blob: 7182c7271e4898f299d97f177b403f225617e7ca [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "allocation_functions.h"
#include "allocation_fill.h"
static cl_image_format image_format = { CL_RGBA, CL_UNSIGNED_INT32 };
int allocate_buffer(cl_context context, cl_command_queue *queue, cl_device_id device_id, cl_mem *mem, size_t size_to_allocate, cl_bool blocking_write) {
int error;
// log_info("\t\tAttempting to allocate a %gMB array and fill with %s writes.\n", (size_to_allocate/(1024.0*1024.0)), (blocking_write ? "blocking" : "non-blocking"));
*mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size_to_allocate, NULL, &error);
return check_allocation_error(context, device_id, error, queue);
}
int find_good_image_size(cl_device_id device_id, size_t size_to_allocate, size_t *width, size_t *height, size_t* max_size) {
size_t max_width, max_height, num_pixels, found_width, found_height;
int error;
if (checkForImageSupport(device_id)) {
log_info("Can not allocate an image on this device because it does not support images.");
return FAILED_ABORT;
}
if (size_to_allocate == 0) {
log_error("Trying to allcoate a zero sized image.\n");
return FAILED_ABORT;
}
error = clGetDeviceInfo( device_id, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( max_width ), &max_width, NULL );
test_error_abort(error, "clGetDeviceInfo failed.");
error = clGetDeviceInfo( device_id, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( max_height ), &max_height, NULL );
test_error_abort(error, "clGetDeviceInfo failed.");
num_pixels = size_to_allocate / (sizeof(cl_uint)*4);
// Use a 64-bit variable to avoid overflow in 32-bit architectures
long long unsigned max_pixels = (long long unsigned)max_width * max_height;
if (num_pixels > max_pixels) {
if(NULL != max_size) {
*max_size = max_width * max_height * sizeof(cl_uint) * 4;
}
return FAILED_TOO_BIG;
}
// We want a close-to-square aspect ratio.
// Note that this implicitly assumes that max width >= max height
found_width = (int)sqrt( (double) num_pixels );
if( found_width > max_width ) {
found_width = max_width;
}
if (found_width == 0)
found_width = 1;
found_height = (size_t)num_pixels/found_width;
if (found_height > max_height) {
found_height = max_height;
}
if (found_height == 0)
found_height = 1;
*width = found_width;
*height = found_height;
if(NULL != max_size) {
*max_size = found_width * found_height * sizeof(cl_uint) * 4;
}
return SUCCEEDED;
}
int allocate_image2d_read(cl_context context, cl_command_queue *queue, cl_device_id device_id, cl_mem *mem, size_t size_to_allocate, cl_bool blocking_write) {
size_t width, height;
int error;
error = find_good_image_size(device_id, size_to_allocate, &width, &height, NULL);
if (error != SUCCEEDED)
return error;
log_info("\t\tAttempting to allocate a %gMB read-only image (%d x %d) and fill with %s writes.\n",
(size_to_allocate/(1024.0*1024.0)), (int)width, (int)height, (blocking_write ? "blocking" : "non-blocking"));
*mem = create_image_2d(context, CL_MEM_READ_ONLY, &image_format, width, height, 0, NULL, &error);
return check_allocation_error(context, device_id, error, queue);
}
int allocate_image2d_write(cl_context context, cl_command_queue *queue, cl_device_id device_id, cl_mem *mem, size_t size_to_allocate, cl_bool blocking_write) {
size_t width, height;
int error;
error = find_good_image_size(device_id, size_to_allocate, &width, &height, NULL);
if (error != SUCCEEDED)
return error;
//log_info("\t\tAttempting to allocate a %gMB write-only image (%d x %d) and fill with %s writes.\n",
//(size_to_allocate/(1024.0*1024.0)), (int)width, (int)height, (blocking_write ? "blocking" : "non-blocking"));
*mem = create_image_2d(context, CL_MEM_WRITE_ONLY, &image_format, width, height, 0, NULL, &error);
return check_allocation_error(context, device_id, error, queue);
}
int do_allocation(cl_context context, cl_command_queue *queue, cl_device_id device_id, size_t size_to_allocate, int type, cl_mem *mem) {
if (type == BUFFER) return allocate_buffer(context, queue, device_id, mem, size_to_allocate, true);
if (type == IMAGE_READ) return allocate_image2d_read(context, queue, device_id, mem, size_to_allocate, true);
if (type == IMAGE_WRITE) return allocate_image2d_write(context, queue, device_id, mem, size_to_allocate, true);
if (type == BUFFER_NON_BLOCKING) return allocate_buffer(context, queue, device_id, mem, size_to_allocate, false);
if (type == IMAGE_READ_NON_BLOCKING) return allocate_image2d_read(context, queue, device_id, mem, size_to_allocate, false);
if (type == IMAGE_WRITE_NON_BLOCKING) return allocate_image2d_write(context, queue, device_id, mem, size_to_allocate, false);
log_error("Invalid allocation type: %d\n", type);
return FAILED_ABORT;
}
int allocate_size(cl_context context, cl_command_queue *queue, cl_device_id device_id, int multiple_allocations, size_t size_to_allocate,
int type, cl_mem mems[], int *number_of_mems, size_t *final_size, int force_fill, MTdata d) {
cl_ulong max_individual_allocation_size, global_mem_size;
int error, result;
size_t amount_allocated;
size_t reduction_amount;
int current_allocation;
size_t allocation_this_time, actual_allocation;
// Set the number of mems used to 0 so if we fail to create even a single one we don't end up returning a garbage value
*number_of_mems = 0;
error = clGetDeviceInfo(device_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(max_individual_allocation_size), &max_individual_allocation_size, NULL);
test_error_abort( error, "clGetDeviceInfo failed for CL_DEVICE_MAX_MEM_ALLOC_SIZE");
error = clGetDeviceInfo(device_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(global_mem_size), &global_mem_size, NULL);
test_error_abort( error, "clGetDeviceInfo failed for CL_DEVICE_GLOBAL_MEM_SIZE");
if (global_mem_size > (cl_ulong)SIZE_MAX) {
global_mem_size = (cl_ulong)SIZE_MAX;
}
// log_info("Device reports CL_DEVICE_MAX_MEM_ALLOC_SIZE=%llu bytes (%gMB), CL_DEVICE_GLOBAL_MEM_SIZE=%llu bytes (%gMB).\n",
// max_individual_allocation_size, toMB(max_individual_allocation_size),
// global_mem_size, toMB(global_mem_size));
if (size_to_allocate > global_mem_size) {
log_error("Can not allocate more than the global memory size.\n");
return FAILED_ABORT;
}
amount_allocated = 0;
current_allocation = 0;
// If allocating for images, reduce the maximum allocation size to the maximum image size.
// If we don't do this, then the value of CL_DEVICE_MAX_MEM_ALLOC_SIZE / 4 can be higher
// than the maximum image size on systems with 16GB or RAM or more. In this case, we
// succeed in allocating an image but its size is less than CL_DEVICE_MAX_MEM_ALLOC_SIZE / 4
// (min_allocation_allowed) and thus we fail the allocation below.
if(type == IMAGE_READ || type == IMAGE_READ_NON_BLOCKING || type == IMAGE_WRITE || type == IMAGE_WRITE_NON_BLOCKING) {
size_t width;
size_t height;
size_t max_size;
error = find_good_image_size(device_id, size_to_allocate, &width, &height, &max_size);
if (!(error == SUCCEEDED || error == FAILED_TOO_BIG))
return error;
if(max_size < max_individual_allocation_size)
max_individual_allocation_size = max_size;
}
reduction_amount = (size_t)max_individual_allocation_size/16;
if (type == BUFFER || type == BUFFER_NON_BLOCKING) log_info("\tAttempting to allocate a buffer of size %gMB.\n", toMB(size_to_allocate));
else if (type == IMAGE_READ || type == IMAGE_READ_NON_BLOCKING) log_info("\tAttempting to allocate a read-only image of size %gMB.\n", toMB(size_to_allocate));
else if (type == IMAGE_WRITE || type == IMAGE_WRITE_NON_BLOCKING) log_info("\tAttempting to allocate a write-only image of size %gMB.\n", toMB(size_to_allocate));
// log_info("\t\t(Reduction size is %gMB per iteration, minimum allowable individual allocation size is %gMB.)\n",
// toMB(reduction_amount), toMB(min_allocation_allowed));
// if (force_fill && type != IMAGE_WRITE && type != IMAGE_WRITE_NON_BLOCKING) log_info("\t\t(Allocations will be filled with random data for checksum calculation.)\n");
// If we are only doing a single allocation, only allow 1
int max_to_allocate = multiple_allocations ? MAX_NUMBER_TO_ALLOCATE : 1;
// Make sure that the maximum number of images allocated is constrained by the
// maximum that may be passed to a kernel
if (type != BUFFER && type != BUFFER_NON_BLOCKING) {
cl_device_info param_name = (type == IMAGE_READ || type == IMAGE_READ_NON_BLOCKING) ?
CL_DEVICE_MAX_READ_IMAGE_ARGS : CL_DEVICE_MAX_WRITE_IMAGE_ARGS;
cl_uint max_image_args;
error = clGetDeviceInfo(device_id, param_name, sizeof(max_image_args), &max_image_args, NULL);
test_error( error, "clGetDeviceInfo failed for CL_DEVICE_MAX IMAGE_ARGS");
if ((int)max_image_args < max_to_allocate) {
log_info("\t\tMaximum number of images per kernel limited to %d\n",(int)max_image_args);
max_to_allocate = max_image_args;
}
}
// Try to allocate the requested amount.
while (amount_allocated != size_to_allocate && current_allocation < max_to_allocate) {
// Determine how much more is needed
allocation_this_time = size_to_allocate - amount_allocated;
// Bound by the individual allocation size
if (allocation_this_time > max_individual_allocation_size)
allocation_this_time = (size_t)max_individual_allocation_size;
// Allocate the largest object possible
result = FAILED_TOO_BIG;
//log_info("\t\tTrying sub-allocation %d at size %gMB.\n", current_allocation, toMB(allocation_this_time));
while (result == FAILED_TOO_BIG && allocation_this_time != 0) {
// Create the object
result = do_allocation(context, queue, device_id, allocation_this_time, type, &mems[current_allocation]);
if (result == SUCCEEDED) {
// Allocation succeeded, another memory object was added to the array
*number_of_mems = (current_allocation+1);
// Verify the size is correct to within 1MB.
actual_allocation = get_actual_allocation_size(mems[current_allocation]);
if (fabs((double)allocation_this_time - (double)actual_allocation) > 1024.0*1024.0) {
log_error("Allocation not of expected size. Expected %gMB, got %gMB.\n", toMB(allocation_this_time), toMB( actual_allocation));
return FAILED_ABORT;
}
// If we are filling the allocation for verification do so
if (force_fill) {
//log_info("\t\t\tWriting random values to object and calculating checksum.\n");
cl_bool blocking_write = true;
if (type == BUFFER_NON_BLOCKING || type == IMAGE_READ_NON_BLOCKING || type == IMAGE_WRITE_NON_BLOCKING) {
blocking_write = false;
}
result = fill_mem_with_data(context, device_id, queue, mems[current_allocation], d, blocking_write);
}
}
// If creation failed, try to create a smaller object
if (result == FAILED_TOO_BIG) {
//log_info("\t\t\tAllocation %d failed at size %gMB. Trying smaller.\n", current_allocation, toMB(allocation_this_time));
if (allocation_this_time > reduction_amount)
allocation_this_time -= reduction_amount;
else if (reduction_amount > 1) {
reduction_amount /= 2;
}
else {
allocation_this_time = 0;
}
}
}
if (result == FAILED_ABORT) {
log_error("\t\tAllocation failed.\n");
return FAILED_ABORT;
}
if (!allocation_this_time) {
log_info("\t\tFailed to allocate %gMB across several objects.\n", toMB(size_to_allocate));
return FAILED_TOO_BIG;
}
// Otherwise we succeeded
if (result != SUCCEEDED) {
log_error("Test logic error.");
exit(-1);
}
amount_allocated += allocation_this_time;
*final_size = amount_allocated;
current_allocation++;
}
log_info("\t\tSucceeded in allocating %gMB using %d memory objects.\n", toMB(amount_allocated), current_allocation);
return SUCCEEDED;
}