g_arrVecSizes[vectorSizeIdx] - 1)/
( (g_arrVecSizes[vectorSizeIdx]) );
}
cl_uint runsOverBy(cl_uint count, int vectorSizeIdx, bool aligned) {
if(aligned || g_arrVecSizes[vectorSizeIdx] != 3) { return -1; }
return count% (g_arrVecSizes[vectorSizeIdx]);
}
void printSource(const char * src[], int len) {
int i;
for(i = 0; i < len; ++i) {
vlog("%s", src[i]);
}
}
int RunKernel( cl_device_id device, cl_kernel kernel, void *inBuf, void *outBuf, uint32_t blockCount , int extraArg)
{
size_t localCount = blockCount;
size_t wg_size;
int error;
error = clSetKernelArg(kernel, 0, sizeof inBuf, &inBuf);
error |= clSetKernelArg(kernel, 1, sizeof outBuf, &outBuf);
if(extraArg >= 0) {
error |= clSetKernelArg(kernel, 2, sizeof(cl_uint), &extraArg);
}
if( error )
{
vlog_error( "FAILED -- could not set kernel args\n" );
return -3;
}
error = clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof( wg_size ), &wg_size, NULL);
if (error)
{
vlog_error( "FAILED -- could not get kernel work group info\n" );
return -4;
}
wg_size = (wg_size > gWorkGroupSize) ? gWorkGroupSize : wg_size;
while( localCount % wg_size )
wg_size--;
if( (error = clEnqueueNDRangeKernel( gQueue, kernel, 1, NULL, &localCount, &wg_size, 0, NULL, NULL )) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
return -5;
}
return 0;
}
#if defined (__APPLE__ )
#include <mach/mach_time.h>
uint64_t ReadTime( void )
{
return mach_absolute_time(); // returns time since boot. Ticks have better than microsecond precsion.
}
double SubtractTime( uint64_t endTime, uint64_t startTime )
{
static double conversion = 0.0;
if( 0.0 == conversion )
{
mach_timebase_info_data_t info;
kern_return_t err = mach_timebase_info( &info );
if( 0 == err )
conversion = 1e-9 * (double) info.numer / (double) info.denom;
}
return (double) (endTime - startTime) * conversion;
}
#elif defined( _WIN32 ) && defined (_MSC_VER)
// functions are defined in compat.h
#else
//
// Please feel free to substitute your own timing facility here.
//
#warning Times are meaningless. No timing facility in place for this platform.
uint64_t ReadTime( void )
{
return 0ULL;
}
// return the difference between two times obtained from ReadTime in seconds
double SubtractTime( uint64_t endTime, uint64_t startTime )
{
return INFINITY;
}
#endif
size_t getBufferSize(cl_device_id device_id)
{
static int s_initialized = 0;
static cl_device_id s_device_id;
static cl_ulong s_result = 64*1024;
if(s_initialized == 0 || s_device_id != device_id)
{
cl_ulong result, maxGlobalSize;
cl_int err = clGetDeviceInfo (device_id,
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE,
sizeof(result), (void *)&result,
NULL);
if(err)
{
vlog_error("clGetDeviceInfo(CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE) failed\n");
s_result = 64*1024;
goto exit;
}
if (result > BUFFER_SIZE)
result = BUFFER_SIZE;
log_info("Using const buffer size 0x%lx (%lu)\n", (unsigned long)result, (unsigned long)result);
err = clGetDeviceInfo (device_id,
CL_DEVICE_GLOBAL_MEM_SIZE,
sizeof(maxGlobalSize), (void *)&maxGlobalSize,
NULL);
if(err)
{
vlog_error("clGetDeviceInfo(CL_DEVICE_GLOBAL_MEM_SIZE) failed\n");
goto exit;
}
result = result / 2;
if(maxGlobalSize < result * 10)
result = result / 10;
s_initialized = 1;
s_device_id = device_id;
s_result = result;
}
exit:
if( s_result > SIZE_MAX )
{
vlog_error( "ERROR: clGetDeviceInfo is reporting a CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE larger than addressable memory on the host.\n It seems highly unlikely that this is usable, due to the API design.\n" );
fflush(stdout);
abort();
}
return (size_t) s_result;
}
cl_ulong getBufferCount(cl_device_id device_id, size_t vecSize, size_t typeSize)
{
cl_ulong tmp = getBufferSize(device_id);
if(vecSize == 3)
{
return tmp/(cl_ulong)(4*typeSize);
}
return tmp/(cl_ulong)(vecSize*typeSize);
}