blob: af1b04d1dc0c9a7ad5e5022d91bb381ad01e37a8 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "Utility.h"
#include <limits.h>
#include <string.h>
#include "FunctionList.h"
#define PARALLEL_REFERENCE
int TestFunc_FloatI_Float_Float(const Func *f, MTdata, bool relaxedMode);
int TestFunc_DoubleI_Double_Double(const Func *f, MTdata, bool relaxedMode);
extern const vtbl _binary_two_results_i = { "binary_two_results_i",
TestFunc_FloatI_Float_Float,
TestFunc_DoubleI_Double_Double };
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "__kernel void math_kernel", sizeNames[vectorSize], "( __global float", sizeNames[vectorSize], "* out, __global int", sizeNames[vectorSize], "* out2, __global float", sizeNames[vectorSize], "* in1, __global float", sizeNames[vectorSize], "* in2)\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ", name, "( in1[i], in2[i], out2 + i );\n"
"}\n"
};
const char *c3[] = { "__kernel void math_kernel", sizeNames[vectorSize], "( __global float* out, __global int* out2, __global float* in, __global float* in2)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" float3 f0 = vload3( 0, in + 3 * i );\n"
" float3 f1 = vload3( 0, in2 + 3 * i );\n"
" int3 i0 = 0xdeaddead;\n"
" f0 = ", name, "( f0, f1, &i0 );\n"
" vstore3( f0, 0, out + 3*i );\n"
" vstore3( i0, 0, out2 + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two buffer size \n"
" float3 f0, f1;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (float3)( in[3*i], NAN, NAN ); \n"
" f1 = (float3)( in2[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
" f1 = (float3)( in2[3*i], in2[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" int3 i0 = 0xdeaddead;\n"
" f0 = ", name, "( f0, f1, &i0 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = f0.y; \n"
" out2[3*i+1] = i0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = f0.x; \n"
" out2[3*i] = i0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c)/sizeof(c[0]);
if( sizeValues[vectorSize] == 3 )
{
kern = c3;
kernSize = sizeof(c3)/sizeof(c3[0]);
}
char testName[32];
snprintf( testName, sizeof( testName ) -1, "math_kernel%s", sizeNames[vectorSize] );
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel", sizeNames[vectorSize], "( __global double", sizeNames[vectorSize], "* out, __global int", sizeNames[vectorSize], "* out2, __global double", sizeNames[vectorSize], "* in1, __global double", sizeNames[vectorSize], "* in2)\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ", name, "( in1[i], in2[i], out2 + i );\n"
"}\n"
};
const char *c3[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel", sizeNames[vectorSize], "( __global double* out, __global int* out2, __global double* in, __global double* in2)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" double3 d0 = vload3( 0, in + 3 * i );\n"
" double3 d1 = vload3( 0, in2 + 3 * i );\n"
" int3 i0 = 0xdeaddead;\n"
" d0 = ", name, "( d0, d1, &i0 );\n"
" vstore3( d0, 0, out + 3*i );\n"
" vstore3( i0, 0, out2 + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two buffer size \n"
" double3 d0, d1;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" d0 = (double3)( in[3*i], NAN, NAN ); \n"
" d1 = (double3)( in2[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" d0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
" d1 = (double3)( in2[3*i], in2[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" int3 i0 = 0xdeaddead;\n"
" d0 = ", name, "( d0, d1, &i0 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = d0.y; \n"
" out2[3*i+1] = i0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = d0.x; \n"
" out2[3*i] = i0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c)/sizeof(c[0]);
if( sizeValues[vectorSize] == 3 )
{
kern = c3;
kernSize = sizeof(c3)/sizeof(c3[0]);
}
char testName[32];
snprintf( testName, sizeof( testName ) -1, "math_kernel%s", sizeNames[vectorSize] );
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_kernel *kernels;
cl_program *programs;
const char *nameInCode;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
}BuildKernelInfo;
static cl_int BuildKernel_FloatFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p );
static cl_int BuildKernel_FloatFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p )
{
BuildKernelInfo *info = (BuildKernelInfo*) p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
static cl_int BuildKernel_DoubleFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p );
static cl_int BuildKernel_DoubleFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p )
{
BuildKernelInfo *info = (BuildKernelInfo*) p;
cl_uint i = info->offset + job_id;
return BuildKernelDouble(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
#if defined PARALLEL_REFERENCE
typedef struct ComputeReferenceInfoF_
{
const float *x;
const float *y;
float *r;
int *i;
double (*f_ffpI)(double, double, int*);
cl_uint lim;
cl_uint count;
} ComputeReferenceInfoF;
typedef struct ComputeReferenceInfoD_
{
const double *x;
const double *y;
double *r;
int *i;
long double (*f_ffpI)(long double, long double, int*);
cl_uint lim;
cl_uint count;
} ComputeReferenceInfoD;
static cl_int
ReferenceF(cl_uint jid, cl_uint tid, void *userInfo)
{
ComputeReferenceInfoF *cri = (ComputeReferenceInfoF *)userInfo;
cl_uint lim = cri->lim;
cl_uint count = cri->count;
cl_uint off = jid * count;
const float *x = cri->x + off;
const float *y = cri->y + off;
float *r = cri->r + off;
int *i = cri->i + off;
double (*f)(double, double, int *) = cri->f_ffpI;
cl_uint j;
if (off + count > lim)
count = lim - off;
for (j = 0; j < count; ++j)
r[j] = (float)f((double)x[j], (double)y[j], i + j);
return CL_SUCCESS;
}
static cl_int
ReferenceD(cl_uint jid, cl_uint tid, void *userInfo)
{
ComputeReferenceInfoD *cri = (ComputeReferenceInfoD *)userInfo;
cl_uint lim = cri->lim;
cl_uint count = cri->count;
cl_uint off = jid * count;
const double *x = cri->x + off;
const double *y = cri->y + off;
double *r = cri->r + off;
int *i = cri->i + off;
long double (*f)(long double, long double, int *) = cri->f_ffpI;
cl_uint j;
if (off + count > lim)
count = lim - off;
Force64BitFPUPrecision();
for (j = 0; j < count; ++j)
r[j] = (double)f((long double)x[j], (long double)y[j], i + j);
return CL_SUCCESS;
}
#endif
int TestFunc_FloatI_Float_Float(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[ VECTOR_SIZE_COUNT ];
cl_kernel kernels[ VECTOR_SIZE_COUNT ];
float maxError = 0.0f;
float float_ulps;
int64_t maxError2 = 0;
int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
float maxErrorVal = 0.0f;
float maxErrorVal2 = 0.0f;
size_t bufferSize = (gWimpyMode)? gWimpyBufferSize: BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(float), bufferSize);
#if defined PARALLEL_REFERENCE
cl_uint threadCount = GetThreadCount();
#endif
logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
if( gIsEmbedded )
float_ulps = f->float_embedded_ulps;
else
float_ulps = f->float_ulps;
int testingRemquo = !strcmp(f->name, "remquo");
// Init the kernels
{
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if( (error = ThreadPool_Do( BuildKernel_FloatFn, gMaxVectorSizeIndex - gMinVectorSizeIndex, &build_info ) ))
return error;
}
/*
for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
if( (error = BuildKernel( f->nameInCode, (int) i, kernels + i, programs + i) ) )
return error;
*/
for( i = 0; i < (1ULL<<32); i += step )
{
//Init input array
cl_uint *p = (cl_uint *)gIn;
cl_uint *p2 = (cl_uint *)gIn2;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
{
p[j] = genrand_int32(d);
p2[j] = genrand_int32(d);
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_TRUE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
return error;
}
// write garbage into output arrays
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, bufferSize, gOut[j], 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j );
goto exit;
}
memset_pattern4(gOut2[j], &pattern, bufferSize);
if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer2[j], CL_FALSE, 0, bufferSize, gOut2[j], 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2b(%d) ***\n", error, j );
goto exit;
}
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeof( cl_float ) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize; // bufferSize / vectorSize rounded up
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gOutBuffer2[j] ), &gOutBuffer2[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
}
// Get that moving
if( (error = clFlush(gQueue) ))
vlog( "clFlush failed\n" );
// Calculate the correctly rounded reference result
float *s = (float *)gIn;
float *s2 = (float *)gIn2;
#if defined PARALLEL_REFERENCE
if (threadCount > 1) {
ComputeReferenceInfoF cri;
cri.x = s;
cri.y = s2;
cri.r = (float *)gOut_Ref;
cri.i = (int *)gOut_Ref2;
cri.f_ffpI = f->func.f_ffpI;
cri.lim = bufferSize / sizeof( float );
cri.count = (cri.lim + threadCount - 1) / threadCount;
ThreadPool_Do(ReferenceF, threadCount, &cri);
} else {
#endif
float *r = (float *)gOut_Ref;
int *r2 = (int *)gOut_Ref2;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
r[j] = (float) f->func.f_ffpI( s[j], s2[j], r2+j );
#if defined PARALLEL_REFERENCE
}
#endif
// Read the data back
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL)) )
{
vlog_error( "ReadArray failed %d\n", error );
goto exit;
}
if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer2[j], CL_TRUE, 0, bufferSize, gOut2[j], 0, NULL, NULL)) )
{
vlog_error( "ReadArray2 failed %d\n", error );
goto exit;
}
}
if( gSkipCorrectnessTesting )
break;
//Verify data
uint32_t *t = (uint32_t *)gOut_Ref;
int32_t *t2 = (int32_t *)gOut_Ref2;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
{
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
uint32_t *q = (uint32_t *)gOut[k];
int32_t *q2 = (int32_t *)gOut2[k];
// Check for exact match to correctly rounded result
if (t[j] == q[j] && t2[j] == q2[j])
continue;
// Check for paired NaNs
if ((t[j] & 0x7fffffff) > 0x7f800000 && (q[j] & 0x7fffffff) > 0x7f800000 && t2[j] == q2[j])
continue;
// if( t[j] != q[j] || t2[j] != q2[j] )
{
float test = ((float*) q)[j];
int correct2 = INT_MIN;
double correct = f->func.f_ffpI( s[j], s2[j], &correct2 );
float err = Ulp_Error( test, correct );
int64_t iErr;
// in case of remquo, we only care about the sign and last seven bits of
// integer as per the spec.
if(testingRemquo)
iErr = (long long) (q2[j] & 0x0000007f) - (long long) (correct2 & 0x0000007f);
else
iErr = (long long) q2[j] - (long long) correct2;
//For remquo, if y = 0, x is infinite, or either is NaN then the standard either neglects
//to say what is returned in iptr or leaves it undefined or implementation defined.
int iptrUndefined = fabs(((float*) gIn)[j]) == INFINITY ||
((float*) gIn2)[j] == 0.0f ||
isnan(((float*) gIn2)[j]) ||
isnan(((float*) gIn)[j]);
if(iptrUndefined)
iErr = 0;
int fail = ! (fabsf(err) <= float_ulps && iErr == 0 );
if( ftz && fail )
{
// retry per section 6.5.3.2
if( IsFloatResultSubnormal(correct, float_ulps ) )
{
fail = fail && ! ( test == 0.0f && iErr == 0 );
if( ! fail )
err = 0.0f;
}
// retry per section 6.5.3.3
if( IsFloatSubnormal( s[j] ) )
{
int correct3i, correct4i;
double correct3 = f->func.f_ffpI( 0.0, s2[j], &correct3i );
double correct4 = f->func.f_ffpI( -0.0, s2[j], &correct4i );
float err2 = Ulp_Error( test, correct3 );
float err3 = Ulp_Error( test, correct4 );
int64_t iErr3 = (long long) q2[j] - (long long) correct3i;
int64_t iErr4 = (long long) q2[j] - (long long) correct4i;
fail = fail && ((!(fabsf(err2) <= float_ulps && iErr3 == 0)) && (!(fabsf(err3) <= float_ulps && iErr4 == 0)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( llabs(iErr3) < llabs( iErr ) )
iErr = iErr3;
if( llabs(iErr4) < llabs( iErr ) )
iErr = iErr4;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2, float_ulps ) || IsFloatResultSubnormal(correct3, float_ulps ) )
{
fail = fail && ! ( test == 0.0f && (iErr3 == 0 || iErr4 == 0) );
if( ! fail )
err = 0.0f;
}
//try with both args as zero
if( IsFloatSubnormal( s2[j] ) )
{
int correct7i, correct8i;
correct3 = f->func.f_ffpI( 0.0, 0.0, &correct3i );
correct4 = f->func.f_ffpI( -0.0, 0.0, &correct4i );
double correct7 = f->func.f_ffpI( 0.0, -0.0, &correct7i );
double correct8 = f->func.f_ffpI( -0.0, -0.0, &correct8i );
err2 = Ulp_Error( test, correct3 );
err3 = Ulp_Error( test, correct4 );
float err4 = Ulp_Error( test, correct7 );
float err5 = Ulp_Error( test, correct8 );
iErr3 = (long long) q2[j] - (long long) correct3i;
iErr4 = (long long) q2[j] - (long long) correct4i;
int64_t iErr7 = (long long) q2[j] - (long long) correct7i;
int64_t iErr8 = (long long) q2[j] - (long long) correct8i;
fail = fail && ((!(fabsf(err2) <= float_ulps && iErr3 == 0)) && (!(fabsf(err3) <= float_ulps && iErr4 == 0)) &&
(!(fabsf(err4) <= float_ulps && iErr7 == 0)) && (!(fabsf(err5) <= float_ulps && iErr8 == 0)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
if( llabs(iErr3) < llabs( iErr ) )
iErr = iErr3;
if( llabs(iErr4) < llabs( iErr ) )
iErr = iErr4;
if( llabs(iErr7) < llabs( iErr ) )
iErr = iErr7;
if( llabs(iErr8) < llabs( iErr ) )
iErr = iErr8;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct3, float_ulps ) || IsFloatResultSubnormal(correct4, float_ulps ) ||
IsFloatResultSubnormal(correct7, float_ulps ) || IsFloatResultSubnormal(correct8, float_ulps ) )
{
fail = fail && ! ( test == 0.0f && (iErr3 == 0 || iErr4 == 0 || iErr7 == 0 || iErr8 == 0));
if( ! fail )
err = 0.0f;
}
}
}
else if( IsFloatSubnormal( s2[j] ) )
{
int correct3i, correct4i;
double correct3 = f->func.f_ffpI( s[j], 0.0, &correct3i );
double correct4 = f->func.f_ffpI( s[j], -0.0, &correct4i );
float err2 = Ulp_Error( test, correct3 );
float err3 = Ulp_Error( test, correct4 );
int64_t iErr3 = (long long) q2[j] - (long long) correct3i;
int64_t iErr4 = (long long) q2[j] - (long long) correct4i;
fail = fail && ((!(fabsf(err2) <= float_ulps && iErr3 == 0)) && (!(fabsf(err3) <= float_ulps && iErr4 == 0)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( llabs(iErr3) < llabs( iErr ) )
iErr = iErr3;
if( llabs(iErr4) < llabs( iErr ) )
iErr = iErr4;
// retry per section 6.5.3.4
if( IsFloatResultSubnormal(correct2, float_ulps ) || IsFloatResultSubnormal(correct3, float_ulps ) )
{
fail = fail && ! ( test == 0.0f && (iErr3 == 0 || iErr4 == 0) );
if( ! fail )
err = 0.0f;
}
}
}
if( fabsf(err ) > maxError )
{
maxError = fabsf(err);
maxErrorVal = s[j];
}
if( llabs(iErr) > maxError2 )
{
maxError2 = llabs(iErr );
maxErrorVal2 = s[j];
}
if( fail )
{
vlog_error( "\nERROR: %s%s: {%f, %lld} ulp error at {%a, %a} ({0x%8.8x, 0x%8.8x}): *{%a, %d} ({0x%8.8x, 0x%8.8x}) vs. {%a, %d} ({0x%8.8x, 0x%8.8x})\n",
f->name, sizeNames[k], err, iErr,
((float*) gIn)[j], ((float*) gIn2)[j],
((cl_uint*) gIn)[j], ((cl_uint*) gIn2)[j],
((float*) gOut_Ref)[j], ((int*) gOut_Ref2)[j],
((cl_uint*) gOut_Ref)[j], ((cl_uint*) gOut_Ref2)[j],
test, q2[j],
((cl_uint*)&test)[0], ((cl_uint*) q2)[j] );
error = -1;
goto exit;
}
}
}
}
if( 0 == (i & 0x0fffffff) )
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10zu bufferSize:%10zd \n", i, step, bufferSize);
} else
{
vlog("." );
}
fflush(stdout);
}
}
if( ! gSkipCorrectnessTesting )
{
if( gWimpyMode )
vlog( "Wimp pass" );
else
vlog( "passed" );
}
if( gMeasureTimes )
{
//Init input array
uint32_t *p = (uint32_t *)gIn;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
p[j] = genrand_int32(d);
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeof( cl_float ) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize; // bufferSize / vectorSize rounded up
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gOutBuffer2[j] ), &gOutBuffer2[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
double sum = 0.0;
double bestTime = INFINITY;
for( k = 0; k < PERF_LOOP_COUNT; k++ )
{
uint64_t startTime = GetTime();
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
// Make sure OpenCL is done
if( (error = clFinish(gQueue) ) )
{
vlog_error( "Error %d at clFinish\n", error );
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime( endTime, startTime );
sum += time;
if( time < bestTime )
bestTime = time;
}
if( gReportAverageTimes )
bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double) gDeviceFrequency * gComputeDevices * gSimdSize * 1e6 / (bufferSize / sizeof( float ) );
vlog_perf( clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s", f->name, sizeNames[j] );
}
}
if( ! gSkipCorrectnessTesting )
vlog( "\t{%8.2f, %lld} @ %a", maxError, maxError2, maxErrorVal );
vlog( "\n" );
exit:
// Release
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}
int TestFunc_DoubleI_Double_Double(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[ VECTOR_SIZE_COUNT ];
cl_kernel kernels[ VECTOR_SIZE_COUNT ];
float maxError = 0.0f;
int64_t maxError2 = 0;
int ftz = f->ftz || gForceFTZ;
double maxErrorVal = 0.0f;
double maxErrorVal2 = 0.0f;
size_t bufferSize = (gWimpyMode)? gWimpyBufferSize: BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(double), bufferSize);
logFunctionInfo(f->name, sizeof(cl_double), relaxedMode);
#if defined PARALLEL_REFERENCE
cl_uint threadCount = GetThreadCount();
#endif
Force64BitFPUPrecision();
int testingRemquo = !strcmp(f->name, "remquo");
// Init the kernels
{
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if( (error = ThreadPool_Do( BuildKernel_DoubleFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info ) ))
{
return error;
}
}
/*
for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
if( (error = BuildKernelDouble( f->nameInCode, (int) i, kernels + i, programs + i) ) )
return error;
*/
for( i = 0; i < (1ULL<<32); i += step )
{
//Init input array
double *p = (double *)gIn;
double *p2 = (double *)gIn2;
for( j = 0; j < bufferSize / sizeof( double ); j++ )
{
p[j] = DoubleFromUInt32(genrand_int32(d));
p2[j] = DoubleFromUInt32(genrand_int32(d));
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_TRUE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_TRUE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
return error;
}
// write garbage into output arrays
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j );
goto exit;
}
memset_pattern4(gOut2[j], &pattern, bufferSize);
if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer2[j], CL_TRUE, 0, bufferSize, gOut2[j], 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2b(%d) ***\n", error, j );
goto exit;
}
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeof( cl_double ) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize; // bufferSize / vectorSize rounded up
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gOutBuffer2[j] ), &gOutBuffer2[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
}
// Get that moving
if( (error = clFlush(gQueue) ))
vlog( "clFlush failed\n" );
//Calculate the correctly rounded reference result
double *s = (double *)gIn;
double *s2 = (double *)gIn2;
#if defined PARALLEL_REFERENCE
if (threadCount > 1) {
ComputeReferenceInfoD cri;
cri.x = s;
cri.y = s2;
cri.r = (double *)gOut_Ref;
cri.i = (int *)gOut_Ref2;
cri.f_ffpI = f->dfunc.f_ffpI;
cri.lim = bufferSize / sizeof( double );
cri.count = (cri.lim + threadCount - 1) / threadCount;
ThreadPool_Do(ReferenceD, threadCount, &cri);
} else {
#endif
double *r = (double *)gOut_Ref;
int *r2 = (int *)gOut_Ref2;
for( j = 0; j < bufferSize / sizeof( double ); j++ )
r[j] = (double) f->dfunc.f_ffpI( s[j], s2[j], r2+j );
#if defined PARALLEL_REFERENCE
}
#endif
// Read the data back
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL)) )
{
vlog_error( "ReadArray failed %d\n", error );
goto exit;
}
if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer2[j], CL_TRUE, 0, bufferSize, gOut2[j], 0, NULL, NULL)) )
{
vlog_error( "ReadArray2 failed %d\n", error );
goto exit;
}
}
if( gSkipCorrectnessTesting )
break;
//Verify data
uint64_t *t = (uint64_t *)gOut_Ref;
int32_t *t2 = (int32_t *)gOut_Ref2;
for( j = 0; j < bufferSize / sizeof( double ); j++ )
{
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
uint64_t *q = (uint64_t *)gOut[k];
int32_t *q2 = (int32_t *)gOut2[k];
// Check for exact match to correctly rounded result
if (t[j] == q[j] && t2[j] == q2[j])
continue;
// Check for paired NaNs
if ((t[j] & 0x7fffffffffffffffUL) > 0x7ff0000000000000UL &&
(q[j] & 0x7fffffffffffffffUL) > 0x7ff0000000000000UL &&
t2[j] == q2[j])
continue;
// if( t[j] != q[j] || t2[j] != q2[j] )
{
double test = ((double*) q)[j];
int correct2 = INT_MIN;
long double correct = f->dfunc.f_ffpI( s[j], s2[j], &correct2 );
float err = Bruteforce_Ulp_Error_Double( test, correct );
int64_t iErr;
// in case of remquo, we only care about the sign and last seven bits of
// integer as per the spec.
if(testingRemquo)
iErr = (long long) (q2[j] & 0x0000007f) - (long long) (correct2 & 0x0000007f);
else
iErr = (long long) q2[j] - (long long) correct2;
//For remquo, if y = 0, x is infinite, or either is NaN then the standard either neglects
//to say what is returned in iptr or leaves it undefined or implementation defined.
int iptrUndefined = fabs(((double*) gIn)[j]) == INFINITY ||
((double*) gIn2)[j] == 0.0 ||
isnan(((double*) gIn2)[j]) ||
isnan(((double*) gIn)[j]);
if(iptrUndefined)
iErr = 0;
int fail = ! (fabsf(err) <= f->double_ulps && iErr == 0 );
if( ftz && fail )
{
// retry per section 6.5.3.2
if( IsDoubleResultSubnormal(correct, f->double_ulps ) )
{
fail = fail && ! ( test == 0.0f && iErr == 0 );
if( ! fail )
err = 0.0f;
}
// retry per section 6.5.3.3
if( IsDoubleSubnormal( s[j] ) )
{
int correct3i, correct4i;
long double correct3 = f->dfunc.f_ffpI( 0.0, s2[j], &correct3i );
long double correct4 = f->dfunc.f_ffpI( -0.0, s2[j], &correct4i );
float err2 = Bruteforce_Ulp_Error_Double( test, correct3 );
float err3 = Bruteforce_Ulp_Error_Double( test, correct4 );
int64_t iErr3 = (long long) q2[j] - (long long) correct3i;
int64_t iErr4 = (long long) q2[j] - (long long) correct4i;
fail = fail && ((!(fabsf(err2) <= f->double_ulps && iErr3 == 0)) && (!(fabsf(err3) <= f->double_ulps && iErr4 == 0)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( llabs(iErr3) < llabs( iErr ) )
iErr = iErr3;
if( llabs(iErr4) < llabs( iErr ) )
iErr = iErr4;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) )
{
fail = fail && ! ( test == 0.0f && (iErr3 == 0 || iErr4 == 0) );
if( ! fail )
err = 0.0f;
}
//try with both args as zero
if( IsDoubleSubnormal( s2[j] ) )
{
int correct7i, correct8i;
correct3 = f->dfunc.f_ffpI( 0.0, 0.0, &correct3i );
correct4 = f->dfunc.f_ffpI( -0.0, 0.0, &correct4i );
long double correct7 = f->dfunc.f_ffpI( 0.0, -0.0, &correct7i );
long double correct8 = f->dfunc.f_ffpI( -0.0, -0.0, &correct8i );
err2 = Bruteforce_Ulp_Error_Double( test, correct3 );
err3 = Bruteforce_Ulp_Error_Double( test, correct4 );
float err4 = Bruteforce_Ulp_Error_Double( test, correct7 );
float err5 = Bruteforce_Ulp_Error_Double( test, correct8 );
iErr3 = (long long) q2[j] - (long long) correct3i;
iErr4 = (long long) q2[j] - (long long) correct4i;
int64_t iErr7 = (long long) q2[j] - (long long) correct7i;
int64_t iErr8 = (long long) q2[j] - (long long) correct8i;
fail = fail && ((!(fabsf(err2) <= f->double_ulps && iErr3 == 0)) && (!(fabsf(err3) <= f->double_ulps && iErr4 == 0)) &&
(!(fabsf(err4) <= f->double_ulps && iErr7 == 0)) && (!(fabsf(err5) <= f->double_ulps && iErr8 == 0)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
if( llabs(iErr3) < llabs( iErr ) )
iErr = iErr3;
if( llabs(iErr4) < llabs( iErr ) )
iErr = iErr4;
if( llabs(iErr7) < llabs( iErr ) )
iErr = iErr7;
if( llabs(iErr8) < llabs( iErr ) )
iErr = iErr8;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct3, f->double_ulps ) || IsDoubleResultSubnormal( correct4, f->double_ulps ) ||
IsDoubleResultSubnormal( correct7, f->double_ulps ) || IsDoubleResultSubnormal( correct8, f->double_ulps ) )
{
fail = fail && ! ( test == 0.0f && (iErr3 == 0 || iErr4 == 0 || iErr7 == 0 || iErr8 == 0));
if( ! fail )
err = 0.0f;
}
}
}
else if( IsDoubleSubnormal( s2[j] ) )
{
int correct3i, correct4i;
long double correct3 = f->dfunc.f_ffpI( s[j], 0.0, &correct3i );
long double correct4 = f->dfunc.f_ffpI( s[j], -0.0, &correct4i );
float err2 = Bruteforce_Ulp_Error_Double( test, correct3 );
float err3 = Bruteforce_Ulp_Error_Double( test, correct4 );
int64_t iErr3 = (long long) q2[j] - (long long) correct3i;
int64_t iErr4 = (long long) q2[j] - (long long) correct4i;
fail = fail && ((!(fabsf(err2) <= f->double_ulps && iErr3 == 0)) && (!(fabsf(err3) <= f->double_ulps && iErr4 == 0)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( llabs(iErr3) < llabs( iErr ) )
iErr = iErr3;
if( llabs(iErr4) < llabs( iErr ) )
iErr = iErr4;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) )
{
fail = fail && ! ( test == 0.0f && (iErr3 == 0 || iErr4 == 0) );
if( ! fail )
err = 0.0f;
}
}
}
if( fabsf(err ) > maxError )
{
maxError = fabsf(err);
maxErrorVal = s[j];
}
if( llabs(iErr) > maxError2 )
{
maxError2 = llabs(iErr );
maxErrorVal2 = s[j];
}
if( fail )
{
vlog_error( "\nERROR: %sD%s: {%f, %lld} ulp error at {%.13la, %.13la} ({ 0x%16.16llx, 0x%16.16llx}): *{%.13la, %d} ({ 0x%16.16llx, 0x%8.8x}) vs. {%.13la, %d} ({ 0x%16.16llx, 0x%8.8x})\n",
f->name, sizeNames[k], err, iErr,
((double*) gIn)[j], ((double*) gIn2)[j],
((cl_ulong*) gIn)[j], ((cl_ulong*) gIn2)[j],
((double*) gOut_Ref)[j], ((int*) gOut_Ref2)[j],
((cl_ulong*) gOut_Ref)[j], ((cl_uint*) gOut_Ref2)[j],
test, q2[j],
((cl_ulong*) q)[j], ((cl_uint*) q2)[j]);
error = -1;
goto exit;
}
}
}
}
if( 0 == (i & 0x0fffffff) )
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10zu bufferSize:%10zd \n", i, step, bufferSize);
} else
{
vlog("." );
}
fflush(stdout);
}
}
if( ! gSkipCorrectnessTesting )
{
if( gWimpyMode )
vlog( "Wimp pass" );
else
vlog( "passed" );
}
if( gMeasureTimes )
{
//Init input array
double *p = (double *)gIn;
for( j = 0; j < bufferSize / sizeof( double ); j++ )
p[j] = DoubleFromUInt32( genrand_int32(d) );
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_TRUE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_TRUE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeof( cl_double ) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize; // bufferSize / vectorSize rounded up
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gOutBuffer2[j] ), &gOutBuffer2[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
double sum = 0.0;
double bestTime = INFINITY;
for( k = 0; k < PERF_LOOP_COUNT; k++ )
{
uint64_t startTime = GetTime();
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
// Make sure OpenCL is done
if( (error = clFinish(gQueue) ) )
{
vlog_error( "Error %d at clFinish\n", error );
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime( endTime, startTime );
sum += time;
if( time < bestTime )
bestTime = time;
}
if( gReportAverageTimes )
bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double) gDeviceFrequency * gComputeDevices * gSimdSize * 1e6 / (bufferSize / sizeof( double ) );
vlog_perf( clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sD%s", f->name, sizeNames[j] );
}
for( ; j < gMaxVectorSizeIndex; j++ )
vlog( "\t -- " );
}
if( ! gSkipCorrectnessTesting )
vlog( "\t{%8.2f, %lld} @ %a", maxError, maxError2, maxErrorVal );
vlog( "\n" );
exit:
// Release
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}