blob: fd97a95df7a2aaf074cccd8b01fa4119bfdd0596 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "Utility.h"
#include <string.h>
#include "FunctionList.h"
#define CORRECTLY_ROUNDED 0
#define FLUSHED 1
int TestFunc_Float_Float_Float_Float(const Func *f, MTdata, bool relaxedMode);
int TestFunc_Double_Double_Double_Double(const Func *f, MTdata,
bool relaxedMode);
extern const vtbl _ternary = { "ternary", TestFunc_Float_Float_Float_Float,
TestFunc_Double_Double_Double_Double };
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = {
"__kernel void math_kernel", sizeNames[vectorSize], "( __global float", sizeNames[vectorSize], "* out, __global float", sizeNames[vectorSize], "* in1, __global float", sizeNames[vectorSize], "* in2, __global float", sizeNames[vectorSize], "* in3 )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ", name, "( in1[i], in2[i], in3[i] );\n"
"}\n"
};
const char *c3[] = { "__kernel void math_kernel", sizeNames[vectorSize], "( __global float* out, __global float* in, __global float* in2 , __global float* in3)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" float3 f0 = vload3( 0, in + 3 * i );\n"
" float3 f1 = vload3( 0, in2 + 3 * i );\n"
" float3 f2 = vload3( 0, in3 + 3 * i );\n"
" f0 = ", name, "( f0, f1, f2 );\n"
" vstore3( f0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two buffer size \n"
" float3 f0, f1, f2;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (float3)( in[3*i], NAN, NAN ); \n"
" f1 = (float3)( in2[3*i], NAN, NAN ); \n"
" f2 = (float3)( in3[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
" f1 = (float3)( in2[3*i], in2[3*i+1], NAN ); \n"
" f2 = (float3)( in3[3*i], in3[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" f0 = ", name, "( f0, f1, f2 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = f0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = f0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c)/sizeof(c[0]);
if( sizeValues[vectorSize] == 3 )
{
kern = c3;
kernSize = sizeof(c3)/sizeof(c3[0]);
}
char testName[32];
snprintf( testName, sizeof( testName ) -1, "math_kernel%s", sizeNames[vectorSize] );
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = {
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel", sizeNames[vectorSize], "( __global double", sizeNames[vectorSize], "* out, __global double", sizeNames[vectorSize], "* in1, __global double", sizeNames[vectorSize], "* in2, __global double", sizeNames[vectorSize], "* in3 )\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ", name, "( in1[i], in2[i], in3[i] );\n"
"}\n"
};
const char *c3[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel", sizeNames[vectorSize], "( __global double* out, __global double* in, __global double* in2 , __global double* in3)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" double3 d0 = vload3( 0, in + 3 * i );\n"
" double3 d1 = vload3( 0, in2 + 3 * i );\n"
" double3 d2 = vload3( 0, in3 + 3 * i );\n"
" d0 = ", name, "( d0, d1, d2 );\n"
" vstore3( d0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two buffer size \n"
" double3 d0, d1, d2;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" d0 = (double3)( in[3*i], NAN, NAN ); \n"
" d1 = (double3)( in2[3*i], NAN, NAN ); \n"
" d2 = (double3)( in3[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" d0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
" d1 = (double3)( in2[3*i], in2[3*i+1], NAN ); \n"
" d2 = (double3)( in3[3*i], in3[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" d0 = ", name, "( d0, d1, d2 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = d0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = d0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c)/sizeof(c[0]);
if( sizeValues[vectorSize] == 3 )
{
kern = c3;
kernSize = sizeof(c3)/sizeof(c3[0]);
}
char testName[32];
snprintf( testName, sizeof( testName ) -1, "math_kernel%s", sizeNames[vectorSize] );
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_kernel *kernels;
cl_program *programs;
const char *nameInCode;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
}BuildKernelInfo;
static cl_int BuildKernel_FloatFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p );
static cl_int BuildKernel_FloatFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p )
{
BuildKernelInfo *info = (BuildKernelInfo*) p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
static cl_int BuildKernel_DoubleFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p );
static cl_int BuildKernel_DoubleFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p )
{
BuildKernelInfo *info = (BuildKernelInfo*) p;
cl_uint i = info->offset + job_id;
return BuildKernelDouble(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
// A table of more difficult cases to get right
static const float specialValuesFloat[] = {
-NAN, -INFINITY, -FLT_MAX, MAKE_HEX_FLOAT(-0x1.000002p64f, -0x1000002L, 40), MAKE_HEX_FLOAT(-0x1.0p64f, -0x1L, 64), MAKE_HEX_FLOAT(-0x1.fffffep63f, -0x1fffffeL, 39), MAKE_HEX_FLOAT(-0x1.000002p63f, -0x1000002L, 39), MAKE_HEX_FLOAT(-0x1.0p63f, -0x1L, 63), MAKE_HEX_FLOAT(-0x1.fffffep62f, -0x1fffffeL, 38),
-3.0f, MAKE_HEX_FLOAT(-0x1.800002p1f, -0x1800002L, -23), -2.5f, MAKE_HEX_FLOAT(-0x1.7ffffep1f, -0x17ffffeL, -23), -2.0f, MAKE_HEX_FLOAT(-0x1.800002p0f, -0x1800002L, -24), -1.75f, -1.5f, -1.25f, MAKE_HEX_FLOAT(-0x1.7ffffep0f, -0x17ffffeL, -24), MAKE_HEX_FLOAT(-0x1.000002p0f, -0x1000002L, -24), MAKE_HEX_FLOAT(-0x1.003p0f, -0x1003000L, -24), -MAKE_HEX_FLOAT(0x1.001p0f, 0x1001000L, -24), -1.0f, MAKE_HEX_FLOAT(-0x1.fffffep-1f, -0x1fffffeL, -25),
MAKE_HEX_FLOAT(-0x1.000002p-126f, -0x1000002L, -150), -FLT_MIN, MAKE_HEX_FLOAT(-0x0.fffffep-126f, -0x0fffffeL, -150), MAKE_HEX_FLOAT(-0x0.000ffep-126f, -0x0000ffeL, -150), MAKE_HEX_FLOAT(-0x0.0000fep-126f, -0x00000feL, -150), MAKE_HEX_FLOAT(-0x0.00000ep-126f, -0x000000eL, -150), MAKE_HEX_FLOAT(-0x0.00000cp-126f, -0x000000cL, -150), MAKE_HEX_FLOAT(-0x0.00000ap-126f, -0x000000aL, -150),
MAKE_HEX_FLOAT(-0x0.000008p-126f, -0x0000008L, -150), MAKE_HEX_FLOAT(-0x0.000006p-126f, -0x0000006L, -150), MAKE_HEX_FLOAT(-0x0.000004p-126f, -0x0000004L, -150), MAKE_HEX_FLOAT(-0x0.000002p-126f, -0x0000002L, -150), -0.0f,
+NAN, +INFINITY, +FLT_MAX, MAKE_HEX_FLOAT(+0x1.000002p64f, +0x1000002L, 40), MAKE_HEX_FLOAT(+0x1.0p64f, +0x1L, 64), MAKE_HEX_FLOAT(+0x1.fffffep63f, +0x1fffffeL, 39), MAKE_HEX_FLOAT(+0x1.000002p63f, +0x1000002L, 39), MAKE_HEX_FLOAT(+0x1.0p63f, +0x1L, 63), MAKE_HEX_FLOAT(+0x1.fffffep62f, +0x1fffffeL, 38),
+3.0f, MAKE_HEX_FLOAT(+0x1.800002p1f, +0x1800002L, -23), 2.5f, MAKE_HEX_FLOAT(+0x1.7ffffep1f, +0x17ffffeL, -23),+2.0f, MAKE_HEX_FLOAT(+0x1.800002p0f, +0x1800002L, -24), 1.75f, 1.5f, 1.25f, MAKE_HEX_FLOAT(+0x1.7ffffep0f, +0x17ffffeL, -24), MAKE_HEX_FLOAT(+0x1.000002p0f, +0x1000002L, -24), MAKE_HEX_FLOAT(0x1.003p0f, 0x1003000L, -24), +MAKE_HEX_FLOAT(0x1.001p0f, 0x1001000L, -24), +1.0f, MAKE_HEX_FLOAT(+0x1.fffffep-1f, +0x1fffffeL, -25),
MAKE_HEX_FLOAT(0x1.000002p-126f, 0x1000002L, -150), +FLT_MIN, MAKE_HEX_FLOAT(+0x0.fffffep-126f, +0x0fffffeL, -150), MAKE_HEX_FLOAT(+0x0.000ffep-126f, +0x0000ffeL, -150), MAKE_HEX_FLOAT(+0x0.0000fep-126f, +0x00000feL, -150), MAKE_HEX_FLOAT(+0x0.00000ep-126f, +0x000000eL, -150), MAKE_HEX_FLOAT(+0x0.00000cp-126f, +0x000000cL, -150), MAKE_HEX_FLOAT(+0x0.00000ap-126f, +0x000000aL, -150),
MAKE_HEX_FLOAT(+0x0.000008p-126f, +0x0000008L, -150), MAKE_HEX_FLOAT(+0x0.000006p-126f, +0x0000006L, -150), MAKE_HEX_FLOAT(+0x0.000004p-126f, +0x0000004L, -150), MAKE_HEX_FLOAT(+0x0.000002p-126f, +0x0000002L, -150), +0.0f
};
static size_t specialValuesFloatCount = sizeof( specialValuesFloat ) / sizeof( specialValuesFloat[0] );
int TestFunc_Float_Float_Float_Float(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[ VECTOR_SIZE_COUNT ];
cl_kernel kernels[ VECTOR_SIZE_COUNT ];
float maxError = 0.0f;
int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
float maxErrorVal = 0.0f;
float maxErrorVal2 = 0.0f;
float maxErrorVal3 = 0.0f;
size_t bufferSize = (gWimpyMode)? gWimpyBufferSize: BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(float), bufferSize);
int skipNanInf = (0 == strcmp( "fma", f->nameInCode )) && ! gInfNanSupport;
cl_uchar overflow[BUFFER_SIZE / sizeof( float )];
float float_ulps;
logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
if( gIsEmbedded )
float_ulps = f->float_embedded_ulps;
else
float_ulps = f->float_ulps;
// Init the kernels
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if( (error = ThreadPool_Do( BuildKernel_FloatFn, gMaxVectorSizeIndex - gMinVectorSizeIndex, &build_info ) ))
return error;
/*
for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
if( (error = BuildKernel( f->nameInCode, (int) i, kernels + i, programs + i) ) )
return error;
*/
for( i = 0; i < (1ULL<<32); i += step )
{
//Init input array
uint32_t *p = (uint32_t *)gIn;
uint32_t *p2 = (uint32_t *)gIn2;
uint32_t *p3 = (uint32_t *)gIn3;
j = 0;
if( i == 0 )
{ // test edge cases
float *fp = (float *)gIn;
float *fp2 = (float *)gIn2;
float *fp3 = (float *)gIn3;
uint32_t x, y, z; x = y = z = 0;
for( ; j < bufferSize / sizeof( float ); j++ )
{
fp[j] = specialValuesFloat[x];
fp2[j] = specialValuesFloat[y];
fp3[j] = specialValuesFloat[z];
if( ++x >= specialValuesFloatCount )
{
x = 0;
if( ++y >= specialValuesFloatCount )
{
y = 0;
if( ++z >= specialValuesFloatCount )
break;
}
}
}
if( j == bufferSize / sizeof( float ) )
vlog_error( "Test Error: not all special cases tested!\n" );
}
for( ; j < bufferSize / sizeof( float ); j++ )
{
p[j] = genrand_int32(d);
p2[j] = genrand_int32(d);
p3[j] = genrand_int32(d);
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, bufferSize, gIn3, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error );
return error;
}
// write garbage into output arrays
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, bufferSize, gOut[j], 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j );
goto exit;
}
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeof( cl_float ) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize; // bufferSize / vectorSize rounded up
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer3 ), &gInBuffer3 ) )) { LogBuildError(programs[j]); goto exit; }
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
}
// Get that moving
if( (error = clFlush(gQueue) ))
vlog( "clFlush failed\n" );
//Calculate the correctly rounded reference result
float *r = (float *)gOut_Ref;
float *s = (float *)gIn;
float *s2 = (float *)gIn2;
float *s3 = (float *)gIn3;
if( skipNanInf )
{
for( j = 0; j < bufferSize / sizeof( float ); j++ )
{
feclearexcept(FE_OVERFLOW);
r[j] = (float) f->func.f_fma( s[j], s2[j], s3[j], CORRECTLY_ROUNDED );
overflow[j] = FE_OVERFLOW == (FE_OVERFLOW & fetestexcept(FE_OVERFLOW));
}
}
else
{
for( j = 0; j < bufferSize / sizeof( float ); j++ )
r[j] = (float) f->func.f_fma( s[j], s2[j], s3[j], CORRECTLY_ROUNDED );
}
// Read the data back
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL)) )
{
vlog_error( "ReadArray failed %d\n", error );
goto exit;
}
}
if( gSkipCorrectnessTesting )
break;
//Verify data
uint32_t *t = (uint32_t *)gOut_Ref;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
{
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
uint32_t *q = (uint32_t *)(gOut[k]);
// If we aren't getting the correctly rounded result
if( t[j] != q[j] )
{
float err;
int fail;
float test = ((float*) q)[j];
float correct = f->func.f_fma( s[j], s2[j], s3[j], CORRECTLY_ROUNDED );
// Per section 10 paragraph 6, accept any result if an input or output is a infinity or NaN or overflow
if( skipNanInf )
{
if( overflow[j] ||
IsFloatInfinity(correct) || IsFloatNaN(correct) ||
IsFloatInfinity(s[j]) || IsFloatNaN(s[j]) ||
IsFloatInfinity(s2[j]) || IsFloatNaN(s2[j]) ||
IsFloatInfinity(s3[j]) || IsFloatNaN(s3[j]) )
continue;
}
err = Ulp_Error( test, correct );
fail = ! (fabsf(err) <= float_ulps);
if( fail && ftz )
{
float correct2, err2;
// retry per section 6.5.3.2 with flushing on
if( 0.0f == test && 0.0f == f->func.f_fma( s[j], s2[j], s3[j], FLUSHED ) )
{
fail = 0;
err = 0.0f;
}
// retry per section 6.5.3.3
if( fail && IsFloatSubnormal( s[j] ) )
{ // look at me,
float err3, correct3;
if( skipNanInf )
feclearexcept( FE_OVERFLOW );
correct2 = f->func.f_fma( 0.0f, s2[j], s3[j], CORRECTLY_ROUNDED );
correct3 = f->func.f_fma( -0.0f, s2[j], s3[j], CORRECTLY_ROUNDED );
if( skipNanInf )
{
if( fetestexcept( FE_OVERFLOW ) )
continue;
// Note: no double rounding here. Reference functions calculate in single precision.
if( IsFloatInfinity(correct2) || IsFloatNaN(correct2) ||
IsFloatInfinity(correct3) || IsFloatNaN(correct3) )
continue;
}
err2 = Ulp_Error( test, correct2 );
err3 = Ulp_Error( test, correct3 );
fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
// retry per section 6.5.3.4
if( 0.0f == test &&
( 0.0f == f->func.f_fma( 0.0f, s2[j], s3[j], FLUSHED ) ||
0.0f == f->func.f_fma( -0.0f, s2[j], s3[j], FLUSHED ) )
)
{
fail = 0;
err = 0.0f;
}
//try with first two args as zero
if( IsFloatSubnormal( s2[j] ) )
{ // its fun to have fun,
double correct4, correct5;
float err4, err5;
if( skipNanInf )
feclearexcept( FE_OVERFLOW );
correct2 = f->func.f_fma( 0.0f, 0.0f, s3[j], CORRECTLY_ROUNDED );
correct3 = f->func.f_fma( -0.0f, 0.0f, s3[j], CORRECTLY_ROUNDED );
correct4 = f->func.f_fma( 0.0f, -0.0f, s3[j], CORRECTLY_ROUNDED );
correct5 = f->func.f_fma( -0.0f, -0.0f, s3[j], CORRECTLY_ROUNDED );
// Per section 10 paragraph 6, accept any result if an input or output is a infinity or NaN or overflow
if( !gInfNanSupport )
{
if( fetestexcept(FE_OVERFLOW) )
continue;
// Note: no double rounding here. Reference functions calculate in single precision.
if( IsFloatInfinity(correct2) || IsFloatNaN(correct2) ||
IsFloatInfinity(correct3) || IsFloatNaN(correct3) ||
IsFloatInfinity(correct4) || IsFloatNaN(correct4) ||
IsFloatInfinity(correct5) || IsFloatNaN(correct5) )
continue;
}
err2 = Ulp_Error( test, correct2 );
err3 = Ulp_Error( test, correct3 );
err4 = Ulp_Error( test, correct4 );
err5 = Ulp_Error( test, correct5 );
fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)) &&
(!(fabsf(err4) <= float_ulps)) && (!(fabsf(err5) <= float_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( 0.0f == test &&
( 0.0f == f->func.f_fma( 0.0f, 0.0f, s3[j], FLUSHED ) ||
0.0f == f->func.f_fma( -0.0f, 0.0f, s3[j], FLUSHED ) ||
0.0f == f->func.f_fma( 0.0f, -0.0f, s3[j], FLUSHED ) ||
0.0f == f->func.f_fma( -0.0f, -0.0f, s3[j], FLUSHED ) )
)
{
fail = 0;
err = 0.0f;
}
if( IsFloatSubnormal( s3[j] ) )
{
if( test == 0.0f ) // 0*0+0 is 0
{
fail = 0;
err = 0.0f;
}
}
}
else if( IsFloatSubnormal( s3[j] ) )
{
double correct4, correct5;
float err4, err5;
if( skipNanInf )
feclearexcept( FE_OVERFLOW );
correct2 = f->func.f_fma( 0.0f, s2[j], 0.0f, CORRECTLY_ROUNDED );
correct3 = f->func.f_fma( -0.0f, s2[j], 0.0f, CORRECTLY_ROUNDED );
correct4 = f->func.f_fma( 0.0f, s2[j], -0.0f, CORRECTLY_ROUNDED );
correct5 = f->func.f_fma( -0.0f, s2[j], -0.0f, CORRECTLY_ROUNDED );
// Per section 10 paragraph 6, accept any result if an input or output is a infinity or NaN or overflow
if( !gInfNanSupport )
{
if( fetestexcept(FE_OVERFLOW) )
continue;
// Note: no double rounding here. Reference functions calculate in single precision.
if( IsFloatInfinity(correct2) || IsFloatNaN(correct2) ||
IsFloatInfinity(correct3) || IsFloatNaN(correct3) ||
IsFloatInfinity(correct4) || IsFloatNaN(correct4) ||
IsFloatInfinity(correct5) || IsFloatNaN(correct5) )
continue;
}
err2 = Ulp_Error( test, correct2 );
err3 = Ulp_Error( test, correct3 );
err4 = Ulp_Error( test, correct4 );
err5 = Ulp_Error( test, correct5 );
fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)) &&
(!(fabsf(err4) <= float_ulps)) && (!(fabsf(err5) <= float_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( 0.0f == test &&
( 0.0f == f->func.f_fma( 0.0f, s2[j], 0.0f, FLUSHED ) ||
0.0f == f->func.f_fma(-0.0f, s2[j], 0.0f, FLUSHED ) ||
0.0f == f->func.f_fma( 0.0f, s2[j],-0.0f, FLUSHED ) ||
0.0f == f->func.f_fma(-0.0f, s2[j],-0.0f, FLUSHED ) )
)
{
fail = 0;
err = 0.0f;
}
}
}
else if( fail && IsFloatSubnormal( s2[j] ) )
{
double correct2, correct3;
float err2, err3;
if( skipNanInf )
feclearexcept( FE_OVERFLOW );
correct2 = f->func.f_fma( s[j], 0.0f, s3[j], CORRECTLY_ROUNDED );
correct3 = f->func.f_fma( s[j], -0.0f, s3[j], CORRECTLY_ROUNDED );
if( skipNanInf )
{
if( fetestexcept( FE_OVERFLOW ) )
continue;
// Note: no double rounding here. Reference functions calculate in single precision.
if( IsFloatInfinity(correct2) || IsFloatNaN(correct2) ||
IsFloatInfinity(correct3) || IsFloatNaN(correct3) )
continue;
}
err2 = Ulp_Error( test, correct2 );
err3 = Ulp_Error( test, correct3 );
fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
// retry per section 6.5.3.4
if( 0.0f == test &&
( 0.0f == f->func.f_fma( s[j], 0.0f, s3[j], FLUSHED ) ||
0.0f == f->func.f_fma( s[j], -0.0f, s3[j], FLUSHED ) )
)
{
fail = 0;
err = 0.0f;
}
//try with second two args as zero
if( IsFloatSubnormal( s3[j] ) )
{
double correct4, correct5;
float err4, err5;
if( skipNanInf )
feclearexcept( FE_OVERFLOW );
correct2 = f->func.f_fma( s[j], 0.0f, 0.0f, CORRECTLY_ROUNDED );
correct3 = f->func.f_fma( s[j], -0.0f, 0.0f, CORRECTLY_ROUNDED );
correct4 = f->func.f_fma( s[j], 0.0f, -0.0f, CORRECTLY_ROUNDED );
correct5 = f->func.f_fma( s[j], -0.0f, -0.0f, CORRECTLY_ROUNDED );
// Per section 10 paragraph 6, accept any result if an input or output is a infinity or NaN or overflow
if( !gInfNanSupport )
{
if( fetestexcept(FE_OVERFLOW) )
continue;
// Note: no double rounding here. Reference functions calculate in single precision.
if( IsFloatInfinity(correct2) || IsFloatNaN(correct2) ||
IsFloatInfinity(correct3) || IsFloatNaN(correct3) ||
IsFloatInfinity(correct4) || IsFloatNaN(correct4) ||
IsFloatInfinity(correct5) || IsFloatNaN(correct5) )
continue;
}
err2 = Ulp_Error( test, correct2 );
err3 = Ulp_Error( test, correct3 );
err4 = Ulp_Error( test, correct4 );
err5 = Ulp_Error( test, correct5 );
fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)) &&
(!(fabsf(err4) <= float_ulps)) && (!(fabsf(err5) <= float_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( 0.0f == test &&
( 0.0f == f->func.f_fma( s[j], 0.0f, 0.0f, FLUSHED ) ||
0.0f == f->func.f_fma( s[j],-0.0f, 0.0f, FLUSHED ) ||
0.0f == f->func.f_fma( s[j], 0.0f,-0.0f, FLUSHED ) ||
0.0f == f->func.f_fma( s[j],-0.0f,-0.0f, FLUSHED ) )
)
{
fail = 0;
err = 0.0f;
}
}
}
else if( fail && IsFloatSubnormal(s3[j]) )
{
double correct2, correct3;
float err2, err3;
if( skipNanInf )
feclearexcept( FE_OVERFLOW );
correct2 = f->func.f_fma( s[j], s2[j], 0.0f, CORRECTLY_ROUNDED );
correct3 = f->func.f_fma( s[j], s2[j], -0.0f, CORRECTLY_ROUNDED );
if( skipNanInf )
{
if( fetestexcept( FE_OVERFLOW ) )
continue;
// Note: no double rounding here. Reference functions calculate in single precision.
if( IsFloatInfinity(correct2) || IsFloatNaN(correct2) ||
IsFloatInfinity(correct3) || IsFloatNaN(correct3) )
continue;
}
err2 = Ulp_Error( test, correct2 );
err3 = Ulp_Error( test, correct3 );
fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
// retry per section 6.5.3.4
if( 0.0f == test &&
( 0.0f == f->func.f_fma( s[j], s2[j], 0.0f, FLUSHED ) ||
0.0f == f->func.f_fma( s[j], s2[j],-0.0f, FLUSHED ) )
)
{
fail = 0;
err = 0.0f;
}
}
}
if( fabsf(err ) > maxError )
{
maxError = fabsf(err);
maxErrorVal = s[j];
maxErrorVal2 = s2[j];
maxErrorVal3 = s3[j];
}
if( fail )
{
vlog_error( "\nERROR: %s%s: %f ulp error at {%a, %a, %a} ({0x%8.8x, 0x%8.8x, 0x%8.8x}): *%a vs. %a\n", f->name, sizeNames[k], err, s[j], s2[j], s3[j], ((cl_uint*)s)[j], ((cl_uint*)s2)[j], ((cl_uint*)s3)[j], ((float*) gOut_Ref)[j], test );
error = -1;
goto exit;
}
}
}
}
if( 0 == (i & 0x0fffffff) )
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10u bufferSize:%10zd \n", i, step, bufferSize);
} else
{
vlog("." );
}
fflush(stdout);
}
}
if( ! gSkipCorrectnessTesting )
{
if( gWimpyMode )
vlog( "Wimp pass" );
else
vlog( "passed" );
}
if( gMeasureTimes )
{
//Init input array
uint32_t *p = (uint32_t *)gIn;
uint32_t *p2 = (uint32_t *)gIn2;
uint32_t *p3 = (uint32_t *)gIn3;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
{
p[j] = genrand_int32(d);
p2[j] = genrand_int32(d);
p3[j] = genrand_int32(d);
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, bufferSize, gIn3, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error );
return error;
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeof( cl_float ) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize; // bufferSize / vectorSize rounded up
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer3 ), &gInBuffer3 ) )) { LogBuildError(programs[j]); goto exit; }
double sum = 0.0;
double bestTime = INFINITY;
for( k = 0; k < PERF_LOOP_COUNT; k++ )
{
uint64_t startTime = GetTime();
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
// Make sure OpenCL is done
if( (error = clFinish(gQueue) ) )
{
vlog_error( "Error %d at clFinish\n", error );
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime( endTime, startTime );
sum += time;
if( time < bestTime )
bestTime = time;
}
if( gReportAverageTimes )
bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double) gDeviceFrequency * gComputeDevices * gSimdSize * 1e6 / (bufferSize / sizeof( float ) );
vlog_perf( clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s", f->name, sizeNames[j] );
}
}
if( ! gSkipCorrectnessTesting )
vlog( "\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2, maxErrorVal3 );
vlog( "\n" );
exit:
// Release
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}
// A table of more difficult cases to get right
static const double specialValuesDouble[] = {
-NAN, -INFINITY, -DBL_MAX, MAKE_HEX_DOUBLE(-0x1.0000000000001p64, -0x10000000000001LL, 12), MAKE_HEX_DOUBLE(-0x1.0p64, -0x1LL, 64), MAKE_HEX_DOUBLE(-0x1.fffffffffffffp63, -0x1fffffffffffffLL, 11), MAKE_HEX_DOUBLE(-0x1.0000000000001p63, -0x10000000000001LL, 11), MAKE_HEX_DOUBLE(-0x1.0p63, -0x1LL, 63), MAKE_HEX_DOUBLE(-0x1.fffffffffffffp62, -0x1fffffffffffffLL, 10),
-3.0, MAKE_HEX_DOUBLE(-0x1.8000000000001p1, -0x18000000000001LL, -51), -2.5, MAKE_HEX_DOUBLE(-0x1.7ffffffffffffp1, -0x17ffffffffffffLL, -51), -2.0, MAKE_HEX_DOUBLE(-0x1.8000000000001p0, -0x18000000000001LL, -52), -1.5, MAKE_HEX_DOUBLE(-0x1.7ffffffffffffp0, -0x17ffffffffffffLL, -52),MAKE_HEX_DOUBLE(-0x1.0000000000001p0, -0x10000000000001LL, -52), -1.0, MAKE_HEX_DOUBLE(-0x1.fffffffffffffp-1, -0x1fffffffffffffLL, -53),
MAKE_HEX_DOUBLE(-0x1.0000000000001p-1022, -0x10000000000001LL, -1074), -DBL_MIN, MAKE_HEX_DOUBLE(-0x0.fffffffffffffp-1022, -0x0fffffffffffffLL, -1074), MAKE_HEX_DOUBLE(-0x0.0000000000fffp-1022, -0x00000000000fffLL, -1074), MAKE_HEX_DOUBLE(-0x0.00000000000fep-1022, -0x000000000000feLL, -1074), MAKE_HEX_DOUBLE(-0x0.000000000000ep-1022, -0x0000000000000eLL, -1074), MAKE_HEX_DOUBLE(-0x0.000000000000cp-1022, -0x0000000000000cLL, -1074), MAKE_HEX_DOUBLE(-0x0.000000000000ap-1022, -0x0000000000000aLL, -1074),
MAKE_HEX_DOUBLE(-0x0.0000000000003p-1022, -0x00000000000003LL, -1074), MAKE_HEX_DOUBLE(-0x0.0000000000002p-1022, -0x00000000000002LL, -1074), MAKE_HEX_DOUBLE(-0x0.0000000000001p-1022, -0x00000000000001LL, -1074), -0.0,
+NAN, +INFINITY, +DBL_MAX, MAKE_HEX_DOUBLE(+0x1.0000000000001p64, +0x10000000000001LL, 12), MAKE_HEX_DOUBLE(+0x1.0p64, +0x1LL, 64), MAKE_HEX_DOUBLE(+0x1.fffffffffffffp63, +0x1fffffffffffffLL, 11), MAKE_HEX_DOUBLE(+0x1.0000000000001p63, +0x10000000000001LL, 11), MAKE_HEX_DOUBLE(+0x1.0p63, +0x1LL, 63), MAKE_HEX_DOUBLE(+0x1.fffffffffffffp62, +0x1fffffffffffffLL, 10),
+3.0, MAKE_HEX_DOUBLE(+0x1.8000000000001p1, +0x18000000000001LL, -51), +2.5, MAKE_HEX_DOUBLE(+0x1.7ffffffffffffp1, +0x17ffffffffffffLL, -51), +2.0, MAKE_HEX_DOUBLE(+0x1.8000000000001p0, +0x18000000000001LL, -52), +1.5, MAKE_HEX_DOUBLE(+0x1.7ffffffffffffp0, +0x17ffffffffffffLL, -52),MAKE_HEX_DOUBLE(-0x1.0000000000001p0, -0x10000000000001LL, -52), +1.0, MAKE_HEX_DOUBLE(+0x1.fffffffffffffp-1, +0x1fffffffffffffLL, -53),
MAKE_HEX_DOUBLE(+0x1.0000000000001p-1022, +0x10000000000001LL, -1074), +DBL_MIN, MAKE_HEX_DOUBLE(+0x0.fffffffffffffp-1022, +0x0fffffffffffffLL, -1074), MAKE_HEX_DOUBLE(+0x0.0000000000fffp-1022, +0x00000000000fffLL, -1074), MAKE_HEX_DOUBLE(+0x0.00000000000fep-1022, +0x000000000000feLL, -1074), MAKE_HEX_DOUBLE(+0x0.000000000000ep-1022, +0x0000000000000eLL, -1074), MAKE_HEX_DOUBLE(+0x0.000000000000cp-1022, +0x0000000000000cLL, -1074), MAKE_HEX_DOUBLE(+0x0.000000000000ap-1022, +0x0000000000000aLL, -1074),
MAKE_HEX_DOUBLE(+0x0.0000000000003p-1022, +0x00000000000003LL, -1074), MAKE_HEX_DOUBLE(+0x0.0000000000002p-1022, +0x00000000000002LL, -1074), MAKE_HEX_DOUBLE(+0x0.0000000000001p-1022, +0x00000000000001LL, -1074), +0.0,
};
static const size_t specialValuesDoubleCount = sizeof( specialValuesDouble ) / sizeof( specialValuesDouble[0] );
int TestFunc_Double_Double_Double_Double(const Func *f, MTdata d,
bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[ VECTOR_SIZE_COUNT ];
cl_kernel kernels[ VECTOR_SIZE_COUNT ];
float maxError = 0.0f;
int ftz = f->ftz || gForceFTZ;
double maxErrorVal = 0.0f;
double maxErrorVal2 = 0.0f;
double maxErrorVal3 = 0.0f;
logFunctionInfo(f->name, sizeof(cl_double), relaxedMode);
size_t bufferSize = (gWimpyMode)? gWimpyBufferSize: BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(double), bufferSize);
Force64BitFPUPrecision();
// Init the kernels
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if( (error = ThreadPool_Do( BuildKernel_DoubleFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info ) ))
{
return error;
}
/*
for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
if( (error = BuildKernelDouble( f->nameInCode, (int) i, kernels + i, programs + i) ) )
return error;
*/
for( i = 0; i < (1ULL<<32); i += step )
{
//Init input array
double *p = (double *)gIn;
double *p2 = (double *)gIn2;
double *p3 = (double *)gIn3;
j = 0;
if( i == 0 )
{ // test edge cases
uint32_t x, y, z; x = y = z = 0;
for( ; j < bufferSize / sizeof( double ); j++ )
{
p[j] = specialValuesDouble[x];
p2[j] = specialValuesDouble[y];
p3[j] = specialValuesDouble[z];
if( ++x >= specialValuesDoubleCount )
{
x = 0;
if( ++y >= specialValuesDoubleCount )
{
y = 0;
if( ++z >= specialValuesDoubleCount )
break;
}
}
}
if( j == bufferSize / sizeof( double ) )
vlog_error( "Test Error: not all special cases tested!\n" );
}
for( ; j < bufferSize / sizeof( double ); j++ )
{
p[j] = DoubleFromUInt32(genrand_int32(d));
p2[j] = DoubleFromUInt32(genrand_int32(d));
p3[j] = DoubleFromUInt32(genrand_int32(d));
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, bufferSize, gIn3, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error );
return error;
}
// write garbage into output arrays
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, bufferSize, gOut[j], 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j );
goto exit;
}
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeof( cl_double ) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize; // bufferSize / vectorSize rounded up
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer3 ), &gInBuffer3 ) )) { LogBuildError(programs[j]); goto exit; }
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
}
// Get that moving
if( (error = clFlush(gQueue) ))
vlog( "clFlush failed\n" );
//Calculate the correctly rounded reference result
double *r = (double *)gOut_Ref;
double *s = (double *)gIn;
double *s2 = (double *)gIn2;
double *s3 = (double *)gIn3;
for( j = 0; j < bufferSize / sizeof( double ); j++ )
r[j] = (double) f->dfunc.f_fff( s[j], s2[j], s3[j] );
// Read the data back
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL)) )
{
vlog_error( "ReadArray failed %d\n", error );
goto exit;
}
}
if( gSkipCorrectnessTesting )
break;
//Verify data
uint64_t *t = (uint64_t *)gOut_Ref;
for( j = 0; j < bufferSize / sizeof( double ); j++ )
{
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
uint64_t *q = (uint64_t *)(gOut[k]);
// If we aren't getting the correctly rounded result
if( t[j] != q[j] )
{
double test = ((double*) q)[j];
long double correct = f->dfunc.f_fff( s[j], s2[j], s3[j] );
float err = Bruteforce_Ulp_Error_Double( test, correct );
int fail = ! (fabsf(err) <= f->double_ulps);
if( fail && ftz )
{
// retry per section 6.5.3.2
if( IsDoubleSubnormal(correct) )
{ // look at me,
fail = fail && ( test != 0.0f );
if( ! fail )
err = 0.0f;
}
// retry per section 6.5.3.3
if( fail && IsDoubleSubnormal( s[j] ) )
{ // look at me,
long double correct2 = f->dfunc.f_fff( 0.0, s2[j], s3[j] );
long double correct3 = f->dfunc.f_fff( -0.0, s2[j], s3[j] );
float err2 = Bruteforce_Ulp_Error_Double( test, correct2 );
float err3 = Bruteforce_Ulp_Error_Double( test, correct3 );
fail = fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) )
{ // look at me now,
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
//try with first two args as zero
if( IsDoubleSubnormal( s2[j] ) )
{ // its fun to have fun,
correct2 = f->dfunc.f_fff( 0.0, 0.0, s3[j] );
correct3 = f->dfunc.f_fff( -0.0, 0.0, s3[j] );
long double correct4 = f->dfunc.f_fff( 0.0, -0.0, s3[j] );
long double correct5 = f->dfunc.f_fff( -0.0, -0.0, s3[j] );
err2 = Bruteforce_Ulp_Error_Double( test, correct2 );
err3 = Bruteforce_Ulp_Error_Double( test, correct3 );
float err4 = Bruteforce_Ulp_Error_Double( test, correct4 );
float err5 = Bruteforce_Ulp_Error_Double( test, correct5 );
fail = fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)) &&
(!(fabsf(err4) <= f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) ||
IsDoubleResultSubnormal( correct4, f->double_ulps ) || IsDoubleResultSubnormal( correct5, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
if( IsDoubleSubnormal( s3[j] ) )
{ // but you have to know how!
correct2 = f->dfunc.f_fff( 0.0, 0.0, 0.0f );
correct3 = f->dfunc.f_fff( -0.0, 0.0, 0.0f );
correct4 = f->dfunc.f_fff( 0.0, -0.0, 0.0f );
correct5 = f->dfunc.f_fff( -0.0, -0.0, 0.0f );
long double correct6 = f->dfunc.f_fff( 0.0, 0.0, -0.0f );
long double correct7 = f->dfunc.f_fff( -0.0, 0.0, -0.0f );
long double correct8 = f->dfunc.f_fff( 0.0, -0.0, -0.0f );
long double correct9 = f->dfunc.f_fff( -0.0, -0.0, -0.0f );
err2 = Bruteforce_Ulp_Error_Double( test, correct2 );
err3 = Bruteforce_Ulp_Error_Double( test, correct3 );
err4 = Bruteforce_Ulp_Error_Double( test, correct4 );
err5 = Bruteforce_Ulp_Error_Double( test, correct5 );
float err6 = Bruteforce_Ulp_Error_Double( test, correct6 );
float err7 = Bruteforce_Ulp_Error_Double( test, correct7 );
float err8 = Bruteforce_Ulp_Error_Double( test, correct8 );
float err9 = Bruteforce_Ulp_Error_Double( test, correct9 );
fail = fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)) &&
(!(fabsf(err4) <= f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)) &&
(!(fabsf(err5) <= f->double_ulps)) && (!(fabsf(err6) <= f->double_ulps)) &&
(!(fabsf(err7) <= f->double_ulps)) && (!(fabsf(err8) <= f->double_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
if( fabsf( err6 ) < fabsf(err ) )
err = err6;
if( fabsf( err7 ) < fabsf(err ) )
err = err7;
if( fabsf( err8 ) < fabsf(err ) )
err = err8;
if( fabsf( err9 ) < fabsf(err ) )
err = err9;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) ||
IsDoubleResultSubnormal( correct4, f->double_ulps ) || IsDoubleResultSubnormal( correct5, f->double_ulps ) ||
IsDoubleResultSubnormal( correct6, f->double_ulps ) || IsDoubleResultSubnormal( correct7, f->double_ulps ) ||
IsDoubleResultSubnormal( correct8, f->double_ulps ) || IsDoubleResultSubnormal( correct9, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( IsDoubleSubnormal( s3[j] ) )
{
correct2 = f->dfunc.f_fff( 0.0, s2[j], 0.0 );
correct3 = f->dfunc.f_fff( -0.0, s2[j], 0.0 );
long double correct4 = f->dfunc.f_fff( 0.0, s2[j], -0.0 );
long double correct5 = f->dfunc.f_fff( -0.0, s2[j], -0.0 );
err2 = Bruteforce_Ulp_Error_Double( test, correct2 );
err3 = Bruteforce_Ulp_Error_Double( test, correct3 );
float err4 = Bruteforce_Ulp_Error_Double( test, correct4 );
float err5 = Bruteforce_Ulp_Error_Double( test, correct5 );
fail = fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)) &&
(!(fabsf(err4) <= f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) ||
IsDoubleResultSubnormal( correct4, f->double_ulps ) || IsDoubleResultSubnormal( correct5, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( fail && IsDoubleSubnormal( s2[j] ) )
{
long double correct2 = f->dfunc.f_fff( s[j], 0.0, s3[j] );
long double correct3 = f->dfunc.f_fff( s[j], -0.0, s3[j] );
float err2 = Bruteforce_Ulp_Error_Double( test, correct2 );
float err3 = Bruteforce_Ulp_Error_Double( test, correct3 );
fail = fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
//try with second two args as zero
if( IsDoubleSubnormal( s3[j] ) )
{
correct2 = f->dfunc.f_fff( s[j], 0.0, 0.0 );
correct3 = f->dfunc.f_fff( s[j], -0.0, 0.0 );
long double correct4 = f->dfunc.f_fff( s[j], 0.0, -0.0 );
long double correct5 = f->dfunc.f_fff( s[j], -0.0, -0.0 );
err2 = Bruteforce_Ulp_Error_Double( test, correct2 );
err3 = Bruteforce_Ulp_Error_Double( test, correct3 );
float err4 = Bruteforce_Ulp_Error_Double( test, correct4 );
float err5 = Bruteforce_Ulp_Error_Double( test, correct5 );
fail = fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)) &&
(!(fabsf(err4) <= f->double_ulps)) && (!(fabsf(err5) <= f->double_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
if( fabsf( err4 ) < fabsf(err ) )
err = err4;
if( fabsf( err5 ) < fabsf(err ) )
err = err5;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) ||
IsDoubleResultSubnormal( correct4, f->double_ulps ) || IsDoubleResultSubnormal( correct5, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
else if( fail && IsDoubleSubnormal(s3[j]) )
{
long double correct2 = f->dfunc.f_fff( s[j], s2[j], 0.0 );
long double correct3 = f->dfunc.f_fff( s[j], s2[j], -0.0 );
float err2 = Bruteforce_Ulp_Error_Double( test, correct2 );
float err3 = Bruteforce_Ulp_Error_Double( test, correct3 );
fail = fail && ((!(fabsf(err2) <= f->double_ulps)) && (!(fabsf(err3) <= f->double_ulps)));
if( fabsf( err2 ) < fabsf(err ) )
err = err2;
if( fabsf( err3 ) < fabsf(err ) )
err = err3;
// retry per section 6.5.3.4
if( IsDoubleResultSubnormal( correct2, f->double_ulps ) || IsDoubleResultSubnormal( correct3, f->double_ulps ) )
{
fail = fail && ( test != 0.0f);
if( ! fail )
err = 0.0f;
}
}
}
if( fabsf(err ) > maxError )
{
maxError = fabsf(err);
maxErrorVal = s[j];
maxErrorVal2 = s2[j];
maxErrorVal3 = s3[j];
}
if( fail )
{
vlog_error( "\nERROR: %sD%s: %f ulp error at {%.13la, %.13la, %.13la}: *%.13la vs. %.13la\n", f->name, sizeNames[k], err, s[j], s2[j], s3[j], ((double*) gOut_Ref)[j], test );
error = -1;
goto exit;
}
}
}
}
if( 0 == (i & 0x0fffffff) )
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10zu bufferSize:%10zd \n", i, step, bufferSize);
} else
{
vlog("." );
}
fflush(stdout);
}
}
if( ! gSkipCorrectnessTesting )
{
if( gWimpyMode )
vlog( "Wimp pass" );
else
vlog( "passed" );
}
if( gMeasureTimes )
{
//Init input array
double *p = (double *)gIn;
double *p2 = (double *)gIn2;
double *p3 = (double *)gIn3;
for( j = 0; j < bufferSize / sizeof( double ); j++ )
{
p[j] = DoubleFromUInt32(genrand_int32(d));
p2[j] = DoubleFromUInt32(genrand_int32(d));
p3[j] = DoubleFromUInt32(genrand_int32(d));
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, bufferSize, gIn2, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error );
return error;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, bufferSize, gIn3, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error );
return error;
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeof( cl_double ) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize; // bufferSize / vectorSize rounded up
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 2, sizeof( gInBuffer2 ), &gInBuffer2 ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 3, sizeof( gInBuffer3 ), &gInBuffer3 ) )) { LogBuildError(programs[j]); goto exit; }
double sum = 0.0;
double bestTime = INFINITY;
for( k = 0; k < PERF_LOOP_COUNT; k++ )
{
uint64_t startTime = GetTime();
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
// Make sure OpenCL is done
if( (error = clFinish(gQueue) ) )
{
vlog_error( "Error %d at clFinish\n", error );
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime( endTime, startTime );
sum += time;
if( time < bestTime )
bestTime = time;
}
if( gReportAverageTimes )
bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double) gDeviceFrequency * gComputeDevices * gSimdSize * 1e6 / (bufferSize / sizeof( double ) );
vlog_perf( clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sD%s", f->name, sizeNames[j] );
}
for( ; j < gMaxVectorSizeIndex; j++ )
vlog( "\t -- " );
}
if( ! gSkipCorrectnessTesting )
vlog( "\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2, maxErrorVal3 );
vlog( "\n" );
exit:
// Release
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}